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Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract resulting from the homeostasis
imbalance of intestinal microenvironment, immune dysfunction, environmental and genetic factors, and so on. This disease is
associated with multiple immune cells including regulatory T cells (Tregs). Tregs are a subset of T cells regulating the function
of various immune cells to induce immune tolerance and maintain intestinal immune homeostasis. Tregs are correlated with the
initiation and progression of IBD; therefore, strategies that affect the differentiation and function of Tregs may be promising for
the prevention of IBD-associated pathology. It is worth noting that tryptophan (Trp) metabolism is effective in inducing the
differentiation of Tregs through microbiota-mediated degradation and kynurenine pathway (KP), which is important for
maintaining the function of Tregs. Interestingly, patients with IBD show Trp metabolism disorder in the pathological process,
including changes in the concentrations of Trp and its metabolites and alteration in the activities of related catalytic enzymes.
Thus, manipulation of Treg differentiation through Trp metabolism may provide a potential target for prevention of IBD. The
purpose of this review is to highlight the relationship between Trp metabolism and Treg differentiation and the role of this

interaction in the pathogenesis of IBD.

1. Introduction

Inflammatory bowel disease (IBD) is an autoimmune disease
with high incidence and unclear etiology, mainly including
ulcerative colitis (UC), Crohn’s disease (CD), and indetermi-
nate colitis (IC) [1]. UC is an ulcerative bowel disease that
only occurs in the colon with a slow and occult onset, and
usually, it has a tendency to recur. CD is a chronic, prolifer-
ative, and transmural inflammatory disease that can invade
any part of the gastrointestinal tract in a discontinuous man-
ner [2]. IBD can seriously lower the quality of lives of patients
and significantly increase the risk to colon cancer that result
from the proneoplastic effects of chronic intestinal inflam-
mation [3]. A variety of factors, such as genetic, environmen-
tal, and microbial factors, are all known to be responsible for

the occurrence of IBD [4, 5]. In addition, multiple immune
cells like macrophages, dendritic cells (DCs), and lymphoid
cells play important roles in the development of IBD, and
the turbulence in the differentiation and function of certain
T lymphocytes [e.g., regulatory T cells (Tregs)] could con-
tribute to the pathogenesis of IBD [6, 7]. Hence, the thorough
understanding of precise regulation of Tregs may be helpful
to perceive IBD-related pathology.

Usually, the generation, differentiation, and function of
Tregs are significantly affected by the availability of amino
acids in the local microenvironment. Depletion of certain
essential amino acids from the local milieu results in the gen-
eration of Tregs [8-10]. For example, low concentrations of
Trp inhibit T cell growth but enhance Treg production
through mTOR-dependent mechanisms [11]. In the gastro-
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intestinal tract, Trp undergoes several different metabolic
pathways, and Trp metabolism can influence the differentia-
tion and function of Tregs. Trp catabolism is a tolerogenic
effector system in Treg function, and its modulation is
thought to function as a general mechanism of action of
Tregs that express T-lymphocyte antigen-4 (CTLA-4) [12].
In addition, Trp starvation and Trp catabolites could induce
the generation of a regulatory phenotype in naive CD4" T
cells, and previous studies indicated that there is a close
relationship between indoleamine 2,3-dioxygenase (IDO)
activity and the occurrence of Tregs [12-14]. Notably, Trp
metabolism disorder is also associated with the development
and progression of IBD [15-17]. For example, the decreased
Trp concentration and increased kynurenine (Kyn) concen-
tration are observed in the IBD patients, and the activity of
IDO is also altered as well [18-23]. Thus, regulation of Tregs
through altering Trp metabolism may provide potential tar-
gets for prevention of IBD.

Herein, we provide an in-depth review highlighting the
understanding of the regulatory roles of Trp metabolism in
Treg differentiation and discuss the availability of manipulat-
ing Trp metabolism to Tregs, which further prevent or
ameliorate IBD.

2. Tregs and IBD

2.1. The Mechanism of Action of Tregs in IBD. In normal
intestinal mucosa, effector cells and Tregs are in a state of
dynamic equilibrium. Tregs play an important role in main-
taining intestinal homeostasis and can significantly suppress
immune responses to maintain autoimmune tolerance and
immune stability through multiple ways, such as cell-cell
contact or cytokine-dependent mechanism [24].

2.1.1. Cell-Cell Contact Mechanism. CD4"CD25" Tregs can
constitutively express inhibitory regulatory molecules such
as cytotoxic CTLA-4, transforming growth factor 3 (TGF-f3)
and glucocorticoid-induced TNF receptor (GITR), which
can bind to the corresponding receptors and transmit inhibi-
tion signals to prevent excessive activation of target immune
cells [25]. The binding is capable of inhibiting the expression
of IL-2Ra chain and reduce the reactivity of target cells to
IL-2, thereby inhibiting the proliferation of effector T cells
(Tefts). A variety of ligand-receptors including costimulatory
molecules such as CTLA-4, GITR, 0X40 (CD134), and lym-
phocyte activation gene 3 (LAG-3) are involved in this process
[26-29]. Thus, costimulatory molecule receptors play a signif-
icant role in the activation process of Tregs. Studying the
mechanisms of their abnormal expression and on how to
regulate the signaling pathways may bring new light for a
deeper understanding of the mechanism of action of Tregs.
In addition, Tregs also express programmed death receptors
and ligands, which stabilize the relationship between Tregs
and antigen presenting cells (APCs) while promoting the
differentiation of inducible regulatory T cells (iTregs) [30].
Moreover, Tregs can downregulate the expression levels of
costimulatory molecules CD80 and CD86 on DCs and affect
the function of DCs, thereby achieving immunosuppressive
effects [31].
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2.1.2. Cytokine-Dependent Mechanism. Tregs can achieve
their functions by releasing inhibitory cytokines such as
interleukin-10 (IL-10), TGF-f, and interleukin-35 (IL-35).
High mRNA expression of IL-10 and TGF-f was found in
the CD47CD25" Tregs in vitro, and CD4"CD25" Tregs can
directly secrete IL-10 and TGF- under appropriate stimula-
tion [32]. In the CD4"CD45RB™" T-induced IBD model,
TGF-f and IL-10 play an important role in the protective
effect of Tregs on IBD. CD4"CD25" Tregs isolated from
TGF- knockout mice or CD4*CD45RB"" T cells derived
from IL-10 knockout mice lost their anti-IBD function [33,
34]. IL-35 is a heterodimeric cytokine comprising Epstein-
Barr virus-induced gene 3 (Ebi3) and IL-12 alpha (IL-12«)
chain, which was expressed in Foxp3™ Tregs, and Tregs lack-
ing Ebi3 or IL-12« lost their inhibition in the T cell metastatic
colitis model. Exogenous IL-35 inhibits T cell proliferation,
and the vector encoding IL-35 achieves in vitro inhibitory
activity by retroviral transduction into Teffs [35]. More
potential mechanisms of action of Tregs in IBD have not
been established. Nevertheless, strategies that induce the gen-
eration of a regulatory phenotype may be a treatment option
in preventing or improving the pathological process of IBD.

2.2. Tregs Are Associated with the Development and
Progression of IBD. Available evidence suggests that Tregs
play an important role in the development and immune reg-
ulation of IBD (Figure 1). It has been demonstrated that
Tregs maintain intestinal homeostasis and reduce tissue
damage during the progression of IBD by inhibiting the
responsiveness of immune cells [36, 37]. Changes in the
number, phenotype, and inhibitory function of Tregs may
contribute to the pathogenesis of IBD. For example, Tregs
from mice deficient in cytotoxic CTLA-4, IL-35, IL-10, or
LAG-3 are unable to effectively suppress T cell proliferation
and fail to prevent chronic T cell-mediated colitis in vivo
[28, 29, 35, 38]. In addition, Tregs in the inflamed mucosa
or periphery blood of patients with IBD or animal models
are considerably different [39, 40]. For example, Maul et al.
found that CD4"CD25" Tregs were reduced in peripheral
blood during the active phase of IBD, while the frequency
of Tregs at the mucosal level was higher than healthy controls
[41]. Moreover, the frequency of Foxp3™ Tregs was found to
be significantly lower in patients with active IBD [42]. In
addition, Wang et al. [6] suggest that insufficient Tregs in
peripheral blood may be associated with the recurrence of
IBD. However, there are still reports that Tregs fail to exert
the inhibition function in the context of IBD [43, 44], which
might be explained by the individual differences of patients.
Therefore, understanding Tregs in IBD can be helpful in
monitoring the cellular immune status of IBD patients and
opening up new immunotherapeutic approaches for the
treatment of IBD.

Mechanistically, Tregs could be considered as therapeutic
targets for controlling IBD (Figure 1). Fortunately, many
cases of IBD have been successfully cured or alleviated by
manipulating Tregs in animal models or patients [45-56].
For example, Treg transfer is sufficient to alleviate experi-
mental colitis including IBD, and tTregs and iTregs can work
together [57-60]. Tregs and IL-10 producing Trl cells have
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FiGurg 1: The occurrence of IBD and its relationship with Tregs. The pathophysiology of IBD is multifactorial and not completely
understood, but genetic components, dysregulated immune responses, oxidative stress, and inflammatory mediators are known to be
involved. Tregs are related to the occurrence and development of IBD, and IBD can be cured or alleviated by inducing the generation of
Tregs or direct administration of Tregs. Treg: regulatory T cell; TNF-a: tumor necrosis factor a; TNF-f: tumor necrosis factor f3; iTregs:
inducible regulatory T cells; nTregs: natural regulatory T cells; IBD: inflammatory bowel disease.

the potential to prevent or cure colitis, which is supported by
a favourable safety profile in phase I clinical trials [61]. How-
ever, it should not be overlooked that Treg-based therapies
may be attached by some adverse reactions. For example,
excessive Treg activity may simultaneously weaken the pro-
tective immunity against pathogens and tumors, which could
be reduced by controlling the antigen specificity of Tregs
[62]. In addition, the phenotype of the original population
and culture conditions are also critical for achieving maxi-
mum purity of therapeutic Tregs and ensuring phenotypic
stability [63, 64]. Therefore, before developing new strategies
to improve Treg function, it is very important to study the
detailed mechanism of how Tregs function to limit potential
negative side effects. It would be meaningful to explore
whether it can be more effective when Treg-based therapy
is combined with other therapies.

3. Trp Metabolism in the Differentiation and
Function of Tregs

3.1. Trp Metabolism in the Gut. Trp is ubiquitous in many
foods and has important physiological functions. Once in
the gastrointestinal tract, Trp enters several different meta-
bolic pathways by host or intestinal microbiota [65]. We
mainly focus on microbial-mediated degradation, KP, and
serotonin pathway. About 4-6% of Trp undergoes microbial
degradation, by which intestinal microbes directly convert
Trp into several molecules, including indoles and its
derivatives [66]. Notably, KP is the major route for Trp
catabolism which is mediated by the rate-limiting enzyme
IDOL. KP can produce Kyn and its downstream products
such as quinolinic acid (QA), niacin, nicotinamide adenine
dinucleotide (NAD), and kynurenic acid (KA) [67, 68]. KP
metabolites are associated with many biological processes
involved in neurotransmission, inflammation, and immune
responses. In addition to KP, approximately 1-2% of the die-
tary Trp is converted to serotonin mediated by tryptophan
hydroxylase 1 (TpH1) [69]. There is evidence of the impor-
tance of serotonin in regulating gastrointestinal function
[70, 71]. Collectively, Trp and its metabolites are essential

for the development and maintenance of human and animal
health, and all these metabolic pathways work together to
maintain the homeostasis.

3.2. Trp Promotes Treg Differentiation through Microbiota-
Mediated Degradation. Intestinal microorganisms can directly
catabolize Trp into indoles and its derivatives, which play an
important role in regulating intestinal immune tolerance [72].
Most indoles and its derivatives, such as indole-3-aldehyde
(TIAld), indole-3-acid-acetic (IAA), indole-3-propionic acid
(IPA), indole-3-acetaldehyde (IAAld), and indoleacrylic acid
(IA), are the ligands of aryl hydrocarbon receptor (AhR)
(Figure 2).

AhR is a ligand-activated transcription factor that is
widely found in immune cells and intestinal epithelial cells,
and it is sensitive to certain environmental chemicals and
plays an important role in the immune response. Previous
work demonstrated the importance of AhR in the differenti-
ation and function of Tregs and Teffs by controlling the pro-
duction of IL-10 and IL-22 [73-77]. Indole and its derivatives
infiltrate into intestinal epithelial cells and deposit in the host
circulatory system, which could be recognized by immune
cells and then activated AhR signaling pathway. It has been
well demonstrated that AhR signaling can induce the
proliferation of CD4"CD25"Foxp3™ Tregs (Figure 2), which
play an indispensable role in adaptive immune tolerance,
such as inhibiting the immune function of activated T cells
[78-80]. Collectively and mechanistically indole and its
derivatives derived from Trp regulate the differentiation of
Tregs through AhR-ligand-Treg axis, thereby affecting the
function of Tregs [81-90].

3.3. Trp Promotes Treg Differentiation through KP. KP is the
main pathway of Trp catabolism, through which Kyn and
other metabolites are produced, such as KA, anthranilic acid
(AA), 3-hydroxykynurenine (3-HK), xanthurenic acid (XA),
and QA [91-93]. Some KP metabolites bind to AhR to
induce FoxP3 expression and promote the generation and
differentiation of FoxP3" Tregs [75, 94-97] (Figure 2). In
addition, 3-HK and the downstream product pyridine-2-3-
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F1GURE 2: The schematic representation of Trp metabolism and its influence on Tregs. Trp metabolism produces AhR ligands through KP and
microbial-mediated degradation, which affects the generation of Tregs. The relationship between IDO and Tregs is bidirectional, because they
can regulate each other via DCs. CTLA-4, GITR, IL-10, IL-35, TGF-f3, and IFN-y are main components of the regulatory responses. Trp:
tryptophan; IDO: indoleamine 2, 3-dioxygenase; KP: kynurenine pathway; Kyn: kynurenine; Treg: regulatory T cell; AhR: aryl
hydrocarbon receptor; ARNT: aryl hydrocarbon receptor nuclear translocator; FoxP3: forkhead box P3; IL-35: interleukin-35; IL-10:
interleukin-10; TGF-f: transforming growth factor beta; GITR: glucocorticoid-induced TNF receptor; CTLA-4: cytotoxic T-lymphocyte

antigen-4; DC: dendritic cell; 1-MT: 1-Methyl-tryptophan.

dioxoic acid can trigger the activity of Tregs. This is consis-
tent with the long-term synergistic effect of Trp deficiency,
and high Kyn induced the transformation of naive CD4" T
cells into Tregs [12].

Since IDO is the main enzyme that catalyzes Trp to pro-
duce Kyn and other metabolites, the level of IDO expression
is important for KP [98, 99]. IDO is expressed in APCs, and
its immunoregulatory function is mainly achieved by DCs.
IDO suppresses CD4" T cell function by inhibiting cell
proliferation, inducing apoptosis and promoting cell differ-
entiation into Tregs. This is achieved by degrading Trp in
the microenvironment where immune responses occur
[100, 101]. Francesca et al. found that there was a positive
regulatory loop by which Tregs expand their own population
through the IDO mechanism. In contrast, the activity of IDO
enzyme can be inhibited by 1-Methyl-tryptophan (1-MT)
[102, 103]. Therefore, manipulating the activity of IDO or
the application of synthetic Kyn could provide an idea for
the therapeutic agents of IBD [104]. Later, it was discovered
that the relationship between IDO and Tregs was bidirec-
tional [96] (Figure 2). IDO can induce the production of
Tregs, and the increase of Tregs can in turn induce the
expression of IDO [105]. Given the complex relationship
between IDO and Tregs, combining IDO blockade with other
immunotherapies may be beneficial to overcome the short-
comings of immune counterregulation.

Likewise, serotonin has been reported to be involved in
the pathogenesis of experimental colitis [106, 107]. There-
fore, Trp metabolism in the gut is a target that can be
considered, such as using either molecules targeting a specific
pathway or exploiting bacteria affecting Trp metabolism as
probiotics. However, the complicated interactions between
microbes and hosts need to be elucidated to achieve better
therapeutic effects. Moreover, the metabolic pathways

influencing Treg differentiation and function are amenable
for modulation in therapeutic settings, thus providing the
clinician with potentially valuable tools in the fight against
immune-mediated diseases. At the same time, the deviation
between diseases and models requires further investigation
to refine targets and therapeutic interventions.

4. Modulation of Trp Metabolism in
Tregs for IBD

Because Trp metabolism has an important effect on Treg
differentiation and function, measures that target Trp metab-
olism may reduce the severity of IBD, but the possibility
deserves further exploration. However, most investigations
about effects of Trp metabolism on Treg differentiation were
conducted in vitro with mouse Tregs; it is not known if Trp
metabolism has similar effects in human Treg differentiation
in vitro or in vivo. Indeed, accumulating evidence suggests
that Trp promotes intestinal integrity and function, and its
metabolism has an important effect on spontaneous and
induced IBD models [108-111]. Trp and its metabolism
show a high correlation with the etiology of IBD (Figure 3).
Usually, Trp deficiency could contribute to the development
of IBD or aggravate disease activity [17, 112]. Patients with
IBD have lower levels of Trp in serum and feces than healthy
subjects [18, 19, 113-115]. Moreover, some Trp metabolites
and metabolic enzymes are also found to be significantly dif-
ferent in patients and healthy volunteers [20, 116-118].
Increased Kyn and Kyn/Trp ratios were observed in IBD
patients indicating that Trp metabolism along the KP is
increased in active IBD [20, 21]. In addition, consumption
of Trp metabolites in the intestinal tract may affect the sever-
ity of IBD. For example, the concentration of the AhR agonist
IAA in feces of IBD patients was significantly reduced [19].
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Also, the content of IPA in circulating serum from patients
with active colitis was selectively diminished compared to
healthy subjects [119, 120]. However, IDO1 levels in the
intestine are higher in patients with IBD, although the role
of IDO1 in colitis is somewhat controversial [22, 23]. Besides,
the content of serotonin in the intestine has changed dramat-
ically in human IBD and animal models of colitis, which sug-
gests that serotonin plays an important role in the occurrence
and development of intestinal inflammation [107, 121, 122].

Conversely, dietary supplementation with Trp and Trp
metabolites could alleviate symptoms such as weight loss,
fecal hemorrhage, and colonic structural damage in experi-
mental mouse colitis (Figure 3) [72, 106]. The protective

effect of Trp administration on IBD may be achieved by
reducing proinflammatory cytokines and activating apopto-
sis initiators, while another anticolitis mechanism may be
antioxidative or nitration stress [106, 123]. For example,
dietary supplementation of 0.5% Trp inhibited colonic
inflammatory symptoms and proinflammatory cytokine
secretion in mice by activating AhR [124]. Mice or piglets
fed a Trp-supplemented diet had reduced inflammation
and decreased severity of dextran sodium sulfate- (DSS-)
induced colitis [112, 123, 125], whereas mice fed a low-Trp
diet became susceptible to chemically induced inflammation.
In addition, the administration of Trp metabolites, such as
Kyn, indole, and IPA, were observed to ameliorate colonic



inflammation in mice [119, 120, 126]. Simultaneously,
manipulation of IDO1 activity has great potential as treat-
ment for IBD [127]. Moreover, indirect manipulation of the
gut microbiota affecting Trp metabolism could be considered
to develop new therapeutic drugs that target IBD individuals.
For example, the use of Lactobacillus (a kind of bacterium
that degrades Trp into AhR agonists) lightened the severity
of colitis in mice, and probiotics can serve as a supportive
therapy for patients with intestinal disorders [125]. Collec-
tively, Trp and its metabolites can be used as biomarkers
and promising targets for the treatment of IBD, but further
investigation is necessary to validate the effectiveness and
feasibility [17, 128]. Therefore, the levels of Trp and its
metabolites in patients with IBD need to be analyzed to assess
their impact on the progression of IBD.

Collectively, patients with IBD have lower Trp levels,
higher Kyn levels, and elevated IDO expression. This is pos-
itively correlated with reduced Tregs in IBD. Thus, manipu-
lation of Treg differentiation through these metabolites may
be a promising strategy for the treatment of IBD.

5. Conclusions and Future Perspectives

In summary, Tregs are associated with the development of
IBD and strategies to manipulate Treg differentiation by
Trp metabolism may lead to new therapeutic approaches
for the treatment of IBD (Figure 4). Therefore, it is important
for researchers to elucidate the exact regulatory mechanism
of Trp metabolism in Tregs during the development of
IBD. Fortunately, Trp and its metabolites are known to be
beneficial for IBD patients and related animal models,
although it is unclear whether they regulate the progression
of IBD by precisely affecting the differentiation and function
of Tregs. Considering that other metabolic pathways also
regulate the proliferation and function of Tregs (such as the
CD39-CD73-adenosine pathway), combining Trp metabo-
lism with other metabolic pathways will be a better strategy
for preventing IBD-related pathologies. At the same time,
the manipulation of metabolic pathways in Tregs can be
combined with traditional drugs that affect Treg function to
achieve better preventive and therapeutic effects. But at
present, very satisfactory results have not been achieved in
the treatment of IBD. Therefore, an in-depth study of the role
of immune cells and amino acid metabolism in IBD will
provide a more meaningful basis for the early diagnosis,
effective treatment, and progression evaluation of IBD, which
will be a serious challenge in the medical field.
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