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Skin cancer is diagnosed in more than 2 million individuals annually in the United States. It is strongly associated with ultraviolet
exposure, with melanoma risk doubling after five or more sunburns. Solar activity, characterized by features such as irradiance
and sunspots, undergoes an 11-year solar cycle. This fingerprint frequency accounts for relatively small variation on Earth when
compared to other uncorrelated time scales such as daily and seasonal cycles. Kolmogorov-Zurbenko filters, applied to the solar
cycle and skin cancer data, separate the components of different time scales to detect weaker long term signals and investigate
the relationships between long term trends. Analyses of crosscorrelations reveal epidemiologically consistent latencies between
variables which can then be used for regression analysis to calculate a coefficient of influence. This method reveals that strong
numerical associations, with correlations >0.5, exist between these small but distinct long term trends in the solar cycle and skin
cancer. This improves modeling skin cancer trends on long time scales despite the stronger variation in other time scales and the
destructive presence of noise.

1. Introduction

1.1. Skin Cancer. Cancer is known to have genetic and
environmental risk factors. Particular types of cancer can
have a greater association with one factor than with others.
One such example is that of skin cancer. Skin cancer (SC) is
an unregulated growth of abnormal skin cells named after the
type of skin cell from which they arise, for example, basal,
squamous, and melanoma. Skin cancer is the most common
cancer in the United States, affecting over 2 million annually
[1]. Melanoma risk doubles with a history of more than five
sunburns [2]. Risk, likewise, doubles after just one blistering
sunburn during childhood [3].

The relationship between sunlight exposure, in particular
that of the ultraviolet portion of the electromagnetic spec-
trum, and the increased likelihood of developing skin cancer
has been a frequent subject of research. Studies indicate that
approximately 90%of nonmelanoma skin cancer is associated
with ultraviolet exposure [4] while this value is approximately
86% for melanoma skin cancer [5].The pronounced seasonal
component in the diagnosis of skin cancer is a frequent
subject of research in order to examine the effect of UV

exposure [6]. Often overlooked in this relationship are the
nature and the characteristics of the sunlight. Solar intensity
is the subject of little epidemiological research and it is
largely treated as invariant. However, solar irradiation carries
a unique fingerprint that when properly identified enables a
new examination of this relationship.

1.2. The Solar Cycle. The sun is an engine of nuclear fusion
and as a result exhibits several measurable characteristics
associated with solar nuclear activity. One defining feature is
that solar activity is not constant across time. The intensity
of solar activity undergoes an approximate 11-year cycle
resulting in a naturally occurring pattern of maximums
and minimums. Likewise, many characteristics associated
with solar activity exhibit a strong cyclic nature with this
approximate 11-year period [7].This phenomenon is well doc-
umented and studied across various academic fields, such as
astronomy, physics, and the atmospheric and environmental
sciences [8].

Some of the solar characteristics that exhibit the solar
cycle include electromagnetic radiation, irradiation, lumi-
nosity, magnetic field strength, magnetic polarity, flares,
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sunspot number, and solar wind. Every characteristic variable
has unique methods of measurement and measurement
histories. Likewise, the relationship of each variable to the
underlying solar cycle phenomenon is different and not auto-
matically synchronous or perfectly correlated [9]. Though
most variables exhibit their own 11-year cycle, each one may
have its own amplitude and phase shift [10]. This makes each
variable more or less suitable for the particular field or appli-
cation of interest. In this study electromagnetic radiation,
ultraviolet radiation, in particular, is of clear interests and
preference due to its known association with skin cancer risk.

Total solar irradiance (TSI) is themeasure of the sum total
power across the entire electromagnetic spectrum emitted by
the sun and received per unit surface area. Measurements
may be made in orbit (OTSI) or at ground elevations
(GTSI). Another solar characteristic, sunspots, is patches on
the surface of the sun characterized by locally diminished
brightness and temperature and corresponds to the changing
magnetic field within the sun [11]. Like TSI and the other
solar characteristics, sunspot number (SN) varies cyclically
approximately in phase with TSI sharing an 11-year period
[12]. Therefore it is highly correlated with TSI but on the
surface of the Earth TSI is affected by other factors such as
latitude. It will be best to measure the direct effect of TSI
on skin cancer when more data is available. However, in the
absence of sufficient data, we rely upon the highly correlated
sunspot number with a far longer history of observation
and consistent historical records beginning in the early 18th
century [7].

1.3. Separation of Time Scales. These time series data
sets illustrate one difficulty when investigating long
term trends and correlations between variables in
order to determine association structures and causative
relationships. The relative strength of the components
from one time scale can obscure those operating in a
different time scale, interfering with the detection of
a signal of interest. The separation of different time
scales into constituent components allows for the proper
unobstructed analysis. Kolmogorov-Zurbenko (KZ) filters
(http://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Zur-
benko filter) are well suited to this task of separating
and screening interfering time scales for signal detection.
Analysis is further complicated by skin cancer, unlike many
cancers, not having extensive periods of time between
initiation, onset, and detection [13]. It has been shown that
a history of severe sun burns is a risk factor for skin cancer
later in life. These are events that may have occurred decades
earlier. Direct comparison of data without accounting for
possible disease latencies may produce inconclusive results
or erroneous effects.

There is scarce research into global effects of solar
irradiation and intensity changes upon individual diseases
and disease rates. The objective of this study is to examine
the long term changes in SC and SN as a proxy for TSI
and investigate the solar cycle and skin cancer relationship.
This study demonstrates KZ filtration of signals into different
time scale components precisely because different time scales
result from different sources andmay interfere in the analysis

of each individual component [14]. Crosscorrelations at all
reasonable latencies are calculated to identify the latencies
of peak correlation between time series datasets. These
peak correlations and respective latencies enable regression
analysis in an attempt to model the relationship and identify
a coefficient of influence.

2. Methods

2.1. Data Sources. The sunspot number time series dataset
comes from a record with dates spanning the years from
1749 until the present consisting ofmonthly observed sunspot
counts.This record is available from the Solar InfluencesData
Analysis Center (http://www.sidc.oma.be/). Orbital mea-
surements of TSI were recorded from the ACRIM, or Active
Cavity Radiometer Irradiance Monitor, series of satellite
instruments in the years between 1974 and 2006.As ameasure
of power per unit surface area they are recorded as watts
per meter squared (http://www.acrim.com/). The ACRIM
composite is a TSI data series that is primarily composed
of these instrument readings [15]. Approximately 10 percent
of the data of the series is missing, the longest span being
called the ACRIM gap between ACRIM-1 and ACRIM-2, and
is filled and scaled with data from Earth Radiation Budget
(ERB) experiments, Nimbus7/ERB, to relate ACRIM-1 and
ACRIM-2 results. There are other composite approaches that
use different subsets of satellite TSI data, ACRIM gap ratios,
and different modelling, but the ACRIM composite suits this
analysis. Groundobservations of total solar irradiation,GTSI,
for this study were recorded in New Mexico. GTSI spans
the years 1961–2010 and originated from the National Solar
Radiation Data Base (rredc.nrel.gov). These are statistical
summaries of solar data originally recorded hourly, compiled
as averages of daily total solar energy for each given month.
Hempelmann and Weber explore the strong correlations
between SN and TSI surface level irradiance [16].

Skin cancer records arise from case level data in the SEER,
or Surveillance, Epidemiology, and End Results database,
1973–2009 (Surveillance, Epidemiology, and End Results
(SEER) Program (http://www.seer.cancer.gov/) Research
Data (1973–2009), National Cancer Institute, DCCPS,
Surveillance Research Program, Surveillance Systems
Branch, released April 2012, based on the November 2011
submission). The SEER sites included for this study are the
states of Connecticut, Hawaii, New Mexico, Utah, and Iowa
and the cities of Oakland and Detroit throughout the years
1984–2009. As retrospective observational records these sites
were not purposefully selected but they rather represent the
earliest commencement and the longest continuous time
series datasets in the SEER database. The cancer database
includes all diagnoses at these sites of each cancer type. Here,
all types of skin cancer present in the database are included
in the analysis. While it may be preferable to perform this
analysis on individual skin cancer types with particular
attention to those with greater known associations with UV
exposure, this initial search for the presence of a global long
term solar cycle component in skin cancer variation called



BioMed Research International 3

for inclusivity for detection even if it is at the expense of
eventual model fit.

2.2. Transforming the Data. For the analysis it is necessary to
prepare the data and establish common unit time measures,
in this case monthly observations. While several of the
variables include measurements on shorter units of time,
employing shorter units of measure becomes unnecessary
when exploring long term trends, global scale changes, and
events with great periods of latency. SN and TSI data sets
have a time series representation with summarized monthly
observations. To convert the SC case dataset to the same
observational time scale we collapse cases into the count
within each month.

Upon initial inspection, skin cancer case data exhibits
a nonconstant variance among the observations as well
as a growth rate which one would expect from changing
population statistics across time (Figure 1). The natural log-
arithm transforms the case data and helps to stabilize the
variance. Furthermore, natural logs provide a convenient
interpretation that will be utilized later in the study by
transforming differences of observations away from count
or log count toward measures on a percentage scale. The
other advantage of particular benefit with time dependent
observations is the comparability of measures that previously
were unique to populations of a certain specified time period.

The long term growth rate mentioned appears to have
two distinct periods with different rates occurring before
and after 1984 approximately. The possible reasons for this
change are numerous andworth investigation but unexplored
in the course of this research. For the purpose of this
analysis, the SC data used spans 1984 through 2009, a period
of relatively stable and consistent growth. In time series
analysis the linear trend must be removed from the natural
logarithm transformed SC cases. The linear trend in log scale
corresponds to an exponential growth in the original case
data. After trend removal, the remaining deviations from the
trend comprise our dataset for continued analysis.

The absence of any sizable long term linear trends
throughout our time period of interest for SN and our other
datasets representing solar activity makes a similar process
of trend analysis and removal unnecessary. In fact, solar
activity does exhibit even longer term patterns of fluctuation,
patterns across centuries, much greater than the 11-year
period of interest [17]. However, the limits of the time frame
of this studymake these even longer term fluctuations appear
relatively trendless given the shorter window.

2.3. Spectral Analysis. Most visible in the frequency domain,
different time scales are likely rooted in different physical
processes and thus arise from different causes. Our datasets
viewed in a time domain appear as a compilation of the
various influential time scales. Each dataset exhibits several
strong features indicative of their respective time scales. The
solar data most prominently exhibit a cyclic pattern with an
approximate 11-year period.This is the solar cycle referenced.
A smoothed Kolmogorov-Zurbenko periodogram displays a
spike at the frequency,𝑓, corresponding to 11 years (Figure 2).
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Figure 1: SN and SC monthly data.
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Figure 2: SN spectra resulting from application of KZP algorithm
with parameters 𝑚 = 443 and 𝑘 = 1 and DiRienzo-Zurbenko (DZ)
smoothing parameter = 1%, with frequency 𝑓 corresponding to 11
years.

Adaptively smoothing the noisy raw periodogram using the
DiRienzo-Zurbenko smoothing method allows the window
size to vary with the underlying spectral density [18].

Viewing SC in the time domain exhibits different char-
acteristics. The first characteristic was the visible upward
trend across time discussed previously. The second is a cyclic
pattern that appears to repeat with an approximate one-year
period. A corresponding DZ smoothed periodogram has a
peak near 0 corresponding to the trend and a spike at a
frequency corresponding to 1 year (Figure 3). These time
scales represent the majority of the variation in skin cancer
cases. Less apparent is the presence of a cycle at the frequency
corresponding to the 11-year time scale.

2.4. Separation of Time Scales with KZ Filters. Due to the
strength of signals present throughout other time scales,
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Figure 3: Ln(SC) spectra resulting from application of KZP algo-
rithm with parameters 𝑚 = 443 and 𝑘 = 1 and DiRienzo-
Zurbenko (DZ) smoothing parameter = 0.002%, with frequencies
𝑓 corresponding to 11 years and 𝑦 corresponding to 1 year.

a given time scale of relatively less signal strength may be
obscured. In order to investigate a particular time scale it is
necessary to separate and remove those that are interfering.
Kolmogorov-Zurbenko filters are low pass filters character-
ized by two parameters [19]. With notation KZ(𝑘,𝑚) they are
𝑘 iterations of a standard moving average filter of 𝑚 points
defining the moving average filter window. With interest in
separating and filtering time scales, they are well suited in
this study [20]. The presence of strong yearly cycles in some
of our datasets, as well as known naturally occurring annual
processes associated with solar activity, makes a twelve-
month window the natural choice. Even numbered moving
averages do not preserve the observational center point. To
accommodate, this study uses a modified 13-month moving
average, preserving the center point of the filter andweighting
the first and last month of the window by one half. The
first moving average iteration removes most signals with a
period equal to or shorter than one year in each dataset.
After the second moving average iteration, the KZ(13,2)
filters have effectively removed all significant variations in
this short term time scale, while leaving longer time scales
unaffected [21]. This eliminates the strong random noise and
seasonal components. With the trend previously removed,
what remains in the smoothed periodogram is the long
term (>1 year) time scale with the corresponding frequency
associated with the 11 years noted (Figure 4).

2.5. Crosscorrelations. The data sets are then crosscorrelated
to better understand the relationship between them. Note
that for this study each pairwise crosscorrelation between
two datasets only utilizes observed points beginning with the
latest commencement of any dataset timespan and likewise
ending at the first cessation of any dataset timespan. To
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Figure 4: KZ filtered Ln(SC) spectra resulting from application of
KZP algorithm with parameters 𝑚 = 443 and 𝑘 = 1 and DiRienzo-
Zurbenko (DZ) smoothing parameter = 0.4%, with frequency 𝑓
corresponding to 11 years.

account for possible latencies, or lags, in any possible causal
relationship, data points from one variable are paired with
opposing data points counted backward in time by 𝑡 steps, or
a lag 𝑡, prior to calculating the correlation. Crosscorrelations
are calculated first with lag 𝑡 = 0, or no latency, and
then for all integers lags up to some reasonably large value.
There are indications of several optimal lags for maximizing
correlations. Two sinusoidal signals with a peak correlation
occurring at lag 𝑡 will also naturally have peak correlations
when the lag is an integer multiple of the signal period away
from 𝑡. The choice of which lag is most appropriate can
be guided by several factors, in this case maximization, but
boundedwithin the lower limit of disease onset and the upper
limit of human lifespan. A reasonable range here might span
from 0 to 70 years.

2.6. Regression Analysis. After crosscorrelations are calcu-
lated for all possible latencies, the latencies associated with
peak correlations are selected and used to perform regression
analysis between the variables. Regression analysis, in this
case simple linear regression, provides a good fit and allows
us to characterize the relationship and see how one variable
is associated with the movement in another. Finally, the
coefficient of explanation, 𝑅2, created by squaring the corre-
lation coefficient at the chosen latency provides a measure to
determine the fraction of variance of one variable explained
by another. It should be noted that correlation is typically
used in least squares estimation where observations should
be independent. In time series analysis, particularly with the
application of moving average filters, consecutive points are
highly correlated.The use of correlation and subsequently the
coefficient of explanation, 𝑅2, in this analysis is a measure of
the quality of fit. It uses identical calculations as the standard



BioMed Research International 5

statistical correlation with an interpretation of the percentage
of total variance explained by the fit of one variable to another.

3. Results

3.1. SN, OTSI, and GTSI. After KZ(13,2) filters are applied
to SN, OTSI, and GTSI, crosscorrelation between paired
datasets confirms the strong correlations between the long
term variation of each of these variables. The peak value
in crosscorrelation between SN and OTSI is 𝑟 = 0.80
(Figure 5).This peak occurs at zero latency, and each of these
pairings strongly exhibits the approximate 11-year solar cycle
in crosscorrelations.

PairingOTSI and SN at 0 latency enables characterization
of the relationship between these variables. Fitting a linear
regression model produces a slope coefficient of 0.0081
(Figure 6).

The slope coefficient indicates an increase in 0.0081W/m2
associated with each additional monthly sunspot count, or,
more befitting the range, 0.81 W/m2 per 100 SN. This value
will enable extension of the analysis fromSN toTSI regardless
of the short observational history.

3.2. Skin Cancer. With SC it was necessary to transform
the data prior to crosscorrelation. First was the previously
described natural logarithm transformation. Second was the
removal of an upward trend. The construction of a linear
trend using least squares estimation resulted in a slope
coefficient of 0.0034. Given the natural log scale, 0.0034
corresponds to approximately 4.2% growth per year. Cross-
correlations between SC cases reach maximum correlations
𝑟 = 0.51 with GTSI, 0.58 with OTSI, and 0.63 with SN.
Here GTSI and OTSI datasets have insufficient history to
investigate latency with SC beyond a small number of years.
While these datasets are too limited to fully examine the
potential latency of skin cancer, their cyclic nature and
strong correlation coefficient with both SN and SC are still
supportive of the results observed between SC and SN. SN
is the only solar cycle variable with a sufficient history to
crosscorrelate with SC approaching the mean individual
lifespan, a natural upper limit for cancer latency.

SC crosscorrelations with SN peak at candidate latencies
of 10.0, 19.9, 31.8, 42.2, 52.3, and 62.5 years, and so forth.
These peak crosscorrelations range from a minimum of 0.34
occurring at 31.8 years to a maximum correlation of 0.68 at
42.2 years (Figure 7).

These correlations correspond to coefficients of explana-
tion, ranging from 𝑅2 = 0.12 to 0.39. Evidence visible in
Figure 7 and derived from the coefficient indicates that there
are other complex long term influences present at other long
term frequencies. Investigation of these lesser effects at other
frequencies is worthwhile particularly if any future analysis
attempts to completely decompose the SC time series. How-
ever, given that the 11-year frequency has the strongest long
term effect outside of the SC trend and seasonal component
and given the importance of this particular frequency in
investigating the solar influence on SC,we limit the analysis to
this frequency of interest.The time series analysis of this study
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Figure 5: SN and OTSI long term (>1 yr) time scale components.
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Figure 6: OTSI plot versus SN with 0 latencies.

does not provide tools to indicate preference or likelihood
of one candidate latency over another. However, given that
the 42.2-year latency period is consistent with evidence of
the delay between initiation and detection of skin cancer and
that crosscorrelation maximizes at this latency, investigating
these latencies with particular attention to that at 42.2 years
is reasonable.

With the peaks in crosscorrelation at these candidate
years, we plot our transformed SC dataset, best summa-
rized as the deviations from the natural log SC trend,
against SN data that is lagged by those respective latencies
(Figure 8). These plots help visualize the strong correlation
at each latency. Each plot notes the coefficient of explanation
indicating the quality of fit as well as the slope coefficient of
linear regression. For example, in reference to the plot for the
42.2-year latency recall using the calculated crosscorrelation
of 0.63 to compute a coefficient of explanation, or 𝑅2, of
0.3911. Fitting a linear regression model to the lagged data
produces a slope coefficient of 0.0003 (per one additional
sunspot monthly count) or, more appropriately befitting the
scale, 0.03 per an increase in 100 SN. This corresponds to a
3.05% increase in skin cancers per 100 SN.
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4. Discussion

Evidence suggests there is a relatively small but distinct solar
cycle effect on long term SC case variation. The relative
influences from other time scales, such as the long term trend
and seasonal component, cloak this long term solar cycle
effect. Kolmogorov-Zurbenko filters provide an effective tool
to separate and screen interfering time scales. Identification
of this effect is possible by the separation from the influence of
other uncorrelated time scales. Although this effect accounts
for only a small percentage of the total variation in skin
cancer incidence the benefit of investigating this particular
frequency is not available using other time scales. Here the
solar cycle fingerprint enables an analysis of the coefficient
of influence with this singularly identifiable source which
does not exist at other time scales. Crosscorrelation at
different latencies accounts for the unknown delay between
risk exposure and cancer detection. The latency of peak
crosscorrelation is used to determine the magnitude of long
term effects and characterize the relationship between vari-
ables. Once identified, the coefficient of influence between
changes during the solar cycle and SC can be applied to
actual observed changes in solar intensity in other time
scales even when the underlying source is indeterminate.
It should be noted that the ecological design of this study,
while providing a risk modifying analysis of the health effect,
has both advantages and disadvantages. It is well suited for
the analysis of data grouped in this case both geographically
and across time. This comes at the expense of generalized
conclusions for the population at large that may not apply
individually. In this case, this does not hinder an attempt to
identify the global scale, long term component of skin cancer
variation.

TSI is a natural choice as a representative variable of the
solar cycle effect on skin cancer.The known risk of ultraviolet
light exposure on skin cancer is a compelling argument in
favor of its use. Unfortunately at this time, without additional
years of observation, the need for a sufficient history to both
detect an 11-year cycle and account for a multidecade latency
makes TSI or any specific segment of the electromagnetic

spectrum such as ultraviolet light unsuitable. These more
accurate TSI records, though of limited research potential
here, are however supportive of the analysis that can be
performed with SN. Although orbital TSI has the shortest
history and groundbasedTSI suffers from regional influences
limiting its usefulness to study global effects, both produced
results similar to and compatible with that obtained using SN.
Crosscorrelations with SC in the long term time scale com-
ponent gave evidence of the presence of the solar cycle effect.
The extension of the crosscorrelation analysis requires a far
lengthier history to investigate reasonable cancer latencies.
In the future, with several additional years of data, extending
this analysis using TSImeasuresmay produce interesting and
even more definitive results.

With SN as the only tenable solar cycle variable with
sufficient history, the study proceeds by removing the linear
trend fromnatural logarithm transformed SC case data.With
a linear regression coefficient of 0.0034 on the log scale, this
indicates that the rate of growth in skin cancer cases for
several decades is approximately 4.2% per year.This outpaces
the approximate 1% population growth in the United States
during a similar period. Clearly, population growth can not
alone account for the growth in skin cancer diagnoses, an
interesting result and one worthy of continued investigation.
Also, prior to 1984, SC data suggests a steady though lower
growth rate than that after 1984. Future analysis could be
extended to include data from this earlier period following
a more detailed analysis of the reasons behind the abrupt rate
change and properly accommodate for this feature.

Crosscorrelations between SN and SCdisplayed the cyclic
pattern with an approximate 11-year synchronicity when
plotted at different latencies, further supporting the presence
of a solar cycle component. These crosscorrelations attain a
peak value of 𝑟 = 0.68 at the 42.2-year latency. The square
of this correlation produces the coefficient of explanation,
𝑅
2
= 0.39. Recalling that the transformed SCwas on a natural

log scale and had a linear trend removed and that both SC
and SN data had the KZ filter applied to only retain the long
term component, we can properly interpret the coefficient for
this latency. A suitable interpretation is that 39% of the long
term (>1 year) variation in skin cancer (in log scale) deviation
from the trend can be explained by the variation in SN that
occurred 42.2 years prior.

When plotting SC versus SN at the given latencies
corresponding to each peak crosscorrelation, the association
between the long term skin cancer and sunspot number
datasets can be described by a linear relationship with a
linear coefficient. These slope coefficients share very similar
values near 0.0003, with only two exceptions creating a range
from 0.0002 to 0.0004. While the time series tools do not
indicate a preference for one particular latency, the same
linear coefficients produced do not necessitate selection to
provide an interpretation of the relationship between SC
and SN. Given the log skin cancer scale the coefficient of
linear regression has a clear interpretation by differencing
the natural logarithm transformed values resulting in a
percentage scale. A typical solar cycle can decrease to a near
zero sunspot count in a given month and can peak at 150,
200, or even 250 sunspots during solar maximum [22]. Using
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Figure 8: Deviation of LN skin cancer monthly cases versus SN monthly count with the (a) 10.0, (b) 19.9, (c) 31.8, (d) 42.2, (e) 52.3, and (f)
62.5 years of latency.

the derived linear coefficient of 0.0003 and these typical
solar cycle amplitudes, they represent associated increases in
skin cancer cases of 4.6, 6.2, and 7.8 percent, respectively.
Therefore, choosing the maximal correlation at the 42.2-
year latency, a typical solar maximum with 200 monthly

sunspots is associated with 6.2%more monthly SC cases 42.2
years later, when compared to a solar minimum. The strong
correlation and near synchronous relationship between SN
and TSI allow the extension of this result. During a typical
solar cycle, orbital TSI indicates that irradiation varied by
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only 1.6 additional W/m2, an increase in TSI of only 0.1%
[12]. TSI data limitations prevent direct crosscorrelations at
long latencies but the strong correlation between OTSI and
SN makes it reasonable to similarly model the effect of small
changes in TSI on SC cases. Thus, 1.6 additional W/m2 is
associated with the 6.2% increase in monthly SC cases, 42.2
years following a solar maximum, as compared to a solar
minimum.

An immediate extension of this analysis in future research
is the application of the same methods to individual skin
cancer types with both known sun exposure risk factors and
those that have conflicting evidence as to the effect of sun
exposure. In order to reveal the existence of a small and
obscured solar cycle effect this study relied upon including
all skin cancers for sufficient history and data records. This
comes at the expense of including possibly uncorrelated
cancer types, diminishing signal strength and reducingmodel
fit. Provided that sufficient data resources are available, future
analyses using this method applied to investigate particular
skin cancers may be more illuminating and result in more
refined models.

Knowing that associated skin cancer risk increases with
increased solar activity during solar maximums and that
this occurs in a well-known, predictable, cyclic pattern,
there is opportunity to more effectively target education
and prevention campaigns aimed at reducing skin can-
cer prevalence. The methods outlined in this analysis are
equally applicable to similar research where the detection
of a signal within a particular time scale is obscured by
relatively stronger signals from different time scales, or by
destructive noise. This research could be extended to the
relationship between the solar cycle and other diseases that
may have a long term hidden effect, or to other risk factors of
disease.

Within the scope of this research project, the data
was limited to records obtained within the United States.
With additional datasets, particularly those outside of the
US, extending this research would better clarify results to
more accurately determine true global long term effects
of the solar cycle. The Kolmogorov-Zurbenko filter has
previously been extended and formalized in several use-
ful applications including a spatial filter. With additional
existing data elements it is possible to extend this research
to include spatial data from the cancer database. Rather
than pooling the data for a global effect it would then be
possible to determine regional effects and develop regional
models. This could first be performed by banding latitudes
to account for the effect of latitude on irradiation inten-
sity. Secondly, the analysis could be refined to individual
locations accounting for local variation in meteorology and
geography.

These are just a few of the possible extensions and appli-
cations of the research methods and results outlined in this
study. Modeling and forecasting are only likely to improve
with improved data, additional years of observations, and
the inclusion of more accurate representative solar radiation
variables as they become available, highlighting the need
for continued TSI data collection. This study illustrates the
importance of investigating long term effects that may be

hidden by other time scales or noise but that significantly con-
tribute to the understanding of disease risk and prevention.
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