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Abstract: A cataract is a condition that causes 17 million people to experience blindness and is the
most significant cause of vision loss, around 47.9%. The formation of cataracts is linked to both the
production of reactive oxygen species (ROS) and the reduction of endogenous antioxidants. ROS
are highly reactive molecules produced by oxygen. Examples of ROS include peroxides, super-
oxides, and hydroxyl radicals. ROS are produced in cellular responses to xenobiotics and bacterial
invasion and during mitochondrial oxidative metabolism. Excessive ROS can trigger oxidative stress
that initiates the progression of eye lens opacities. ROS and other free radicals are highly reactive
molecules because their outer orbitals have one or more unpaired electrons and can be neutralized by
electron-donating compounds, such as antioxidants. Examples of natural antioxidant compounds are
vitamin C, vitamin E, and beta-carotene. Numerous studies have demonstrated that plants contain
numerous antioxidant compounds that can be used as cataract preventatives or inhibitors. Natural
antioxidant extracts for cataract therapy may be investigated further in light of these findings, which
show that consuming a sufficient amount of antioxidant-rich plants is an excellent approach to
cataract prevention. Several other natural compounds also prevent cataracts by inhibiting aldose
reductase and preventing apoptosis of the eye lens.

Keywords: antioxidant; cataract; reactive oxygen species; plants

1. Introduction

A cataract is a condition where the eye’s lens clouds and can lead to progressive loss
of vision. Cataracts are often associated with age, where with increasing age, the eye’s lens
can turn cloudy due to the oxidative stress process, so that vision becomes blurry [1]. Based
on age, cataracts are classified into senile, juvenile, and congenital cataracts [2]. Senile
cataracts occur at an advanced age (age-related cataracts), juvenile cataracts are categorized
when cataracts arise at a young age, and congenital cataracts are cataracts that occur at
birth [3,4].
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Senile cataract is one of the leading causes of visual impairment and blindness globally
and is the most common form of cataract.

The oxidation process plays a vital role in lens opacities in senile cataract cases. The
elderly population will increase, increasing the prevalence and incidence of senile cataract
cases. Currently, the incidence of senile cataracts is 3.9% at the age of 55–64 years and
increases to 92.6% at the age of 80 years and over [5,6].

The prevalence of cataracts as a cause of vision loss increases every year. The World
Health Organization (WHO) claims that cataracts are the leading cause of blindness and
visual impairment globally, accounting for around 47.9% of the world’s blind people. It is
the cause of reversible blindness in more than 17 million (47.8%) of the 37 million blind
people worldwide. Cataracts also account for 30–50% of blindness in African and Asian
countries [7].

Antioxidants are one of the compounds reported to be able to inhibit the progression
of cataracts. Antioxidants react with radical and non-radical species after oxidative stress
to trigger defense mechanisms that protect intracellular and extracellular components [8].
Natural antioxidants are created in living cells in nutrition metabolism and immunological
function to maintain an oxidation-reduction equilibrium.

Plants provide most natural antioxidants. Plants, which are plentiful in cereals, spices,
and essential oils utilized in meat products for organoleptic purposes, are the most abun-
dant source of antioxidants. Tea water extract has also been used as a source of natural
antioxidants because it contains several compounds, such as catechins, tannins, and other
flavonoids, with the advantage of not having a strong taste like essential oils [9]. Antiox-
idants and other phytochemicals are abundant in certain fruits and vegetables. Several
minerals and vitamins are natural antioxidants because they act as cofactors for antioxidant
enzymes. Various short, multifunctional peptides capable of neutralizing free radicals and
preventing pro-oxidative metal ions have also been discovered in nature. Antioxidant
peptides are produced as a result of the enzymatic breakdown of proteins [8].

Vitamin E, vitamin C, carotenoids, polyphenols, and phenolic compounds may include
coumarins, cinnamic acid derivatives, flavonoids, tocopherols, and multifunctional organic
acids. The flavonoid molecules flavonols, flavones, isoflavones, catechins, and chalcones
are all antioxidants. There are also chlorogenic acid, caffeic acid, ferulic acid, and other
cinnamic acid derivatives. The hydroxyl group (-OH) and the double bond are responsible
for this property [10].

Based on the description above, in this article, we examined plants reported to have
antioxidant activity and have the potential to prevent cataract progression. The most
recent review compiled ethnopharmacological/ethnobotanical data on medicinal plants
and plant-based natural products used for cataract treatment around the world [11], and
another review [12] focused on natural chemicals with antioxidant capabilities that may
be used as a large-scale interventional strategy and are also very inexpensive; now, we
take a more comprehensive look. This article also includes the most recent updates of
several natural products from plants are helpful in preventing cataractogenesis, a process of
cataract formation. Antioxidant-containing natural products could be considered potential
anticataract agents for the prevention of cataractogenesis. However, as not all natural
antioxidants have anticataract properties, they were also studied in a comprehensive
manner either in vitro and in vivo.

2. Methods

The approach employed is a systematic literature review (SLR) design, which is a
systematic literature review by locating, analyzing, and interpreting all results on a single
research subject utilizing Google Scholar, Science Direct, PubMed, and Wiley databases.

2.1. What Is a Cataract and What Are Cataract Characteristics?

The lens is composed of transparent, flexible tissue and is located directly behind the
iris and the pupil. It is the second part of your eye, after the cornea, that helps to focus light
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and images on your retina. Cataracts are the most common cause of blindness globally, and
cataracts are a condition in which lens proteins clump together, causing the lens to become
cloudy. Various factors can cause cataracts, but many cases show that free radicals are the
mediators behind the pathological processes that lead to cataracts (Figure 1) [13].

Cataracts cause impaired vision function and vision loss because light cannot penetrate
the lens. The capsule, lens epithelium, and lens fibers are the three main parts of the lens.
Dense connective tissue forms a capsule. The entire lens body is composed of dense,
concentric layers of lens fibers. The lens epithelium is a simple cuboidal epithelium
that lines the anterior surface of the lens. The lens epithelium plays a crucial role in
maintaining homeostasis by allowing ion permeability, nutrients, and osmolarity into
the aqueous humor. The primary source of energy for lens tissue is glucose. Lens fiber
osmolarity is enhanced by sodium/potassium adenosine triphosphatase and calcium
adenosine triphosphatase [14,15].
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Figure 1. Cataract progression with reactive oxygen species (ROS) mediators [16].

Numerous factors may produce cataracts. Pathophysiological alterations linked with
disorders such as diabetes are a well-known cause of cataract development [17], and some
xenobiotics have also been identified as being able to produce cataracts [18]. Cataracts can
also be caused by diseases in newborns [19], injury or developmental disorder before birth
or during childhood [20], smoking [21], and exposure to harmful substances such as UV
rays [22] and corticosteroids [23], among many others.

These various causes allow the development of cataracts to occur by multiple mech-
anisms as well. Cataracts can occur due to the accumulation of sorbitol. Extracellular
glucose diffuses into the lens during hyperglycemia, causing post-translational modifica-
tions. Cataract progression is caused by excessive sorbitol synthesis and accumulates in
the lens fibers, causing osmotic stress (Figure 2). Sorbitol is produced by aldose reductase
using NADPH and cannot cross cell membranes. However, it can accumulate in cells and
disrupt the osmotic balance, causing cell injury [24,25].
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formation [26].

Cataract formation is also associated with hydrogen peroxide production via glucose
auto-oxidation [27]. Aldose reductase, the key enzyme in the polyol pathway, catalyzes the
conversion of glucose to the sugar alcohol sorbitol, which is ultimately converted to fructose
by sorbitol dehydrogenase. As an osmolyte, sorbitol causes osmotic swelling, changes
in membrane permeability, glutathione loss, myo-inositol loss, free radical formation,
and hydrogen peroxide, all of which contribute to diabetes complications as cataracts,
retinopathy, and neuropathy [28,29]. Higher concentrations of hydrogen peroxide cause
tissue damage and clouding of the lens.

Special glasses, anti-glare glasses, or magnifying lenses can help with the early symptoms
of cataracts, and if they are not treated, surgery is the treatment of choice for cataracts [30–33].
However, cataract surgery is costly with several consequences: endophthalmitis, posterior
capsule rupture, postoperative macular edema, and posterior capsule opacification [34].
Besides that, cataract surgery changes the shape of the corneas and this treatment occasionally
causes presbyopia. Presbyopia is the physiological degradation of accommodation or loss of
accommodation power due to nuclear cataract. One of the disadvantages of cataract surgery
is a lack of true accommodative ability. The loss of accommodative power is essentially due
to the progressive failure of the capsule to mold the lens into a more spherical shape [35].
Therefore, searching for safe substances that can reduce the risk or delay the onset of cataracts
is an essential step in developing cataract treatments.

2.2. Free Radicals Contribute to Cataract Formation

The electrons of an atom are arranged into orbitals, each of which can accommodate
a different pair of electrons. Free radicals are molecules that have only one electron in
their outermost orbital or an unpaired electron [36]. Free radicals will take electrons from
each adjacent molecule to be stable, triggering cell damage. When each molecule gains
or loses electrons, free radicals are produced. Free radicals can be created in the body in
two ways: physiologically as part of normal metabolic processes, or pathologically due to
illness [37–39].

The primary physiological source of free radicals is cellular respiration [40]. An electron
transport chain carries electrons from complex to complex and ultimately to oxygen, pro-
viding a proton gradient that is utilized to make ATP. The process of generating ATP
by donating electrons to the complex in the inner mitochondrial membrane is known as
oxidative phosphorylation. In the last part of this process, a cytochrome c oxidase molecule
transforms electrons into oxygen [40].

When oxygen accepts four electrons, it usually turns into water. If oxygen does not
take all four electrons, it will have an unpaired electron in its orbital, which will cause
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free radicals to develop. Superoxide is produced when oxygen is supplied with only one
electron (O2). It produces hydrogen peroxide (H2O2) with two electrons and hydroxyl
radical with three electrons (Figure 3) [41].
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Free radicals can also be produced as a result of a pathogen. First, during inflam-
mation, phagocytes such as macrophages can produce free radicals. Phagolysosomes are
formed when infections enter the body and are consumed by phagocytes. NADPH oxidase,
triggered by lysosomal enzymes and causing NADPH to be oxidized, losing two electrons,
is also present in these phagocytes. These electrons can be captured by nearby oxygen
molecules, forming O2 ions [43]. Superoxide dismutase (SOD), another enzyme, may com-
bine these ions with hydrogen ions to create hydrogen peroxide. A respiratory burst (also
known as an oxidative burst) is a process that results in the production of superoxide ions
and hydrogen peroxide. Furthermore, phagocytes include a kind of nitric oxide synthase
(eNOS), an enzyme that produces nitric oxide, which aids in the killing of infections [44].
On the other hand, nitric oxide reacts with superoxide ions to produce peroxynitrite free
radicals (ONOO−). These ions and chemicals kill bacteria by rupturing cell membranes
and disrupting protein synthesis [45].

Free radicals are also produced by exposure to ionizing radiation such as X-rays.
Radiation steals electrons from water in tissues, converting them into hydroxyl radicals.
When metals such as copper or iron accumulate in the body, free radicals are produced.
Hemochromatosis, for example, is a condition in which the body absorbs too much iron.
Excess iron is oxidized by hydrogen peroxide, yielding iron 3+, hydroxyl radicals, and hy-
droxide ions as byproducts; iron 3+ may then be reduced to iron 2+ by hydrogen peroxide,
yielding peroxide radicals and protons, and the cycle can be repeated indefinitely. As a
result, the Fenton reaction can break down H2O2 to OH- in the presence of transmission
metals, such as Fe2+ or Cu2 +. Fenton reaction also produces free radicals, including nu-
merous ROS such as superoxide anion radical (•O2

−), H2O2, and hydroxyl free radical
(•OH), and may lead to structural damage of the crystalline lens and contribute to cataract
formation (Figure 4) [4]. This harms cells in numerous organs over time, resulting in cell
death and tissue fibrosis [46].
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Ischemia, or lack of blood flow to organs or tissues, also generates free radicals.
Ischemic damage can cause mitochondria to produce ROS. Reperfusion occurs when blood
flows back into is chemical tissue, carrying extra oxygen. When all this oxygen combines
with pre-existing free radicals, it causes more cellular damage. Ischemia-reperfusion injury
(IRI) is the medical term for this [50]. Free radicals are also produced when chemicals or
drugs enter the body and are metabolized by the liver. Many free radicals are created when
the liver metabolizes medicines such as acetaminophen or paracetamol (the primary active
ingredient in TYLENOL® products), which may cause considerable liver damage [51].

Because the body creates free radicals under normal circumstances, defensive sys-
tems are in place to keep them in check. Antioxidants such as vitamin A, C, and E, for
example, deliver electrons that neutralize free radicals and protect cells [52]. Glutathione,
another chemical in our body, functions as an antioxidant and neutralizes H2O2. To work
properly, the two glutathione must be in a reduced form, allowing them to donate elec-
trons and protons to H2O2 and turn it into harmless water. Because this mechanism
oxidizes glutathione, glutathione reductase needs reduced nicotinamide adenine dinu-
cleotide phosphate (NADPH) as an electron donor to restore glutathione to its functional
state before restarting its activity. NADPH forms nicotinamide adenine dinucleotide phos-
phate (NADP+) after losing electrons. To replenish the supply of NADPH, an enzyme called
glucose-6-phosphate dehydrogenase (G6PD) oxidizes glucose-6-phosphate and converts
NADP+ to NADPH. Since glucose-6-phosphate is a byproduct of glucose, humans usually
have large amounts of this substance as long as they are not starving [53].

Metal-carrying proteins, which attach to metal ions and assist in transporting or
storing them, are another protective mechanism. This mechanism fights free radicals as
if the ions were hidden so they could not form free radicals. Transferrin, which binds to
iron, and ceruloplasmin, which binds to copper, are two examples of proteins attaching to
metals and transporting them through the bloodstream. On the other hand, free radical
scavenging enzymes transform free radicals into non-toxic molecules such as water. The



Antioxidants 2022, 11, 1285 7 of 27

enzyme SOD converts superoxide to hydrogen peroxide. In peroxisomes, catalase (CAT)
converts hydrogen peroxide to water, while glutathione peroxidase in the cytoplasm does
the same. When the amount of free radicals created surpasses this defensive system, cell
damage ensues [54,55].

2.3. Natural Ingredients’ Potential as an Alternative Cataract Treatment

There have been attempts to employ herbal medicines to prevent cataract advancement
based on the model of cataract development and the mechanism of its production route.
Natural antioxidant molecules have been reported to have an inevitable application in
cataract prevention and control due to their easy availability and fewer complications [56].
These biomolecules are excellent at preventing other molecules from oxidizing and pro-
ducing free radicals. These free radicals set off a chain reaction, causing all lens cells to be
damaged. Most of these antioxidants are reducing agents, such as thiols or polyphenols,
which inhibit free radical chain reactions. Flavonoids, phenolic acids, carotenoids, vitamins,
and lactoferrin are natural antioxidant compounds with anticataract action [57].

In fact, many antioxidants derived from plants such as curcumin, vitamin C, and
vitamin E have been well recognized as potential anticataractogenic therapeutics. Vitamin
C has been shown to be effective against UV-induced cataracts and age-related cataracts. It
also prevents nuclear cataract. Vitamin C also scavenges free radicals. Vitamin E has been
shown to be effective against both UV-induced and age-related cataracts by postponing
galactose and amino thiazole-induced cataract, inhibiting lipid peroxidation, and maintain-
ing membrane integrity. Curcumin was discovered to be an effective free radical scavenger
due to its cytoprotective effect on glutathione-S-transferase enzymes and its efficacy against
hyperglycemia, galactose, and naphthalene-induced cataract. Curcumin can also inhibit
NFκB [12]. This section provides an overview of the various categories of plant-derived
compounds that have been evaluated for potential as anti-cataracts.

2.4. Antioxidant Activities of Plants in Preventing Cataractogenesis
2.4.1. Antioxidant Activities of Plants

The function of oxidative stress in cataract formation has been well documented [58,59].
As a result, antioxidants and free radical scavengers might be used as therapeutic techniques
to treat cataracts. The study of antioxidants is growing because of their protective role in
food and pharmaceutical products against oxidative damage in the body and pathological
processes mediated by oxidative stress [60]. To obtain good antioxidant activity, several
things need to be considered, such as using the type of solvent, as [61] reported. The
antioxidant activity of the methanol extract of Torilis leptophylla L. crude and its derivative
fractions was found to be varied. In addition, screening plant antioxidant properties
and their derivative compounds require appropriate methods [60]. Therefore, this review
examines previous studies related to antioxidant activity derived from plants.

This difference in antioxidant activity appears from the difference in the degree of
polarity between the solvents used. The results of one-way analysis of variance (ANOVA)
obtained in [62] showed that the extraction yield, phytochemical content, and antioxidant
properties were significantly affected (p < 0.05) by the polarity of the extraction solvent. The
results of other studies related to the different types of solvents on antioxidant activity were
carried out by [63], who extracted Sargassum serratifolium leaves using various solvents such
as ethyl acetate, ethanol, methanol, acetone, n-hexane, chloroform, and water. According to
the study’s findings, ethanol is the most efficient extraction solvent and has the potential to
operate as a natural antioxidant. Extraction in highly polar solvents yields high extracts but
low phenolic and flavonoid content compared to non-polar ones [62]. The increase in total
antioxidant activity and polarity-dependent reducing properties indicated the extraction of
strong antioxidant compounds in polar solvents.

In addition to being influenced by the solvent used, antioxidant activity in several
works of literature is also related to total phenolic and flavonoid levels. Research conducted
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by [64] has shown a strong association between antioxidant activity and total flavonoid
content of many varieties of Nepalese vegetables.

Plant secondary metabolites with an aromatic ring containing at least one hydroxyl
group are phenolic compounds and natural flavonoids [65]. Because their hydroxyl groups
can directly contribute to antioxidant activity, phenolic substances are effective electron
donors [66]. In addition, several of them promote the production of endogenous antioxidant
molecules in cells [67]. According to various studies, free radical inhibition, peroxide
decomposition, and metal inactivation are all properties of phenolic compounds [68]. The
research conducted by [69] has shown a correlation between total phenolic content with
total antioxidant capacity and lipid peroxidation inhibitory activity in in vitro studies.

Previous reports showed that Sargassum serratifolium extracted using several solvents
exhibited different total phenolics and antioxidant activities [63]. In addition to differences
in solvent types related to polarity, plant preparation methods were also reported to affect
antioxidant activity, such as research on fresh leaves and dried leaves of Datura metel L.,
(Amethyst) plants extracted with several solvents. The tendency of the content is the same,
but the antioxidant activity test shows a difference where the antioxidant activity of dry crude
extract equivalent to DPPH is on the order of butanol > chloroform > ethyl acetate extract >
methanol > hexane extract. However, the order of antioxidant activity of the fresh organic
crude extract against DPPH was methanol > hexane > chloroform > ethyl acetate extract >
butanol [70]. Table 1 below shows some of the plants reported to have antioxidant activity.

Table 1 shows that the strength of antioxidant activity in plants is affected by several
factors such as polarity of the solvent extraction, growth location plant species, and mode
of action of antioxidant compounds present in a sample. These factors need to be studied
more deeply to understand the potency of plant species to obtain maximum antioxidant
activity. The white horehound shows relatively high antioxidant activity. The highest EC50
is the MVA extract of Marrubium vulgare L. leaves, with an EC50 of 6.43 ± 0.0411 mg/mL.
Ginger also showed promising results. The highest IC50 is the methanol extract of Nigerian
Zingiber officinale with a FRAP assay result of 89.15 ± 0.29 µg/mL. Antioxidant activities of
ginger extracts were also studied in acetone extract, which has a maximum IC50 value of
0.654 and 0.812 mg/mL.
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Table 1. Summary of plants that have been reported to have antioxidant activities.

Plants and Parts Used Solvent/Fraction Content Antioxidant Activity Reference

Torilis leptophylla L.

Methanol (TLM) Total phenolic content (TPC) (121.9 ± 3.1 mg
GAE/g extract)

EC50 value (anti-radical) based on DPPH
(41.0 ± 1 µg/mL), ABTS (10.0 ± 0.9 µg/mL),

and phosphomolybdate (10.7 ± 2 µg/mL) tests
for TLB, radical hydroxyl radicals

(8.0 ± 1 g/mL) for TLC, superoxide radicals
(57.0 ± 0.3 µg/mL) for TLM and hydrogen
peroxide radicals (68.0 ± 2 µg/mL) for TLE

were generally lower. Potential
antioxidant properties.

[61]

Fraction of n-hexane (TLH)
The total flavonoid content (TFC) of TLE

(60.9 ± 2.2 mg RTE/g extract) was found to be
significantly higher than the other solvent fractions.

Chloroform Fraction (TLC)

Ethyl acetate (TLE) fraction

Fraction of n-butanol (TLB)

Residual aqueous fraction (TLA)

Fresh and dried leaves
of Datura metel L.
(Amethyst) Plant

Methanol
Fresh leaves Alkaloids, flavonoids, saponins

The antioxidant activity of dry crude extract
equivalent to DPPH.

(2,2-diphenyl-1-picrylhydrazyl) was in the order
of butanol > chloroform > ethyl acetate extract >
methanol > hexane extract. However, the order
of antioxidant activity of the fresh organic crude

extract against DPPH
(2,2-diphenyl-1-picrylhydrazyl) was methanol >

hexane > chloroform > ethyl acetate extract
> butanol.

[70]

Dry leaves Alkaloids, flavonoids, saponins

Chloroform
Fresh leaves Alkaloids, saponins, tannins

Dry leaves Alkaloids, saponins, tannins

Hexane
Fresh leaves Saponins, tannins

Dry leaves Saponins, tannins

Ethyl acetate Fresh leaves Alkaloids, saponins

Dry leaves Alkaloids, saponins

Butanol
Fresh leaves Alkaloids, flavonoids

Dry leaves Alkaloids, flavonoids

Nigerian
Zingiber officinale Methanol

The extract’s total phenol and flavonoid contents
were 15.24± 0.02 mg GAE/g and

19.84± 0.32 mg/g CE.

DPPH test showed IC50 value
47.05 ± 2.03 µg/mL

[71]FRAP test showed IC50 value
89.15 ± 0.29 µg/mL
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Table 1. Cont.

Plants and Parts Used Solvent/Fraction Content Antioxidant Activity Reference

The bark of
Phyllanthus Emblica L.

Ethanol: water (7:3) (PEE)

Total phenol content 99.523 ± 1.91 (mg of
GAE/g extract)

Total Flavonoid Content 389.33 ± 1.25 (mg of
quercetin hydrate/g extract)

Total Tannin Content 310 ± 0.21 (mg of
catechin/g extract)

Based on the hydrogen peroxide scavenging
activity test, the ability to inhibit PEE

(polyphenolic-enriched extract) free radicals
depends on the PEE dose. At a 200 µg/mL

concentration, the percentage of PEE inhibition
(43.20%) was almost comparable to ascorbic acid
(55.39%). However, at the concentration of PEE

250 µg/mL, the percentage inhibition of PEE
was 79.62%, which was found to be better than
ascorbic acid (71.34%). The IC50 PEE value was

188.80 µg/mL, while ascorbic acid was
177.7 µg/mL.

[72]

Based on the ABTS ((2,2′-azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid)) assay, the
free radical inhibitory activity of PEE was found
to be concentration-dependent. The maximum

inhibition of ABTS radicals at a 250 µg/mL
concentration was 42.91%, which was less

effective than the standard (ascorbic acid). The
IC50 value of PEE was 329.20 µg/mL, while

ascorbic acid was 133.96 µg/mL.

Isotome longiflora

Ethanol Flavonoids, saponins, triterpenoids, and alkaloids IC50: value: 9.57 ppm

[73]n-hexane fraction Steroids and alkaloids IC50: value: 99.59 ppm

Chloroform fraction Flavonoids, steroids, and alkaloids IC50: value: 48.54 ppm
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Table 1. Cont.

Plants and Parts Used Solvent/Fraction Content Antioxidant Activity Reference

Sargassum serratifolium

Ethyl acetate TPC 105.0 ± 2.44 mg Phloroglucinol eq/g extract Ethyl acetate, ethanol, and methanol extracts
showed relatively strong DPPH, ABTs, and

superoxide radical activities. The hexane and
ethyl acetate extracts exhibited the most potent
hydroxyl radicals and ROS scavenging activity.

Sargahydroquinoic acid (SHQA),
sargachromanol (SCM) and sargaquinoic acid
(SQA) are the main antioxidant components in

S. serratifolium.

[63]

Methanol TPC 100.9 ± 2.61 mg Phloroglucinol eq/g extract

Ethanol TPC 100.2 ± 2.20 mg Phloroglucinol eq/g extract

Acetone TPC 91.9 ± 0.65 mg Phloroglucinol eq/g extract

Hexane TPC 53.7 ± 1.43 mg Phloroglucinol eq/g extract

Chloroform TPC 53.2 ± 1.64 mg Phloroglucinol eq/g extract

Water TPC 23.0 ± 1.57 mg Phloroglucinol eq/g extract

Arisaema jacquemontii
root Blume Methanol

TPC 45 ± 1.7 GAE/g
TFC (Total flavonoid compound) 35.5 ± 2.2 mg

rutin equivalent/g

The extract had significant antioxidant activity
in all assays, with 64.16 ± 0.19% in DPPH and
62.16 ± 0.17% in NBT (nitroblue tetrazolium)

assays, and reduced Fe3+ ferricyanide
complexes to form iron (Fe2 +).

[74]

Straw mushroom Alcohol
The total phenolic content in the extract determined

by the Folin–Ciocalteu method was 6.18 mg
GAE/g extract

These results indicate that the ethanolic extract
of A. bisporus has potent antioxidant activity and
can be explored as a new natural antioxidant.

[75]

Passion Fruit
(Passiflora edulis) Leaves Aqueous Total phenolic content

8.3 ± 0.22 mg GAE g

P. edulis leaf aqueous extract is a powerful
source of antioxidants. The extract showed that

it could reduce oxidative stress in vivo,
increasing antioxidant power and lipid

peroxidation in mice, especially in organs.

[76]
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Table 1. Cont.

Plants and Parts Used Solvent/Fraction Content Antioxidant Activity Reference

Capparis spinosa Water:ethanol 20:80 (v/v)

Total phenol content 427.27 ± 3.21 (mg GAE/g
dry matter)

Flavonoids 57.93 ± 2.31 (mg QE/g dry matter)
Anthocyanins 4.81 ± 0.85 (mg Cy-3-glu E/g

dry matter)

DPPH test showed that plant extracts showed
higher antioxidant activity than BHT

(IC50 = 7.41 vs. 8.31 µg/ mL).
[77]

Dendrobium sabin
flower (DS)

100% methanol (w/v), 100% ethanol
(w/v), and 100% water (w/v).

100% methanol crude extract showed the highest
total phenolic content (40.33 ±mg GAE/g extract)

The correlation between antioxidant activity
and total phenolic content indicates that
phenolic compounds are the dominant

antioxidant components in this flower extract.
Microbial fermentation on DS flower media

showed the potential to increase the phenolic
content and scavenging activity of DPPH.

[78]

Ginger Ethanol, methanol, acetone, and
ethyl acetate

The methanol extract showed the maximum
phenolic content (1183.813 mg GAE/100 g in Ayikel
and 1022.409 mg GAE/100 g in Mandura). The least

phenolic content was found in acetone extract
(748.865 mg GAE/100 g in Ayikel). and 690.152 mg

GAE/100 g in Mandura)

The highest DPPH radical scavenging activity
(84.868% in Ayikel and 82.883% in Mandura)
was observed in methanol. However, acetone

showed minor DPPH radical scavenging
activity (73.864% in Ayikel and 70.597%

in Mandura). The antioxidant activity of the
ginger extract was also expressed as IC50 value,

and acetone extract had the maximum IC50
value (0.654 and 0.812 mg/mL), followed by

ethyl acetate and ethanol, while methanol was
the lowest (0.481 and 0.525 mg/mL).

[79]

Chaptalia nutans
Daun leaves Hydromethanol (30/70 methanol-water)

Quantitative studies of phytochemicals showed
total phenols (30.17 ± 1.44 mg/g), flavonoids (21.64

± 0.66 mg/g), and condensed tannins
(9.58 ± 0.99 mg/g)

DPPH (345.41 ± 5.35 µg/mL) and FRAP
(379.98 ± 39.25 µM FeSO4/mg sample). [80]
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Table 1. Cont.

Plants and Parts Used Solvent/Fraction Content Antioxidant Activity Reference

Leaves of
Marrubium vulgare L.

Hydroethanolic (MVE) and
hydroacetonic (MVA)

The results showed that the total phenol content
was higher in the MVA (112.09 ± 4.77 mg

GAE/DW) than in the MVE extract
(98.77 ± 1.68 mg GAE/DW). Total flavonoid

content was also higher in MVA extract
(21.08 ± 0.38 mg QE/g DW) compared to MVE

(17.65 ± 0.73 mg QE/g DW).

Both extracts had good total antioxidant activity.
DPPH and FRAP tests showed that MVE extract

had better antioxidant activity, with
IC50 = 52.04 µg/mL ± 0.2

and EC50 4.51 ± 0.5 mg/mL, compared to MVA
extract (IC50 = 60.57 ± 0.6 µg/mL and EC50 of

6.43 ± 0.0411 mg/mL).

[81]

Three species of
bee propolis Water extract

The highest TPC was found in the H. Fimbriata
extract at 13.21 mg/mL, followed by the T. Binghami

and T. apicalis extracts at 10.11 and 7.60 mg/mL,
respectively. The highest TFC observed was from

the aqueous extract of H. Fimbriata propolis, which
was 34.53 mg/mL, while the lowest TFC recorded

was from the extract of T. binghami species at
34.17 mg/mL. The aqueous extract of T. apicalis
showed an average TFC value of 34.50 mg/mL

The results showed that the percentage of
H. fimbriata DPPH scavenging activity (56.91%),
especially at a concentration of 5 mL was higher
than ascorbic acid (48.22%), T. apicalis (47.56%),

and T. binghami (41.87%).

[82]

Tragopogon porrifolius Water, 80% ethanol, and 100% ethanol
The results showed that the polarity of the

extraction solvent affected TPC, TFC,
and antioxidants.

[83]
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2.4.2. Cataract Treatment with Herbal Plants

A cataract is a complex illness with several risk factors. Oxidative stress is a key factor
in the onset and progression of cataracts [84,85]. An assessment of the contribution of
this mechanism to cataract formation was carried out in a model of induced cataracts in
experimental animals. A selenite-induced cataract is one of the good models of senile
nuclear cataract and is very rapidly induced [86]. Degradation of calcium homeostasis
increased ROS or free radical generation, calpain (calcium-activated protease) activation,
insoluble protein, crystal precipitation, phase change, and cytoskeletal loss are the major
causes of selenite-induced cataracts [87]. The eye lens possesses a robust antioxidant system
as a defensive mechanism against harmful damage from ROS or free radicals. This system
contains antioxidants such as reduced glutathione and antioxidant enzymes such as SOD,
CAT, and glutathione reductase/peroxidase (GR/Gpx) [88].

Free radicals can cause gene mutations that lead to the formation of cataracts. Free
radicals compete with electrons from intracellular molecules resulting in lipid peroxidation,
protein modification, lesions on chromosomes, and mitochondrial DNA. This can result
in impaired transmission and gene expression and react with DNA chains that also cause
mitochondrial DNA (mtDNA or mDNA) damage. This DNA damage disrupts the gene
regulatory system, interfering with protein regulation and expression. Mutations in the
R48C gene impair A-crystallin stability, associated with lens opacities [89,90].

Meanwhile, free radicals also can cause autophagy, necrosis, and apoptosis of tissues.
The regulation of the autophagic system in the body depends on the autophagic flux
process, which is responsible for removing abnormal proteins. This results in impaired
autophagosome binding to lysosomes, resulting in the accumulation of p62 (a classical
receptor of autophagy). This accumulation activates caspases which then increase apoptosis
due to the activation of factor-kappa B (NF-κB) [90,91].

In biological systems, the balance between oxidants and antioxidants is of the utmost
importance, which has both physiological relevance (beneficial) and pathological conse-
quences (which usually lead to the formation of diseases, for example, cataracts). Several
studies have shown a positive relationship between antioxidant intake and a reduction in
the incidence or development of cataracts (Figure 5) [92].

In animal experiments with this condition, compounds of plant origin and herbal
medicine have also been demonstrated to have anticataract potential. Quercetin, a flavonoid
found in fruits and vegetables, is a potent antioxidant and free radical scavenger with
various health advantages, including cardioprotective, anti-diabetic, anti-inflammatory, and
anticancer properties [93]. In the study [94], in Sprague Dawley mice, quercetin reduced
the onset and development of selenite-induced cataracts and maintained lens chaperone
function. In another study, intraperitoneal injections of citrus flavonoids prevented selenite-
induced lenticular opacities in Wistar rats, with a corresponding increase in antioxidant
enzyme activity, CAT, SOD, glutathione peroxidase (GSH-Px), glutathione S-transferase
(GST), and glutathione reductase (GSH-Rx), as well as a reduction in lipid peroxidation,
when compared to lenses treated only with selenite [95].
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Curcumin is a brilliant yellow chemical with antioxidant qualities that is derived
from the Zingiberaceae family’s Curcuma longa plant. Curcumin inhibits the formation of
cataracts produced by galactose, oxidative stress, and streptozotocin by inhibiting lenticular
antioxidants, lipid peroxidation, and the maintenance of soluble protein content. In Sprague
Dawley mice, Nakazawa et al. (2017) found that both oil-soluble antioxidant compounds
and water-soluble antioxidants may prevent the onset and progression of selenite-induced
cataracts while still maintaining lens chaperone activity [97–99].

The report [100] stated that the ethanolic extract of the leaves and stems of Cineraria maritima
showed promising results in treating cataracts in the eye lens of goats. According to the
ethanol extract of the leaves of the binahong plant, the lens group of the goat lens induced
with glucose and the addition of the binahong (Anredera cordifolia (Tenore) Steenis) ex-
tract exhibited more transparent results than the lens group induced with 55 mM glucose
concentration. Binahong can suppress malondialdehyde generation at doses of 100 or
200 µg/mL [101]. In another study, it was stated that Lupeol, a pentacyclic triterpenoid
isolated from Vernonia cinereal, was effective in the treatment of cataracts in the eye lens of
Sprague Dawley rats induced by selenite from the results of testing biochemical parameters
such as activity of SOD, CAT, GPx, GR, GST, Ca2+ ATPase, glutathione, ROS, and lipid
peroxidation product (malondialdehyde) were found to be effective in the treatment of
cataracts with lupeol [100,102].

Another study found that the root extract had more antioxidant activity than the leaf
extract of the two extracts tested. This conclusion was corroborated by the presence of more
apparent antioxidant components in the ethanolic extract of L. aspera root. The root extract
of aspera root was tested in the lenses of cultured Wistar rats for probable anticataractogenic
potential. The results showed that when the extract was combined with the extract aspera
root ethanol in the lenses of selenite-induced Wistar rats, mean enzymatic antioxidant
activity, mean levels of reduced glutathione, and mean malondialdehyde expression levels
of genes encoding A- and B1-crystalline proteins were kept close to normal, and mean levels
of crystalline proteins themselves were kept close to normal [103]. Kaemoferol, for example,
is a natural flavonol, a secondary metabolite found in many plants, reveals effectiveness
for anti-inflammatory and antioxidant properties. This compound also demonstrated
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therapeutic antiglaucoma efficacy through suppressing ocular hypertension, inflammation,
and oxidative stress [104]. Table 2 shows the results of the analysis of several types of plants
that are reported to be able to be used in cataracts management.

Table 2. A list of plants and parts of plants used to prevent cataractogenesis.

Plants and Parts Used Solvent Test Animals Results Reference

Binahong
(Anredera cordifolia

(Tenore) Steenis)
Ethanol Glucose-induced

goat lens (ex vivo)

The lens group with added binahong
extract had more transparent

outcomes than the lens group induced
with 55 mM glucose concentration).

Binahong can suppress
malondialdehyde generation at doses

of 100 or 200.

[101]

Lupeol, a pentacyclic
triterpenoid isolated

from Vernonia cinerea

Ethyl acetate
fraction of

Vernonia cinerea
methanol extract

Selenite-induced
Sprague Dawley rat

eye lens (in vivo)

Biochemical parameters such as the
activity of SOD, CAT, GPx, GR, GST,
Ca2+ ATPase, glutathione content,
ROS, a lipid peroxidation product

(malondialdehyde) was estimated and
found to be effective in the treatment

of cataracts with lupeol.

[102]

Heliotropium indicum Water
10-day-old Sprague
Dawley rat pups of
both sexes (in vivo)

Cataract scores showed that the
extract significantly reduced

selenite-induced cataracts at all dose
levels (P 0.001). Lens transparency

markers (aquaporin 0, alpha A and B
crystallins) and total lens protein and

lens glutathione levels were
significantly preserved (P 0.01–0.001).

The extract exhibited relevant
activities for free radical scavenging

and lipid peroxidation inhibition. The
integrity of the lens epithelium and

fibers in histopathological assessment
was maintained with
Heliotropium indicum

extract treatment.

[105]

Foeniculum vulgare Mill.
Petroleum ether,
chloroform, and
dichloromethane

Streptozotocin
induced mice

(in vivo)

Trans-anethole can effectively exhibit
anticataract activity by increasing
soluble lens protein, decreasing

glutathione, CAT, and SOD activity on
in vitro incubation of ocular lens with

55 mM glucose. Trans-anethole
showing non-competitiveness for
mixed type lens aldose reductase

inhibition using
Lineweaver–Burk plots.

[106]
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Table 2. Cont.

Plants and Parts Used Solvent Test Animals Results Reference

Cineraria maritime
leaves and stems Ethanol Goat eye lens

(ex vivo)

From the DPPH
(2,2-diphenyl-1-picrylhydrazyl) method,

the IC50 value of the standard
compound was found to be

5.45 µg/mL and that of the ethanolic
extract of the plant was 73.26 µg/mL.
The hydrogen peroxide method was
the second method which was used
for the determination of antioxidant
potential. In this method, ascorbic
acid was used as a standard which

showed an IC50 value of 0.89 mg/mL,
while the IC50 value of the ethanolic
extract of the plant was found to be

1.30 mg/mL.

[100]

Chromolaena
odorata leaves

Ethanol extract
Chromolaena odorata

leaves (ACO)

Streptozotocin-
induced diabetic

mice (in vivo)

ACO treatment resulted in substantial
improvements in glucose and insulin
tolerance, glycogen content, glucose
absorption by skeletal muscle, serum

insulin, and HDL-c levels, and a
reduction in HOMA and lipid profile.
Furthermore, by boosting endogenous
antioxidants, ACO decreases oxidative

stress. Moreover, ACO therapy
significantly reduced the incidence

and extent of cataracts.

[107]

Leaves of
Punica granatum

Methanolic extract
of Punica granatum

leaves (MPGL)

Goat eye lens
(ex vivo)

Reduced glutathione and SOD levels
were lower in the cataract lens,
indicating opacity. MPGL and

quercetin treatment reduced opacity
and increased antioxidant activity.
Punica granatum leaves reduced

glucose-induced cataractogenesis by
inhibiting AR, reducing oxidative
stress, and enhancing antioxidant

defense mechanisms.

[108]

Allium cepa (Onion)

Extraction of
flavonoids from

onion peel and its
combination with

silver particles
showed its activity
as nanoparticles.

-

From the observations, the anticataract
activity of silver nanoparticles from
the Allium cepa peel showed better
results than the Allium cepa peel.

[109]

Grape Seed
Proanthocyanidin

Extract (GSPE)
Proanthocyanidin

Selenite-induced
cataract in mice

(in vivo)

Administration of GSPE was able to
maintain this antioxidant enzyme

activity and anti-OH
independently-ability, accompanied

by a significant decrease in
malondialdehyde, NO, Ca2+ and

iNOS levels, and calpain-2 protein and
mRNA expression.

[110]
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Table 2. Cont.

Plants and Parts Used Solvent Test Animals Results Reference

Tephrosia purpurea Water
Streptozotocin-

induced rats
(in vivo)

The results showed that the aqueous
extract of Tephrosia purpurea prevented

streptozotocin-induced metabolic
disorders and cardiovascular

complications and reduced the risk of
cataract development.

[111]

Tephrosia purpurea 95% alcohol

Cataracts were
induced by a single
injection of sodium
selenite (4 mg/kg,
sc) into 9-day-old

Sprague-Dawley rat
pups (in vivo)

T. purpurea extract reduced core
opacity in the lens while increasing

insoluble protein, sulfhydryl protein,
total nitrite, calcium levels, and

Ca(2+)-ATPase activity. The extract
reduces malondialdehyde levels while

simultaneously preventing
glutathione depletion.

[112]

P. densiflora pine bark

Extraction was
performed using

60% EtOH in 50 ◦C
for 3 h

Selenite-induced
cataracts in the lens
of Sprague Dawley
rat pups (in vivo)

This study showed that the bark
extract of P. densiflora independently

could prevent cataract formation.
Water-soluble protein, glutathione,
SOD, glutathione peroxidase, and

CAT activity levels were high.
Conversely, water-insoluble protein,
malondialdehyde and Ca2+-ATPase

were low in the group treated with P.
densiflora bark extract.

[113]

Based on several references, as shown in Table 2, it can be seen that the use of plant
extracts shows promising results in overcoming the problem of cataracts. The induction
cataract model can show the effectiveness of the extracts given. In addition to plant
extracts, nanoparticles synthesized from plants have also demonstrated effectiveness in
treating cataracts, as reported by [109], where the nanoparticles synthesized from shal-
lots showed good anticataract activity compared to shallot extracts that were not syn-
thesized into nanoparticles. Another study investigated the antioxidant capacity and
efficiency of silver nanoparticles (AgNPs) biosynthesized using an ethanolic extract of
Tabernaemontana divaricata leaf in preventing selenite-induced opacification of the ocular
lens in vitro (cataractogenesis). The activity of CAT, SOD, GPx, and GST, as well as lev-
els of reduced glutathione and malondialdehyde, were measured in this investigation.
The ethanolic extract of T. divaricata and AgNPs biosynthesized using T. divaricata ex-
tracts exhibit excellent in vitro antioxidant activity and the capacity to inhibit experimental
selenite-induced opacification in Wistar mice’s lenses, according to the findings [114].

Several in-vivo studies have also proved the ability of plant products to have a positive
effect on cataract [11]. Streptozotocin (STZ)-induced diabetic rats were used in the in vivo
experiment by Chung et al. At 11 weeks following STZ injection, diabetic control rats
acquired cataracts, but oral Aralia elata extract provided at 300 and 600 mg/kg body weight
for 11 weeks decreased cataract formation by 15% and 12%, respectively [115].

The research looked at whether highbush blueberry leaf polyphenols could help pre-
vent cataracts and the reasons behind it. HPLC-DAD was used to measure chlorogenic
acid, quercetin, rutin, isoquercetin, and hyperoside in Vaccinium corymbosum leaf decoc-
tion (BBL). On postnatal days 11 and 12, Wistar rats were administered subcutaneously
with 20 µmol selenite (Na2SeO3)/kg body weight or intraperitoneally with 100 mg dry
BBL/kg body weight. Only normal saline was given to the control group. BBL considerably
reduced lens opacification, according to a cataract examination. It also protected the lens
from oxidative selenite assault, calpain activation, and protein loss and aggregation [116].
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In model rats, rosmarinic acid, a polyphenol found in rosemary (Rosmarinus officinalis), was
confirmed to delay cataract development and lower the degree of lens opacification [116].

Natural substances containing antioxidants or secondary anti-inflammatory metabo-
lites may serve as anticataract agents in modern herbal medicine, which has played a
significant role in treating oxidative stress and its consequences [117]. In most instances,
free radicals cause lens opacity [12], and protein alteration by free radicals is also a result
of extreme oxidative stress. Some plant-based substances can inhibit protein insolubiliza-
tion, delaying lens opacification [12]. Natural chemicals that are antioxidants or secondary
anti-inflammatory metabolites have the potential to be the most effective anticataract treat-
ments. Antioxidant effects are one of the primary mechanisms for cataract prevention in
most instances. However, not all plants with antioxidant potential can have anticataract
properties. Plant polyphenols have been known to have an anticataractogenic effect has
been thoroughly investigated in vitro and in animals [118,119].

As reported in the literature, the chemical structure of many antioxidants plays an im-
portant role in preventing ocular disease progression. The effect of aromatic ring number in
phenolic compound-conjugated chitosan injectables was investigated with the purpose of
developing a more sophisticated drug carrier with significant anti-inflammatory and antiox-
idant characteristics. Low and high numbers of aromatic rings might have negative effects
on injectables’ pharmaceutical uses; however, a molecule with a moderate ring number
has been shown to be the most effective agent for improving drug delivery and giving chi-
tosan injectables medicinal qualities. The intracameral infusion of kaempferol-conjugated
pilocarpine, which can treat progressive glaucoma by concurrently exerting various phar-
macological actions to decrease ocular hypertension, inflammation, and oxidative stress,
shows extraordinary efficacy [104].

2.5. Other Natural Ingredients Besides Antioxidants That Can Inhibit Cataracts
2.5.1. Natural Antioxidant as Antiglycation Agent

Glycation is a phenomenon which is caused by increased glucose level in skin fibers.
Glycation, also known as Maillard reaction, is a non-enzymatic reaction adduct formation
between amino groups and carbonyl compounds. Glycation process occurs through oxida-
tion, dehydration and cyclization reactions, and irreversible compounds, called advanced
glycation end products (AGEs). During healthy aging, AGEs are formed at accelerated rates
in diabetes, and also as causative factors for pathogenesis of diabetes, neurodegenerative
disease, and cataracts [120].

Protein glycation changes the biological activity of proteins and starts the break-
down process; therefore, stopping it can help people with diabetes avoid significant con-
sequences. With aging, advanced glycation end products (AGEs) build up in the lens,
causing opacities [121]. Non-enzymatic interactions between the amino groups of proteins
and the carbonyl-reducing sugars create the primary problems of diabetes (one of which
is cataracts). Attempts to impact protein glycation have been made in a variety of ways.
Various natural and synthetic substances, including flavonoids, phenol derivatives, im-
idazoles, Schiff bases, thiazolidines, and sulfates, have been shown to suppress protein
glycation and the formation of AGE products. There are several mechanisms involved,
including capturing reactive amino groups and preventing them from reacting with glucose
or capturing carbonyl compounds, chelation with glycation-catalyzing trace metal ions,
radical scavenging, and inhibition of oxidative degradation of metal catalysts for glucose or
various glycated protein intermediates. By avoiding AGEs buildup, antiglycation treatment
will become a feasible approach for managing advanced diabetic complications [122].

Other natural substances such as quinic acid from Erigeron annuus was reported to
exhibit the most potent inhibitory activity against AGE formation and prevented opacifica-
tion of rat lenses. This compound also has been reported to act as an inhibitor of RLAR
(rat lens aldose reductase), AGE formation, AGEs–BSA cross-linking, and cataractogen-
esis. The molecular mechanisms of AGEs in the formation of cataracts are presented in
Figure 6 [123,124].
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Figure 6. Molecular mechanisms of AGEs for formation of cataract. Increase in glucose led to decrease
in glutathione and increase in ROS induced osmotic stress and oxidative stress, synergistically
inhibiting the ability of fiber cell results in the activation of enzymes and leading to formation of
AGEs and formation of cataract [125].

2.5.2. Natural Antioxidant of Plant as Aldose Reductase Inhibitors in Cataractogenesis

In diabetes, chronically elevated blood glucose plays a crucial role in determining
complications such as cataracts. Aldose reductase converts glucose to sorbitol during hyper-
glycemia, while sorbitol dehydrogenase catalyzes the conversion of sorbitol to fructose via
sorbitol dehydrogenase. Because the polyol pathway is involved in the etiology of diabetic
cataracts and AR is the rate-limiting enzyme of the polyol pathway, sorbitol cannot cross
cell membranes, causing cell swelling, degeneration, and necrosis. Therefore, it has been
hypothesized that AR inhibition could be a pharmaceutical target in managing diabetic
cataracts. AR has a role in various disease pathological processes by regulating cytokines,
growth factors, oxidative stress, and other intracellular signal transduction pathways. The
binding site of the AR inhibitor is a large hydrophobic pocket that serves as the target [126].
As a result of the polar and non-polar interactions between the inhibitor and the comple-
mentary residue corresponding to the enzyme-binding pocket, binding of the inhibitor
occurs. The selectivity of the inhibitor is thought to be mainly due to the interaction of the
inhibitor enzyme in the non-polar domain [127,128].

Polyphenols in Eleusine coracana are an important anti-diabetic and natural antioxidant
component. They were tested for their ability to suppress AR in a study of cataractogenesis
(Figure 7). Syringic, ferulic, trans-cinnamic acids, p-hydroxy benzoic, p-coumaric, gallic,
protocatechuic, vanillic, and quercetin, among other phenolic elements in Eleusine coracana,
significantly suppressed cataract eye lens, with the latter being more active, with an IC50 of
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14.8 nM. Polyphenols present in the seed coats of Eleusine coracana plants have been reported
to suppress AR in a reversible, non-competitive manner. As a result, the findings add to
the body of evidence supporting Eleusine coracana ability to suppress cataractogenesis in
people [129].
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in cataractogenesis) [130].

In Chinese traditional medicine, Chrysanthemum indicum L. blooms are used to treat eye
diseases. On rat lens AR, the inhibitory activity of components extracted from this plant’s
active fractions was investigated. Luteolin, acacetin-7-O-(600-a-L-rhamopyranosyl)-b-D-
glucopyranoside, and chlorogenic acid were found to be effective inhibitors [11]. Isolated
from the methanolic extract of the dried leaves of Manilkara indica, the C-glucosyl flavone,
isoaffinetin, inhibited AR in bovine lens, rat lens, and human recombinant. Isoaffinetin,
like many other flavonoids, works by inhibiting dl-glyceraldehyde and NADPH in a
noncompetitive manner. The quantity of hydroxyl groups in ring B increases C-glucosyl
flavone inhibition, according to a structure–activity connection study [131].

Another study created curcumin analogues and tested their potential to block the
enzyme. Curcumin analogues with ortho-dihydroxyl groups create a tighter binding to
AR, allowing them to display strong action, according to structure–activity relationship
studies [132]. The OH group at position 4 was found to be crucial for AR inhibitory
property in a structure–activity connection investigation. AR action is also inhibited by the
presence of an O-methyl group close to the carbon bearing the phenolic OH moiety. The
noncompetitive inhibition of AR by phenolic acids was discovered to be reversible [129].

2.5.3. The Potential of Natural Antioxidant as Antiapoptotic against Cataractogenesis

Apoptosis by ocular lens epithelial cells also contributes significantly to cataract pro-
gression. There are many mechanisms of cataracts that ultimately lead to lens cell apoptosis
and impair vision. For this reason, one of the benefits of natural compounds in plants
against cataracts is the inhibition of the epithelial cells of the eye lens to perform apoptosis.
Many pathways involved in apoptosis are classified as intrinsic and extrinsic pathways, de-
pending on different apoptotic triggers. Lens opacity is related to mitochondria-dependent
processes. Radiation, drugs, toxins, and free radicals cause mitochondrial damage and
malfunction. These lead to the release of pro-apoptotic proteins (such as cytochrome c and
second mitochondrial activator of caspases, SMAC) from the inner mitochondrial surface
into the cytosol, resulting in programmed cell death. Oxidative stress in cataract formation
has been identified as a critical mediator of apoptosis in lens epithelial cells [133,134].

Green tea’s most prevalent component, epigallocatechin gallate (EGCG), is a powerful
antioxidant. In HLEB-3 cells, EGCG was found to protect against cell death caused by
H2O2. H2O2-induced formation of ROS, loss of mitochondrial membrane potential (m),
and cytochrome c release from the mitochondria into the cytoplasm were all reduced by
EGCG. The H2O2-stimulated rise in caspase-9 and caspase-3 expression, as well as the drop
in the Bcl-2/Bax ratio, were both suppressed by EGCG. Furthermore, EGCG prevented
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H2O2 from reducing the activation and expression of ERK, p38 MAPK, and Akt. These
data imply that EGCG protects HLE cells against H2O2-induced mitochondrial apoptosis
by modulating caspases, the Bcl-2 family, as well as the MAPK and Akt pathways [135].

Myricetin, a flavonoglycoside, is isolated from the stem, bark, branches, and fruits of
Myrica rubra or other plant sources, with antioxidant properties have been known to act as
a scavenger of ROS molecules. The antioxidant and anti-apoptotic role of myricetin has
already been proven to decrease the level of ROS significantly. Myricetin can also inhibit the
apoptosis of epithelial cells by increasing the levels of SOD, CAT, and glutathione through
the Bax/Bcl-2 signaling pathway. Myricetin also inhibited the apoptosis of H2O2 stressed
lens epithelial cells and through its anti-apoptotic potential, this compound is effective in
preventing apoptosis-driven cataractogenesis of the human eye lens [136].

3. Conclusions

Currently, cataracts are still the leading cause of visual impairment. Cataracts are
caused by a variety of factors, including tissue changes caused by aging in which proteins
and lens fibers begin to break down, resulting in blurred or unclear vision, diabetes
complications that cause high sugar levels in the aqueous humor, and oxidative stress
caused by free radicals such as ROS. The way to neutralize ROS and other free radicals
is with natural antioxidants. Antioxidants can donate electrons to make ROS and other
free radicals less reactive. An online literature review revealed that many medicinal plants
contain high antioxidant activity, such as amethyst leaves, passion fruit leaves, and ginger.
Based on some literature that has been studied, it can be seen that many plants have
bioactivity as anticataracts. Therefore, it is concluded that plants with high levels of
antioxidants can be incorporated into cataract prevention efforts, and further research on
cataract treatment can incorporate plants as a natural source of antioxidants that inhibit the
progression of cataracts.
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