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Abstract

We present insights and empirical results from an extensive numerical study of the evolu-

tionary dynamics of the iterated prisoner’s dilemma. Fixation probabilities for Moran pro-

cesses are obtained for all pairs of 164 different strategies including classics such as

TitForTat, zero determinant strategies, and many more sophisticated strategies. Players

with long memories and sophisticated behaviours outperform many strategies that perform

well in a two player setting. Moreover we introduce several strategies trained with evolution-

ary algorithms to excel at the Moran process. These strategies are excellent invaders and

resistors of invasion and in some cases naturally evolve handshaking mechanisms to resist

invasion. The best invaders were those trained to maximize total payoff while the best resis-

tors invoke handshake mechanisms. This suggests that while maximizing individual payoff

can lead to the evolution of cooperation through invasion, the relatively weak invasion resis-

tance of payoff maximizing strategies are not as evolutionarily stable as strategies employ-

ing handshake mechanisms.

Introduction

The Prisoner’s Dilemma (PD) [1] is a fundamental two player game used to model a variety of

strategic interactions. Each player chooses simultaneously and independently between cooper-

ation (C) or defection (D). The payoffs of the game are defined by the matrix
R S

T P

 !

,

where T> R> P> S and 2R> T + S. The PD is a one round game, but is commonly studied

in a manner where the prior outcomes matter. This repeated form is called the Iterated Prison-

er’s Dilemma (IPD). As described in [2–4] a number of strategies have been developed to take

advantage of the history of play. Strategies referred to as zero determinant (ZD) strategies [4]

can manipulate some players through extortionate mechanisms.
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The Moran Process [5] is a model of evolutionary population dynamics that has been used

to gain insights about the evolutionary stability in a number of settings. Several earlier works

have studied iterated games in the context of the prisoner’s dilemma [6, 7], however these

often make simplifying assumptions or are limited to classes of strategies such as memory-one

strategies that only use the previous round of play.

This manuscript provides a detailed numerical analysis of agent-based simulations of 164

complex and adaptive strategies for the IPD. This is made possible by the Axelrod library [8],

an effort to provide software for reproducible research for the IPD. The library now contains

over 186 parameterized strategies including classics like TitForTat and WinStayLoseShift, as

well as recent variants such as OmegaTFT, zero determinant and other memory one strategies,

strategies based on finite state machines, lookup tables, neural networks, and other machine

learning based strategies, and a collection of novel strategies. Not all strategies have been con-

sidered for this study: excluded are those that make use of knowledge of the number of turns

in a match and others that have a high computational run time. The large number of strategies

are available thanks to the open source nature of the project with over 50 contributors from

around the world, made by programmers and researchers [3]. Three of the considered strate-

gies are finite state machines trained specifically for Moran processes (described further in the

Methods section).

In addition to providing a large collection of strategies, the Axelrod library can conduct

matches, tournaments and population dynamics with variations including noise and spatial

structure. The strategies and simulation frameworks are automatically tested to an extraordi-

narily high degree of coverage in accordance with best research software practices.

Using the Axelrod library and the many strategies it contains, we obtain the probability

with which a given strategy takes over a population (referred to as fixation probability) for all

pairs of strategies, identifying those that are effective invaders and those resistant to invasion,

for population sizes N = 2 to N = 14. Moreover we present a number (16) of strategies that

were created via reinforcement algorithms (evolutionary and particle swarm algorithms) that

are among the best invaders and resistors of invasion known to date, and show that handshak-

ing mechanisms naturally arise from these processes as an invasion-resistance mechanism.

In 2016, work has argued that agent-based simulations can provide insights in evolutionary

game theory not available via direct mathematical analysis [9]. The results and insights con-

tained in this paper would be difficult to derive analytically.

In particular the following questions are addressed:

1. What strategies are good invaders?

2. What strategies are good at resisting invasion?

3. How does the population size affect these findings?

While the results agree with some of the published literature, it is found that:

1. Zero determinant strategies are not effective invaders or defenders for N> 2.

2. Complex strategies can be effective, and in fact can naturally evolve through evolutionary

processes to outperform designed strategies.

3. The strongest resistors specifically evolve or possess a handshake mechanism.

4. Strong invaders are generally cooperative strategies that do not defect first but retaliate to

varying degrees of intensity against strategies that defect.

Evolution reinforces cooperation with the emergence of self-recognition mechanisms
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5. Strategies evolved to maximize their total payoff can be strong invaders and achieve mutual

cooperation with many other strategies.

The notion of a handshake has been described previously in [10] and corresponds to the

idea that an individual exhibits behaviour that starts with a recognisable pattern. This in turn

allows them to identify individuals of their own type (who would exhibit the same pattern).

This is analogous to the biological notion of ‘kin recognition’ where individuals have the ability

to recognise the phenotype of their own kin [11].

Materials and methods

The Moran process

A Moran process is a stochastic birth death process on a finite population in which the popula-

tion size stays constant over time. Individuals are selected according to a given fitness land-

scape. The fitness landscape in this work is defined as the total utility against all other

individuals in the population. Once selected, the individual is reproduced and similarly

another individual is chosen to be removed from the population (a uniform random selection

is used). This is shown diagrammatically in Fig 1. In some settings mutation is also considered

but without mutation (the case considered in this work) this process will arrive at an absorbing

state where the population is entirely made up of players of one strategy. The probability with

which a given strategy, starting from a single individual takes over a population is called the

fixation probability. A more detailed analytic description of this is given later. In our simula-

tions offspring do not inherit any knowledge or history from parent replicants.

The Moran process was initially introduced in [5]. It has since been used in a variety of set-

tings including the understanding of the spread of cooperative and non-cooperative behaviour

such as cancer [12] and the emergence of cooperative behaviour in spatial topologies [13].

However these works mainly consider relatively simple strategies. A few works looked at evo-

lutionary stability of agent-based strategies within the Prisoner’s Dilemma [14] but this is not

done in the more widely used setting of the Moran process, rather in terms of infinite popula-

tion stability. In [15] Moran processes are studied in a theoretical framework for a small subset

of strategies. The subset included memory one strategies: strategies that recall the events of the

previous round only.

Of particular interest are the zero determinant strategies introduced in [4]. It was argued in

[7] that generous ZD strategies are robust against invading strategies. However, in [16], a strat-

egy using machine learning techniques was capable of resisting invasion and also able to

invade any memory one strategy. In 2017, [17] has investigated the effect of memory length on

strategy performance and the emergence of cooperation but this is not done in a Moran pro-

cess context and only considers specific cases of memory 2 strategies. In [18] it was recognised

that many zero determinant strategies do not fare well against themselves. This is a disadvan-

tage for the Moran process where the best strategies cooperate well with other players using

the same strategy.

This work uses pair-wise Moran processes in a similar way to matches in the many IPD

tournaments published since Axelrod’s original work [2]. A population-based perspective is

given which adds additional evolutionary components to the IPD, namely the evolutionary

dynamics of invasion and resistance.

Strategies considered

To carry out this numerical experiment, 164 strategies, listed (with their properties) in the

Appendix, are used from the Axelrod library. The appendix also includes citations to the

Evolution reinforces cooperation with the emergence of self-recognition mechanisms
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original description of each strategy. There are 43 stochastic and 121 deterministic strategies.

Their memory depth, defined by the number of rounds of history used by the strategy each

round, is shown in Table 1. The memory depth is infinite if the strategy uses the entire history

of play (whatever its length). For example, a strategy that utilizes a handshaking mechanism

where the opponent’s actions on the first few rounds of play determines the strategies subse-

quent behavior would have infinite memory depth.

Using families of strategies that depend on given parameters it is possible to find specific

parameters through a training process called reinforcement learning. A detailed description of

the various types considered is given in [19].

A number of these strategies have been trained this way (see [19]) prior to this study and

not specifically for the Moran process. For example:

• Evolved ANN: a neural network based strategy;

• Evolved LookerUp: a lookup table based strategy;

• PSO Gambler: a stochastic version of the lookup table based strategy;

• Evolved HMM: a hidden Markov model based strategy.

Apart from the PSO Gambler strategy, which was trained using a particle swarm optimisa-

tion algorithm, these strategies are trained with an evolutionary algorithm that perturbs strat-

egy parameters and optimizes the mean total score against all other opponents [20]. They were

trained to win IPD tournaments by maximizing their mean total payoffs against a variety of

opponents. Variation is introduced via mutation and crossover of parameters, and the best

performing strategies are carried to the next generation along with new variants. Similar meth-

ods appear in the literature [21]. There has also been some work on strategies using an evolu-

tionary algorithm in real time: in [22] an evolutionary algorithm is used to build a model of

the opponent and attempt to exploit any potential weakness. In this work all strategies result-

ing from evolutionary algorithms are pre-trained.

More information about each player can be obtained in the documentation for [8] and a

detailed description of the performance of these strategies in IPD tournaments is described in

[19].

All of the training code is archived at [23]. This software is (similarly to the Axelrod library)

available on GitHub (https://github.com/Axelrod-Python/axelrod-dojo) with documentation

to train new strategies easily. Training typically takes less than 100 generations and can be

completed within several hours on commodity hardware.

Fig 1. A diagrammatic representation of a Moran process.

https://doi.org/10.1371/journal.pone.0204981.g001

Table 1. Memory depths.

Memory Deptd 0 1 2 3 4 5 6 9 10 11 12 16 20 40 200 1

Count 3 29 12 8 2 6 1 1 5 1 1 2 2 2 1 88

https://doi.org/10.1371/journal.pone.0204981.t001
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One particular family of strategies that has been studied in the literature are called finite

state machines. These mathematical models consist of states and responses to actions which

indicate a next state given an action. In the context of the IPD, a finite state machine, is a map-

ping from an arbitrary list of states and opponent actions (cooperation or defection) to states

and an action (cooperation or defection). For further details, the reader is referred to [19, 21,

24, 25].

There are three further strategies trained specifically for this study; Trained FSM 1, 2, and 3

(TF1 TF3). These are finite state machines of 16, 16, and 8 states respectively. These are shown

in Figs 2, 3 and 4, using the notation common in the literature where A1/A2 is the action of the

opponent A1 and the response of the player A2 as well as arrows corresponding to changes of

state.

As opposed to the previously described strategies [19], these strategies were trained with the

objective function of mean fixation probabilities for Moran processes starting at initial popula-

tion states consisting of N/2 individuals of the training candidates and N/2 individuals of an

opponent strategy, taken from a selection of 150 opponents from the Axelrod library:

• TF1 N = 12, 0% noise.

• TF2 N = 10, 0% noise.

• TF3 N = 8, 1% noise.

Fig 2. TF1: A 16 state finite state machine with a handshake leading to mutual cooperation at state 4.

https://doi.org/10.1371/journal.pone.0204981.g002
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Fig 3. TF2: A 16 state finite state machine with a handshake leading to mutual cooperation at state 16.

https://doi.org/10.1371/journal.pone.0204981.g003

Fig 4. TF3: An 8 state finite state machine.

https://doi.org/10.1371/journal.pone.0204981.g004
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The trained algorithms were run for fewer than 50 generations. Training data for this is

available at [26].

TF1 has an initial handshake of CCD and cooperates if the opponent matches. However if

the opponent later defects, TF1 will respond in kind, so the handshake is not permanent. Only

one player (Prober 4 [27]) manages to achieve cooperation with TF1 after about 20 rounds of

play. TF1 is functionally very similar to a strategy known as “Collective Strategy”, which has a

handshake of CD and cooperates with opponents that matched the handshake until they

defect, defecting thereafter if the opponent ever defects [28]. Collective Strategy was specifi-

cally designed for evolutionary processes.

TF2 always starts with CD and will defect against opponents that start with DD. It plays

CDD against itself and then cooperates thereafter; Fortress3 and Fortress4 also use a similar

handshake and cooperate with TF2. Cooperation can be rescued after a failed handshake by a

complex sequence of plays which sometimes results in mutual cooperation with Firm but Fair,

Grofman, and GTFT, and a few others with low probability. TF2 defects against all other play-

ers in the study, barring unusual cases arising from particular randomizations. Fig 3 shows all

16 states of the strategy (states 6 and 7 are not reachable).

TF3 cooperates and defects with various cycles depending on the opponent’s actions. TF3

will mutually cooperate with any strategy and only tolerates a few defections before defecting

for the rest of match. It is similar to but not exactly the same as Fool Me Once, a strategy that

cooperates until the opponent has defected twice (not necessarily consecutively), and defects

indefinitely thereafter. Though a product of training with a Moran objective, it differs from

TF1 and TF2 in that it lacks a handshake mechanism. Fig 4 shows all 8 states of the strategy

produced by the training process (states 3 and 8 are not reachable).

For both TF1 and TF2 a handshake mechanism naturally emerges from the structure of the

underlying finite state machine. This behavior is an outcome of the evolutionary process and

is in no way hard-coded or included via an additional mechanism.

Data collection

Each strategy pair is run for 1000 repetitions of the Moran process to fixation with starting

population distributions of (1, N − 1), (N/2, N/2) and (N − 1, 1), for N from 2 through 14. The

fixation probability is then empirically computed for each combination of starting distribution

and value of N. The Axelrod library can carry out exact simulations of the Moran process.

Since some of the strategies have a high computational cost or are stochastic, samples are

taken from a large number of 200 turn match outcomes for the pairs of players for use in com-

puting fitnesses in the Moran process (i.e. a stochastic cache of matches is used). This approach

was verified to agree with unsampled calculations to a high degree of accuracy in specific cases.

This is described in Algorithms 1 and 2.

Algorithm 1 Data Collection
1: for player_one in players_list do
2: for player_two in (players_list—player_one) pair do
3: pair  (player_one, player_two)
4: for starting_population_distributions in [ð1;N � 1Þ; N

2
; N

2

� �
; ðN � 1; 1Þ� do

5: while repetitions � 1000 do
6: simulate moran process (pair, starting distribution)
7: end while
8: yield fixation probabilities
9: end for
10: end for
11: end for

Algorithm 2 Moran process

Evolution reinforces cooperation with the emergence of self-recognition mechanisms
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1: initial population  (pair, starting distribution)
2: population  initial population
3: while population not uniform do
4: for player in population do
5: for opponent in (population—player) do
6: match  (player, opponent)
7: results  stochastic_cache (200 round match)
8: end for
9: end for
10: population  sorted(results)
11: parent  selected randomly in proportion to its total match
payoffs
12: offspring  parent
13: kill off  uniformly random player from population
14: population  offspring replaces kill off
15: end while

The next section will further validate the methodology by comparing simulated results to

analytical results in a few selected cases. The main results of this manuscript will present a

detailed analysis of all the data generated. Finally, a discussion and conclusion will offer future

avenues for the work presented here.

Results

Validation

As described in [6] consider the payoff matrix:

M ¼
a; b

c; d

 !

ð1Þ

The expected payoffs of i players of the first type in a population with N − i players of the

second type are given by:

fi ¼
aði � 1Þ þ bðN � iÞ

N � 1
ð2Þ

gi ¼
ciþ dðN � i � 1Þ

N � 1
ð3Þ

The transitions within the birth death process that underpins the Moran process are then

given by:

pi;iþ1 ¼
ifi

ifi þ ðN � iÞgi

N � i
N

ð4Þ

pi;i� 1 ¼
ðN � iÞgi

ifi þ ðN � iÞgi

i
N

ð5Þ

pii ¼ 1 � pi;iþ1 � pi;i� 1 ð6Þ

Evolution reinforces cooperation with the emergence of self-recognition mechanisms
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Using this the fixation probability of the first strategy in a population of i individuals of the

first type and N − i individuals of the second, is given by [13]:

xi ¼
1þ

Pi� 1

j¼1

Qj
k¼1
gj

1þ
PN� 1

j¼1

Qj
k¼1
gj

ð7Þ

where:

gj ¼
pj;j� 1

pj;jþ1

A neutral strategy will have fixation probability xi = i/N.

Comparisons of x1, xN/2, xN−1 are shown in Fig 5 for Alternator and WSLS (a 5% confidence

interval computed using an asymptotic normal approximation is also included [29]). The

points represent the simulated values and the line shows the theoretical value. Note that these

are deterministic strategies and show a good match between the expected value of (7) and the

actual Moran process for all strategy pairs. These means have been compared using a t-test

and the p values are shown in Table 2 which confirms the fact that the theoretic and simulated

values are a good match.

Fig 6 shows the fixation probabilities for stochastic strategies: Calculator and arrogant Q

Learner. These are no longer a good match (confirmed with a t-test in Table 3). This demon-

strates that assuming a given interaction between two IPD strategies can be summarised with a

set of utilities as shown in (1) is not correct. For any given pair of strategies it is possible to

obtain pi, i−1, pi, i+ 1, pii exactly (as opposed to the approximations offered by (4), (5) and (6)).

Obtaining these requires particular analysis for a given pair and can be quite a complex

endeavour for stochastic strategies with long memory: this is not necessary for the purposes of

this work. All data generated for this validation exercise can be found at [26].

Empirical results

This section outlines the data analysis carried out, all data for this study is available at [26].

• First the specific case of N = 2 is considered.

• The effect of population size on the ability of a strategy to invade another population is inves-

tigated. This will highlight how complex strategies with long memories outperform simpler

strategies.

• Then a similar investigation of the ability to defend against an invasion is given.

• Finally the relationship between performance for differing population sizes as well as taking

a close look at zero determinant strategies [4] is analysed.

The special case of N = 2. When N = 2 the fixation probabilities of the Moran process are

effectively measures of the distribution of relative mean payoffs over all possible matches

between two players. The strategy that scores higher than the other more often will fixate more

often. For N = 2 the two cases of x1 and xN−1 coincide, but will be considered separately for

larger N in the following sections. The top 16 (10%) strategies are shown in Table 4 and figures

showing the performance of all strategies are available in the appendix. The top five ranking

strategies are:

1. The top strategy is the Collective Strategy (CS) which has a simple handshake mechanism

described above.

Evolution reinforces cooperation with the emergence of self-recognition mechanisms
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Fig 5. Comparison of theoretic and actual Moran process fixation probabilities for deterministic strategies: Alternator and Cooperator. 5% confidence intervals

calculated using an asymptotic normal approximation. The top most line on all figures (in red and using a circle) corresponds to xN−1, the middle line (in green and

using a cross) corresponds to xN/2 and the bottom line (in blue and using an x) corresponds to x1.

https://doi.org/10.1371/journal.pone.0204981.g005

Table 2. p values resulting from a t test comparing the theoretic value with the simulated value of the Moran pro-

cess fixation probabilities for deterministic strategies: Alternator and Cooperator.

N p1 p Value pN/2 p Value pN−1 p Value

2 0.89942 0.89942 0.89942

4 0.16344 0.74768 0.85877

6 0.65406 0.84051 0.51992

8 0.92617 0.45748 0.38604

10 0.03505 0.37115 0.60635

12 0.96697 0.20790 0.18124

14 0.08126 0.63771 0.76246

16 0.59434 0.07697 0.42520

18 0.05339 0.47126 0.94814

20 0.30805 0.79795 0.82381

https://doi.org/10.1371/journal.pone.0204981.t002
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Fig 6. Comparison of theoretic and actual Moran process fixation probabilities for stochastic strategies: Calculator and Arrogant Q Learner. 5% confidence

intervals calculated using an asymptotic normal approximation. The top most line on all figures (in red and using a circle) corresponds to xN−1, the middle line (in

green and using a cross) corresponds to xN/2 and the bottom line (in blue and using an x) corresponds to x1.

https://doi.org/10.1371/journal.pone.0204981.g006

Table 3. p − values resulting from a t − test comparing the theoretic value with the simulated value of the Moran

process fixation probabilities for stochastic strategies: Calculator and Arrogant Q Learner.

N p1 p Value pN/2 p Value pN−1 p Value

2 0.05372 0.05372 0.05372

4 0.34188 0.00940 0.00005

6 0.16510 0.00000 0.00000

8 0.03451 0.00000 0.00000

10 0.00543 0.00000 0.00000

12 0.19646 0.00000 0.00000

14 0.00814 0.00000 0.00000

16 0.01038 0.00000 0.00000

18 0.39556 0.00000 0.00000

20 0.00030 0.00000 0.00000

https://doi.org/10.1371/journal.pone.0204981.t003
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2. Defector: it always defects. Since it has no interactions with other defectors (recall that

N = 2), its aggressiveness is rewarded.

3. Aggravater, which plays like Grudger (responding to any defections with unconditional

defections throughout) however starts by playing 3 defections.

4. Predator, a finite state machine described in [21].

5. Handshake, a slightly less aggressive version of the Collective Strategy [10]. As long as the

initial sequence is played then it cooperates. Thus it will do well in a population consisting

of many members of itself just as the Collective Strategy does. The difference is that CS will

defect after the handshake if the opponent defects while Handshake will not.

It is also noted that TF1, TF2 and TF3 all perform well for this case of N = 2. This is also the

value of N for which a zero determinant strategy does appear in the top 10% ranking strategies:

ZD-extort-4. The performance of zero determinant strategies will be examined more closely.

As will be demonstrated the results for N = 2 differ from those of larger N. Hence these

results do not concur with the literature which suggests that zero determinant strategies should

be effective for larger population sizes, but these analyses consider stationary behaviour, while

this work runs for a fixed number of rounds [7]. The stationarity assumption allows for a

deterministic payoff matrix leading to the conclusions about zero determinant strategies in the

space of memory-one strategies that do not generalize to this context.

Strong invaders. In this section the focus is on the ability of a mutant strategy to invade:

the probability of one individual of a given type successfully fixating in a population of N−1

other individuals, denoted by x1. The ranks of each strategy for all considered values of N
according to mean x1 are shown in Fig 7.

The top 16 strategies are given in Tables 5, 6 and 7. A variety of figures showing the perfor-

mance of all strategies is available in the supporting information.

It can be seen that apart from CS, none of the strategies for N = 2 of Table 4 perform well

for N 2 {3, 7, 14}. The new top performing strategies are:

Table 4. Top strategies for N = 2 (neutral fixation is p = 0.5).

Player Min 5th % Mean Median 95th % Max Std

1 CS 0.497 0.5020 0.6651 0.572 0.9908 0.993 0.1800

2 Defector 0.502 0.5020 0.6496 0.518 1.0000 1.000 0.1767

3 Aggravater 0.502 0.5020 0.6328 0.518 0.9790 0.999 0.1660

4 Predator 0.319 0.4980 0.6301 0.551 0.9870 0.993 0.1676

5 Handshake 0.006 0.4503 0.6240 0.524 0.9908 0.993 0.1889

6 Prober 4 0.431 0.4620 0.6183 0.534 0.9579 0.958 0.1656

7 TF1 0.430 0.4980 0.6171 0.544 0.9240 0.981 0.1345

8 Prober 3 0.497 0.5011 0.6044 0.505 0.9930 0.993 0.1683

9 TF2 0.324 0.5020 0.6026 0.565 0.8362 0.887 0.1092

10 Grudger 0.497 0.5020 0.5996 0.502 0.9840 0.989 0.1695

11 Better and Better 0.388 0.3951 0.5980 0.514 0.9300 0.934 0.1865

12 MEM2 0.497 0.5001 0.5942 0.502 0.9840 0.987 0.1656

13 Meta Hunter Aggressive 0.247 0.2943 0.5933 0.517 0.9498 0.981 0.2013

14 TF3 0.344 0.4971 0.5927 0.502 0.9790 0.982 0.1617

15 Fool Me Once 0.494 0.4980 0.5892 0.502 0.9790 0.982 0.1625

16 ZD-Extort-4 0.497 0.5020 0.5867 0.584 0.6900 0.695 0.0724

https://doi.org/10.1371/journal.pone.0204981.t004
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Fig 7. Invasion: Ranks of all strategies according to x1 for different population sizes.

https://doi.org/10.1371/journal.pone.0204981.g007
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• Grudger (which only performs well for N = 3), starts by cooperating but will defect if at any

point the opponent has defected.

• MEM2, an infinite memory strategy that switches between TFT, TF2T, and Defector [14].

• TF3, the finite state machine trained specifically for Moran processes described.

• Prober 4, a strategy which starts with a specific 20 move sequence of cooperations and defec-

tions [27]. This initial sequence serves as approximate handshake.

• PSO Gambler and Evolved Lookerup 2 2 2: strategies that make use of a lookup table map-

ping the first 2 moves of the opponent as well as the last 2 moves of both players to an action.

Table 5. Top invaders for N = 3.

Player Min 5th % Mean Median 95th % Max Std

1 CS 0.261 0.2620 0.4478 0.403 0.8105 0.908 0.1998

2 Grudger 0.259 0.2641 0.4313 0.338 0.8097 0.908 0.1699

3 MEM2 0.258 0.2875 0.4278 0.338 0.7977 0.907 0.1636

4 TF3 0.248 0.2610 0.4267 0.338 0.7904 0.904 0.1624

5 Prober 4 0.221 0.2400 0.4242 0.365 0.7723 0.891 0.1755

6 Fool Me Once 0.257 0.2645 0.4242 0.338 0.7938 0.904 0.1620

7 Davis 0.234 0.2581 0.4218 0.338 0.7759 0.891 0.1590

8 Predator 0.173 0.2590 0.4210 0.374 0.7845 0.907 0.1824

9 Evolved ANN 5 0.255 0.3163 0.4163 0.338 0.7872 0.879 0.1530

10 Evolved ANN 0.253 0.2789 0.4163 0.338 0.7938 0.906 0.1572

11 Evolved FSM 16 0.041 0.1391 0.4154 0.338 0.7977 0.907 0.1830

12 Meta Hunter 0.123 0.2541 0.4140 0.338 0.7807 0.892 0.1614

13 TF1 0.257 0.2580 0.4139 0.398 0.7411 0.900 0.1529

14 PSO Gambler 2_2_2 0.073 0.2643 0.4134 0.338 0.7938 0.904 0.1727

15 EvolvedLookerUp1_1_1 0.258 0.3004 0.4113 0.338 0.7515 0.830 0.1369

16 Evolved FSM 16 Noise 05 0.247 0.3238 0.4107 0.338 0.7977 0.906 0.1540

https://doi.org/10.1371/journal.pone.0204981.t005

Table 6. Top invaders for N = 7.

Player Min 5th % Mean Median 95th % Max Std

1 Evolved FSM 16 0.001 0.0313 0.2523 0.142 0.6389 0.826 0.1931

2 PSO Gambler 2_2_2 0.004 0.0588 0.2467 0.142 0.6096 0.826 0.1809

3 Fool Me Once 0.044 0.0470 0.2459 0.142 0.6105 0.826 0.1792

4 Evolved ANN 5 0.044 0.1092 0.2450 0.142 0.6010 0.812 0.1722

5 Evolved ANN 0.042 0.0615 0.2449 0.142 0.6104 0.826 0.1785

6 EvolvedLookerUp2_2_2 0.000 0.0618 0.2443 0.142 0.6380 0.824 0.1822

7 Grudger 0.044 0.0451 0.2442 0.142 0.6420 0.826 0.1830

8 MEM2 0.044 0.0583 0.2436 0.142 0.6143 0.826 0.1760

9 TF3 0.044 0.0450 0.2430 0.142 0.6344 0.826 0.1779

10 PSO Gambler 1_1_1 0.021 0.1033 0.2404 0.142 0.6381 0.824 0.1710

11 CS 0.045 0.0450 0.2395 0.148 0.6385 0.826 0.2169

12 Evolved FSM 16 Noise 05 0.044 0.1298 0.2394 0.142 0.6143 0.826 0.1732

13 Evolved HMM 5 0.010 0.0611 0.2390 0.142 0.6115 0.826 0.1785

14 Meta Hunter 0.015 0.0465 0.2385 0.142 0.5993 0.820 0.1751

15 Davis 0.036 0.0465 0.2379 0.142 0.5953 0.820 0.1732

16 PSO Gambler Mem1 0.018 0.1105 0.2348 0.142 0.6370 0.825 0.1671

https://doi.org/10.1371/journal.pone.0204981.t006
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PSO gambler is a stochastic version of Lookerup which maps those states to probabilities of

cooperating. Lookerup was described in [3].

• The Evolved ANN strategies are neural networks that map a number of attributes (first

move, number of cooperations, last move, etc.) to an action. Both of these have been trained

using an evolutionary algorithm.

• Evolved FSM 16 is a 16 state finite state machine trained to perform well in tournaments.

Only one of the above strategies is stochastic although close inspection of the source code of

PSO Gambler shows that it makes stochastic decisions rarely, and is functionally very similar

to its deterministic cousin Evolved Looker Up. PSO Gambler Mem1 is a stochastic memory

one strategy that has been trained to maximise its utility and does perform well. Apart from

TF3, the finite state machines trained specifically for Moran processes do not appear in the top

5, while strategies trained for tournaments do. This is due to the nature of invasion: most of

the opponents will initially be different strategies. The next section will consider the converse

situation.

Strong resistors. In addition to identifying good invaders, strategies resistant to invasion

by other strategies are identified by examining the distribution of xN−1 for each strategy. The

ranks of each strategy for all considered values of N according to mean xN−1 are shown in Fig

8.

Tables 8, 9 and 10 show the top strategies when ranked according to xN−1 for N 2 {3, 7, 14}

and figures showing results for all strategies are available in the supplementary materials. Once

again none of the short memory strategies previously discussed perform well for high N.

Interestingly none of these strategies are stochastic: this is explained by the value of not pro-

voking typically cooperative opponent strategies with speculative defections. This includes

opponents using the same strategy. Acting stochastically increases the chance of reducing the

score of individuals of the same type in a Moran process. However it is possible to design a

strategy with a stochastic or error-correcting handshake that is an excellent resistor even in

noisy environments [16].

Table 7. Top invaders for N = 14.

Player Min 5th % Mean Median 95th % Max Std

1 Evolved FSM 16 0.000 0.0054 0.2096 0.079 0.7241 0.842 0.2172

2 PSO Gambler 2_2_2 0.000 0.0113 0.2042 0.079 0.5940 0.842 0.2045

3 EvolvedLookerUp2_2_2 0.000 0.0270 0.2014 0.079 0.6608 0.840 0.2097

4 Evolved ANN 0.002 0.0164 0.2014 0.079 0.5939 0.842 0.2074

5 Evolved ANN 5 0.002 0.0505 0.2004 0.079 0.5940 0.834 0.2009

6 Evolved HMM 5 0.000 0.0321 0.1972 0.079 0.5940 0.842 0.2034

7 PSO Gambler 1_1_1 0.001 0.0455 0.1955 0.079 0.6150 0.841 0.1931

8 Fool Me Once 0.002 0.0058 0.1955 0.079 0.5940 0.842 0.2032

9 Evolved FSM 16 Noise 05 0.003 0.0607 0.1943 0.079 0.5930 0.842 0.2005

10 PSO Gambler Mem1 0.000 0.0517 0.1920 0.079 0.6118 0.841 0.1907

11 Evolved FSM 4 0.000 0.0000 0.1918 0.079 0.5930 0.842 0.2049

12 Meta Hunter 0.000 0.0049 0.1869 0.079 0.5883 0.840 0.1882

13 Evolved ANN 5 Noise 05 0.001 0.0303 0.1858 0.079 0.5930 0.840 0.1968

14 Omega TFT 0.003 0.0704 0.1849 0.079 0.5939 0.840 0.1927

15 Fortress4 0.000 0.0000 0.1848 0.066 0.5919 0.840 0.2211

16 TF3 0.002 0.0041 0.1846 0.079 0.6190 0.842 0.1890

https://doi.org/10.1371/journal.pone.0204981.t007
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Fig 8. Resistance: Ranks of all strategies according to xN−1 for different population sizes.

https://doi.org/10.1371/journal.pone.0204981.g008
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There are only two new strategies that appear in the top ranks for xN−1: TF1 and TF2. These

two strategies are with CS the strongest resistors. They all have handshakes, and whilst the

handshakes of CS and Handshake (which ranks highly for the smaller values of N) were pro-

grammed, the handshakes of TF1 and TF2 evolved without any priming.

As described previously the strategies trained with the payoff maximizing objective are

among the best invaders in the library however they are not as resistant to invasion as the strat-

egies trained using a Moran objective function. These strategies include trained finite state

machine strategies, but they do not appear to have handshaking mechanisms. Therefore it is

reasonable to conclude that the objective function is the cause of the emergence of

Table 8. Top resistors for N = 3.

Player Min 5th % Mean Median 95th % Max Std

1 CS 0.662 0.7410 0.8359 0.796 0.9980 1.000 0.0981

2 Predator 0.530 0.7363 0.8121 0.789 0.9980 1.000 0.0983

3 TF1 0.648 0.7330 0.8087 0.791 0.9745 0.999 0.0775

4 Handshake 0.225 0.6322 0.8014 0.779 0.9980 1.000 0.1293

5 TF2 0.572 0.7363 0.7957 0.790 0.9330 0.961 0.0672

6 Prober 4 0.646 0.6610 0.7905 0.750 0.9890 0.996 0.1070

7 Grudger 0.662 0.6620 0.7612 0.662 0.9980 1.000 0.1224

8 Hard Prober 0.661 0.6620 0.7582 0.732 0.9980 0.999 0.1079

9 TF3 0.594 0.6620 0.7570 0.662 0.9969 0.999 0.1197

10 MEM2 0.662 0.6620 0.7554 0.662 0.9980 1.000 0.1210

11 Davis 0.662 0.6620 0.7536 0.662 0.9848 0.996 0.1164

12 Winner21 0.662 0.6630 0.7529 0.742 0.9218 0.948 0.0741

13 Fool Me Once 0.661 0.6620 0.7489 0.662 0.9970 0.999 0.1191

14 Fortress4 0.552 0.5520 0.7467 0.707 1.0000 1.000 0.1676

15 Retaliate 3 0.662 0.6620 0.7448 0.662 0.9538 0.986 0.1032

16 EvolvedLookerUp1_1_1 0.662 0.6620 0.7422 0.662 0.9792 0.998 0.1062

https://doi.org/10.1371/journal.pone.0204981.t008

Table 9. Top resistors for N = 7.

Player Min 5th % Mean Median 95th % Max Std

1 CS 0.858 0.9560 0.9765 0.981 1.000 1.000 0.0203

2 TF1 0.866 0.9521 0.9714 0.979 1.000 1.000 0.0207

3 TF2 0.840 0.9423 0.9677 0.976 0.998 1.000 0.0239

4 Predator 0.741 0.9478 0.9677 0.970 1.000 1.000 0.0367

5 Handshake 0.448 0.8261 0.9547 0.970 1.000 1.000 0.0848

6 Prober 4 0.837 0.8500 0.9540 0.955 1.000 1.000 0.0416

7 Winner21 0.858 0.8600 0.9392 0.956 0.996 0.999 0.0486

8 Hard Prober 0.856 0.8560 0.9331 0.953 1.000 1.000 0.0521

9 Fortress4 0.829 0.8290 0.9255 0.925 1.000 1.000 0.0653

10 Grudger 0.858 0.8580 0.9198 0.858 1.000 1.000 0.0642

11 TF3 0.858 0.8580 0.9189 0.858 1.000 1.000 0.0638

12 Davis 0.858 0.8580 0.9186 0.858 1.000 1.000 0.0633

13 Ripoff 0.856 0.8560 0.9183 0.922 0.986 0.988 0.0484

14 Tester 0.856 0.8560 0.9176 0.921 0.986 0.988 0.0486

15 MEM2 0.858 0.8580 0.9165 0.858 1.000 1.000 0.0636

16 Retaliate 3 0.858 0.8580 0.9161 0.858 0.999 1.000 0.0619

https://doi.org/10.1371/journal.pone.0204981.t009
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handshaking mechanisms. More specifically, TF1 and TF2 evolved handshakes for high inva-

sion resistance. TF3 is a better total payoff maximizer which makes it a better invader along

with the strategies trained to maximize total payoff since successful fitness proportionate selec-

tion is necessary for invasion. Training with an objective with initial population mix other

than (N/2, N/2) may favor invasion or resistance.

The payoff maximizing strategies typically will not defect before the opponent’s first defec-

tion, possibly because the training strategy collection contains some strategies such as Grudger

and Fool Me Once that retaliate harshly by defecting for the remainder of the match if the

opponent has more than a small number of cumulative defections. Paradoxically for hand-

shaking strategies it is advantageous to defect (as a signal) in order to achieve mutual coopera-

tion with opponents using the same strategy but not with other opponents. Nevertheless an

evolutionary process is able to tunnel through the costs and risks associated with early defec-

tions to find more optimal solutions, so it is not surprising in hindsight that handshaking strat-

egies emerge from the evolutionary training process.

A handshake requires at least one defection and there is selective pressure to defect as few

times as possible to achieve the self-recognition mechanism. It is also unwise to defect on the

first move as some strategies additionally retaliate in response to first round defections. So the

handshakes used by TF1, TF2, and CS are in some sense optimal.

It is evident through the work presented that performance of strategies not only depends

on the initial population distribution but also that there seems to be a difference depending on

whether or not N> 2. This will be explored further in the next section, looking not only at x1

and xN−1 but also considering xN/2.

The effect of population size. Fig 9 complements Figs 7 and 8 showing the ranks of each

strategy for all considered even values of N according to mean xN/2.

Tables 11, 12 and 13 show the ranks for a selection of strategies:

• The strategies that ranked highly for N = 2;

• The strategies that ranked highly for N = 14;

• The zero determinant strategies.

Table 10. Top resistors for N = 14.

Player Min 5th % Mean Median 95th % Max Std

1 CS 0.921 0.9970 0.9984 1.000 1.0 1.0 0.0062

2 TF1 0.938 0.9950 0.9973 0.999 1.0 1.0 0.0069

3 TF2 0.925 0.9820 0.9949 0.996 1.0 1.0 0.0104

4 Predator 0.836 0.9912 0.9941 0.999 1.0 1.0 0.0212

5 Prober 4 0.895 0.9110 0.9863 0.996 1.0 1.0 0.0250

6 Handshake 0.514 0.9131 0.9812 0.999 1.0 1.0 0.0743

7 Winner21 0.921 0.9210 0.9778 0.996 1.0 1.0 0.0310

8 Hard Prober 0.916 0.9160 0.9731 0.995 1.0 1.0 0.0327

9 Fortress4 0.929 0.9290 0.9726 0.981 1.0 1.0 0.0287

10 Ripoff 0.919 0.9190 0.9669 0.978 1.0 1.0 0.0318

11 Tester 0.919 0.9190 0.9662 0.977 1.0 1.0 0.0320

12 Grudger 0.921 0.9210 0.9592 0.921 1.0 1.0 0.0390

13 TF3 0.921 0.9210 0.9589 0.921 1.0 1.0 0.0388

14 Davis 0.921 0.9210 0.9588 0.921 1.0 1.0 0.0387

15 Retaliate 3 0.921 0.9210 0.9580 0.921 1.0 1.0 0.0383

16 Retaliate 0.921 0.9210 0.9576 0.921 1.0 1.0 0.0382

https://doi.org/10.1371/journal.pone.0204981.t010
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Fig 9. Fixation ranks of all strategies according to xN/2 for different population sizes.

https://doi.org/10.1371/journal.pone.0204981.g009
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The results for xN/2 show similarities to the results for xN−1 and in particular TF1, TF2 and

TF3 ranked first, third and eighth. This is to be expected since, as described previously these

strategies were trained in an initial population of (N/2, N/2) individuals.

For all starting populations i 2 {1, N/2, N − 1} the ranks of strategies are relatively stable

across the different values of N> 2 however for N = 2 there is a distinct difference. This high-

lights that there is little that can be inferred about the evolutionary performance of a strategy

Table 11. Invasion: Fixation ranks of a few selected strategies according to x1 for different population sizes.

Size 2 3 4 5 6 7 8 9 10 11 12 13 14

CS 1 1 2 11 9 11 13 21 16 22 17 25 23

Defector 2 43 80 91 89 87 87 103 97 105 94 103 101

Aggravater 3 50 89 99 102 103 108 113 114 115 115 116 117

Predator 4 8 24 35 28 33 31 43 36 43 34 45 35

Handshake 5 17 40 46 43 46 46 49 48 49 47 50 49

Evolved FSM 16 31 11 6 2 1 1 1 1 1 1 1 1 1

PSO Gambler 2_2_2 29 14 10 6 4 2 2 2 2 2 2 2 2

EvolvedLookerUp2_2_2 33 18 11 9 10 6 6 5 3 5 3 3 3

Evolved ANN 20 10 8 7 8 5 3 3 4 3 4 4 4

Evolved ANN 5 21 9 7 8 7 4 5 4 5 4 5 5 5

TF1 7 13 33 38 30 39 42 46 42 46 41 46 46

TF2 9 19 29 33 19 28 29 38 27 34 26 32 30

TF3 14 4 5 5 6 9 11 11 12 14 13 13 16

ZD-Extort-4 16 81 107 120 135 136 142 140 142 142 144 144 145

ZD-Extort-2 v2 41 105 126 140 152 152 153 152 153 153 153 152 153

ZD-Extort-2 43 107 125 139 151 151 152 153 152 152 152 153 152

ZD-SET-2 100 111 117 117 122 127 131 128 131 131 130 132 131

ZD-GTFT-2 112 92 82 80 81 82 84 72 81 71 78 72 70

ZD-GEN-2 113 96 87 83 85 88 90 82 87 82 86 83 91

https://doi.org/10.1371/journal.pone.0204981.t011

Table 12. Resistance: Fixation ranks of a few selected strategies according to xN−1 for different population sizes.

Size 2 3 4 5 6 7 8 9 10 11 12 13 14

CS 1 1 1 1 1 1 1 1 1 1 1 1 1

Defector 2 29 55 79 94 97 98 98 102 101 103 100 102

Aggravater 3 42 71 97 101 106 107 111 113 113 116 115 115

Predator 4 2 3 3 3 4 4 4 4 4 4 4 4

Handshake 5 4 5 5 5 5 5 6 6 6 6 6 6

TF1 7 3 2 2 2 2 2 2 2 2 2 2 2

TF2 10 5 4 4 4 3 3 3 3 3 3 3 3

Prober 4 6 6 6 6 6 6 6 5 5 5 5 5 5

TF3 13 9 10 11 11 11 13 14 13 13 13 13 13

ZD-Extort-4 19 68 98 106 108 114 115 115 118 118 117 118 117

ZD-Extort-2 v2 49 98 111 121 123 124 124 130 130 132 134 132 134

ZD-Extort-2 50 97 112 123 124 125 123 126 131 131 132 133 133

ZD-SET-2 108 105 104 104 103 103 100 100 101 99 98 98 98

ZD-GTFT-2 112 95 88 84 75 72 71 73 71 71 67 68 68

ZD-GEN-2 114 96 89 86 77 75 72 74 72 72 68 69 69

https://doi.org/10.1371/journal.pone.0204981.t012
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in a large population from its performance in a small population. This is confirmed by the per-

formance of the zero determinant strategies: while some do rank relatively highly for N = 2

(ZD-Extort-4 has rank 16) this rank does not translate to larger populations.

Fig 10 shows the correlation coefficients of the ranks of strategies in differing population

size. How well a strategy performs in any Moran process for N> 2 has low correlation with

the performance for N = 2. This illustrates why the strong performance of zero determinant

strategies predicted in [4] does not extend to larger populations. This was discussed theoreti-

cally in [18] and observed empirically in these simulations.

Discussion

Training strategies to excel at the Moran process leads to the evolution of cooperation, but

only with like individuals in the case of TF1 and TF2. This may have significant implications

for various biological and social phenomena such as human social interactions, particularly

the evolution of ingroup/outgroup mechanisms and other sometimes costly rituals that rein-

force group behavior.

Table 13. Ranks of a few selected strategies according to xN/2 for different population sizes.

Size 2 4 6 8 10 12 14

CS 1 1 1 1 1 1 2

Defector 2 78 99 106 110 113 120

Aggravater 3 91 105 111 122 125 128

Predator 4 2 4 4 4 4 4

Handshake 5 6 5 6 6 6 6

TF2 9 4 3 2 2 2 1

TF1 7 3 2 3 3 3 3

Prober 4 6 5 6 5 5 5 5

TF3 14 8 8 8 8 8 8

ZD-Extort-4 16 102 117 129 141 143 145

ZD-Extort-2 v2 41 118 135 151 152 152 153

ZD-Extort-2 43 117 136 149 151 151 152

ZD-SET-2 100 110 110 108 106 106 108

ZD-GTFT-2 112 82 80 77 75 75 74

ZD-GEN-2 113 85 81 82 79 77 76

https://doi.org/10.1371/journal.pone.0204981.t013

Fig 10. Heatmap of correlation coefficients of rankings by population size.

https://doi.org/10.1371/journal.pone.0204981.g010
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While TF1 and TF2 are competent invaders, the best invaders in the study do not appear to

employ strict handshakes, and are generally cooperative strategies. TF3, which does not use a

handshake, is a better invader than TF1 and TF2 but not as good a resistor. Nevertheless it was

the result of the same kind of training processes and is a better combined invader-resistor than

the invaders that were trained previously to maximize payout. It is of interest to note that when

trained in a payoff maximising criteria the finite state machines do not evolve to obtain a hand-

shake, this highlights the importance of the evolutionary effect on this important mechanism.

The strategies trained to maximize payoff in head-to-head matches are generally cooperative

and are effective invaders. Combined with the fact that handshaking strategies are stronger resis-

tors, this suggests that while maximizing individual payoff can lead to the evolution of coopera-

tion, these strategies are not the most evolutionarily stable in the long run. A strategy with a

handshaking mechanism is still capable of invading and is more resistant to subsequent inva-

sions. Moreover, the best resistor of the payoff maximally trained strategies (Evolved Looker Up

1_1_1), which always defects if the opponent defects in the first round, is effectively employing a

one-shot handshake of C. Similarly, Grudger (also known as Grim), which emerged from train-

ing memory one strategies for the Moran process, also effectively employs a handshake of always

cooperating, as it defects for the remainder of the match if the opponent ever defects.

The insights that payoff maximizers are better invaders and that handshakers are better

resistors suggests that a strategy aware of the population distribution could choose to become

a handshaker at a critical threshold and use a strategy better for invasion when in the minority.

Information about the population distribution was not available to our strategies. Previous

work has showed that strategies able to retain memory across matches can infer the population

distribution and act in such a manner, resulting in a strategy effective at invasion and resis-

tance [16].

We did not attempt other objective functions that may serve to select for both invasion and

resistance better than training at a starting population of (N/2, N/2). Nevertheless our results

suggest that there is not much room for improvement. Any handshake more sophisticated

than always cooperate necessarily involves a defection. (A strategy with a handshake consisting

of a long sequence of cooperations is effectively a grudger.) For TF3 or EvolvedLoo-

kerUp1_1_1 to become better resistors they need a longer or more strict handshake. But if this

handshake involves a defection then likely the invasion ability is diminished for N> 2: the top

invaders for larger N are nice strategies that do not defect before their opponents. This is

because good invaders need to maximize match payoff to benefit from fitness proportionate

selection, and so in the absence of a handshake mechanism, knowledge of the population dis-

tribution, or some identifying label on the opponent, a strategy must be generally cooperative.

Aggressive strategies are only effective invaders for the smallest N, dropping dramatically in

rank as the population size increases.

We did, however, attempt to evolve CS using finite state machines and lookup table based

players, which resulted in some very similar strategies. In particular we evolved a lookup strat-

egy that had a handshake of DC and played TFT with other players after a correct handshake

while defecting otherwise, which is quite close in function to CS (full grudging is not possible

with a lookup table of limited depth).

Finally we note that it may be possible to achieve similar results with smaller capacity finite

state machine players.

Conclusion

A detailed empirical analysis of 164 strategies of the IPD within a pairwise Moran process has

been carried out. All 164

2

� �
¼ 13; 366 possible ordered pairs of strategies have been placed in a
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Moran process with different starting values allowing each strategy to attempt to invade the

other. This is the largest such experiment carried out and has led to many insights.

When studying evolutionary processes it is vital to consider N> 2 since results for N = 2

cannot be used to extrapolate performance in larger populations. This was shown both obser-

vationally but also by considering the correlation of the ranks in different population sizes.

Memory one strategies do not perform as well as longer memory strategies in general in

this study. Several longer memory strategies were high performers for invasion, particularly

the strategies which have been trained using a number of reinforcement learning algorithms.

Interestingly they have been trained to perform well in tournaments and not Moran processes

specifically. In some cases these strategies utilize all the history of play (the neural network

strategies and the lookup table strategies, the latter using the first round and some number of

trailing rounds).

There are no memory one strategies in the top 5 performing strategies for N> 3. Training

memory-one strategies specifically for the Moran process typically led to Grudger / Grim, a

memory-one strategy with four-vector (1, 0, 0, 0). It appears to be the best resistor of the mem-

ory-one strategies. The highest performing memory-one strategy for invasion is PSO Gambler

Mem 1, training to maximize total payout, which has four-vector (1, 0.52173487, 0,

0.12050939). For comparison, training for maximum score difference between the player and

the opponent resulted in a strategy nearly the same as Grudger, with four-vector (0.9459, 0, 0,

0) (not included in the study).

One of the major findings discussed, is the ability of strategies with a handshake mechanism

to resist invasion. This was not only revealed for CS (a human designed strategy) but also for

two FSM strategies (TF1 and TF2) specifically trained through an evolutionary process. In

these two cases, the handshake mechanism was a product of the evolutionary process. Fig 11

shows the cooperation rate of TF1, TF2, TF3 and CS for each round of a match against all the

opponents in this study. This corresponds to the fraction of cooperation played by that strategy

observed in a given round (out of the first 15) where each matchup is repeated 10000 times to

obtain the mean.

While TF3 does not have a strict handshake mechanism it is clear that all these strategies

start a match by cooperating. It is then evident that TF3 cooperates more than the other strate-

gies thus explaining the difference in performance. It is also clear that CS only cooperates with

itself and Handshake: it is a very aggressive strategy.

These findings are important for the ongoing understanding of population dynamics and

offer evidence for some of the shortcomings of low memory which has started to be recognised

by the community [17].

All source code for this work has been written in a sustainable manner: it is open source,

under version control and tested which ensures that all results can be reproduced [30–32]. The

raw data as well as the processed data has also been properly archived and can be found at [26].

There are many opportunities to build on this work. In particular, an analysis of the effect

of noise should offer insights regarding the stability of the findings, particularly for the hand-

shaking strategies. They may be less dominant for larger amounts of noise since the handshak-

ing mechanisms may become brittle. There are many other variations to explore including

populations with more than one type, spatial structure, and mutation.

One final point to recognise: the large set of strategies used here does not in itself constitute

an authoritative set. Whilst it is not only large but also very diverse, the results (and rankings)

presented might change given a different set of strategies. A further piece of work could look at

subgroups of strategies and how they fair against other subgroups. Note that because of the

open nature of the work here (not only is the source code archived but so is the data) this and

any other further analysis is possible to carry out.
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Appendix: List of players

1. ϕ—Deterministic—Memory depth:1. [8]

2. π—Deterministic—Memory depth:1. [8]

3. e—Deterministic—Memory depth:1. [8]

4. ALLCorALLD—Stochastic—Memory depth: 1. [8]

5. Adaptive—Deterministic—Memory depth:1. [36]

6. Adaptive Pavlov 2006—Deterministic—Memory depth:1. [37]

7. Adaptive Pavlov 2011—Deterministic—Memory depth:1. [33]

8. Adaptive Tit For Tat: 0.5—Deterministic—Memory depth:1. [38]

9. Aggravater—Deterministic—Memory depth:1. [8]

10. Alternator—Deterministic—Memory depth: 1. [39, 40]

11. Alternator Hunter—Deterministic—Memory depth:1. [8]

12. Anti Tit For Tat—Deterministic—Memory depth: 1. [41]

13. AntiCycler—Deterministic—Memory depth:1. [8]

14. Appeaser—Deterministic—Memory depth:1. [8]

15. Arrogant QLearner—Stochastic—Memory depth:1. [8]

Fig 11. Cooperation rate per round (over 10000 repetitions). Rows correspond to all the strategies considered in this

work (ordered alphabetically by name). Columns correspond to round of an IPD match.

https://doi.org/10.1371/journal.pone.0204981.g011

Evolution reinforces cooperation with the emergence of self-recognition mechanisms

PLOS ONE | https://doi.org/10.1371/journal.pone.0204981 October 25, 2018 24 / 33

https://doi.org/10.1371/journal.pone.0204981.g011
https://doi.org/10.1371/journal.pone.0204981


16. Average Copier—Stochastic—Memory depth:1. [8]

17. Better and Better—Stochastic—Memory depth:1. [27]

18. Bully—Deterministic—Memory depth: 1. [42]

19. Calculator—Stochastic—Memory depth:1. [27]

20. Cautious QLearner—Stochastic—Memory depth:1. [8]

21. CollectiveStrategy(CS)—Deterministic—Memory depth:1. [28]

22. Contrite Tit For Tat(CTfT)—Deterministic—Memory depth: 3. [43]

23. Cooperator—Deterministic—Memory depth: 0. [4, 39, 40]

24. Cooperator Hunter—Deterministic—Memory depth:1. [8]

25. Cycle Hunter—Deterministic—Memory depth:1. [8]

26. Cycler CCCCCD—Deterministic—Memory depth: 5. [8]

27. Cycler CCCD—Deterministic—Memory depth: 3. [8]

28. Cycler CCCDCD—Deterministic—Memory depth: 5. [8]

29. Cycler CCD—Deterministic—Memory depth: 2. [40]

30. Cycler DC—Deterministic—Memory depth: 1. [8]

31. Cycler DDC—Deterministic—Memory depth: 2. [40]

32. Davis: 10—Deterministic—Memory depth:1. [2]

33. Defector—Deterministic—Memory depth: 0. [4, 39, 40]

34. Defector Hunter—Deterministic—Memory depth:1. [8]

35. Desperate—Stochastic—Memory depth: 1. [44]

36. Doubler—Deterministic—Memory depth:1. [27]

37. EasyGo—Deterministic—Memory depth:1. [27, 36]

38. Eatherley—Stochastic—Memory depth:1. [45]

39. Eventual Cycle Hunter—Deterministic—Memory depth:1. [8]

40. Evolved ANN—Deterministic—Memory depth:1. [8]

41. Evolved ANN 5—Deterministic—Memory depth:1. [8]

42. Evolved ANN 5 Noise 05—Deterministic—Memory depth:1. [8]

43. Evolved FSM 16—Deterministic—Memory depth: 16—Number of states: 14. [8]

44. Evolved FSM 16 Noise 05—Deterministic—Memory depth: 16—Number of states: 14. [8]

45. Evolved FSM 4—Deterministic—Memory depth: 4—Number of states: 4. [8]

46. Evolved HMM 5—Stochastic—Memory depth: 5. [8]

47. EvolvedLookerUp1_1_1—Deterministic—Memory depth:1. [8]

48. EvolvedLookerUp2_2_2—Deterministic—Memory depth:1. [8]
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49. FSM Player: [(0, ‘C’, 0, ‘C’), (0, ‘D’, 3, ‘C’), (1, ‘C’, 5, ‘D’), (1, ‘D’, 0, ‘C’), (2, ‘C’, 3, ‘C’), (2,

‘D’, 2, ‘D’), (3, ‘C’, 4, ‘D’), (3, ‘D’, 6, ‘D’), (4, ‘C’, 3, ‘C’), (4, ‘D’, 1, ‘D’), (5, ‘C’, 6, ‘C’), (5, ‘D’,

3, ‘D’), (6, ‘C’, 6, ‘D’), (6, ‘D’, 6, ‘D’), (7, ‘C’, 7, ‘D’), (7, ‘D’, 5, ‘C’)], 0, C(TF3)—Determin-
istic—Memory depth:1—Number of states: 8.

50. FSM Player: [(0, ‘C’, 13, ‘D’), (0, ‘D’, 12, ‘D’), (1, ‘C’, 3, ‘D’), (1, ‘D’, 4, ‘D’), (2, ‘C’, 14, ‘D’),

(2, ‘D’, 9, ‘D’), (3, ‘C’, 0, ‘C’), (3, ‘D’, 1, ‘D’), (4, ‘C’, 1, ‘D’), (4, ‘D’, 2, ‘D’), (5, ‘C’, 12, ‘C’), (5,

‘D’, 6, ‘C’), (6, ‘C’, 1, ‘C’), (6, ‘D’, 14, ‘D’), (7, ‘C’, 12, ‘D’), (7, ‘D’, 2, ‘D’), (8, ‘C’, 7, ‘D’), (8,

‘D’, 9, ‘D’), (9, ‘C’, 8, ‘D’), (9, ‘D’, 0, ‘D’), (10, ‘C’, 2, ‘C’), (10, ‘D’, 15, ‘C’), (11, ‘C’, 7, ‘D’),

(11, ‘D’, 13, ‘D’), (12, ‘C’, 3, ‘C’), (12, ‘D’, 8, ‘D’), (13, ‘C’, 7, ‘C’), (13, ‘D’, 10, ‘D’), (14, ‘C’,

10, ‘D’), (14, ‘D’, 7, ‘D’), (15, ‘C’, 15, ‘C’), (15, ‘D’, 11, ‘D’)], 0, C(TF2)—Deterministic—
Memory depth:1—Number of states: 16.

51. FSM Player: [(0, ‘C’, 7, ‘C’), (0, ‘D’, 1, ‘C’), (1, ‘C’, 11, ‘D’), (1, ‘D’, 11, ‘D’), (2, ‘C’, 8, ‘D’), (2,

‘D’, 8, ‘C’), (3, ‘C’, 3, ‘C’), (3, ‘D’, 12, ‘D’), (4, ‘C’, 6, ‘C’), (4, ‘D’, 3, ‘C’), (5, ‘C’, 11, ‘C’), (5,

‘D’, 8, ‘D’), (6, ‘C’, 13, ‘D’), (6, ‘D’, 14, ‘C’), (7, ‘C’, 4, ‘D’), (7, ‘D’, 2, ‘D’), (8, ‘C’, 14, ‘D’), (8,

‘D’, 8, ‘D’), (9, ‘C’, 0, ‘C’), (9, ‘D’, 10, ‘D’), (10, ‘C’, 8, ‘C’), (10, ‘D’, 15, ‘C’), (11, ‘C’, 6, ‘D’),

(11, ‘D’, 5, ‘D’), (12, ‘C’, 6, ‘D’), (12, ‘D’, 9, ‘D’), (13, ‘C’, 9, ‘D’), (13, ‘D’, 8, ‘D’), (14, ‘C’, 8,

‘D’), (14, ‘D’, 13, ‘D’), (15, ‘C’, 4, ‘C’), (15, ‘D’, 5, ‘C’)], 0, C(TF1)—Deterministic—Memory
depth:1—Number of states: 16.

52. Feld: 1.0, 0.5, 200—Stochastic—Memory depth: 200. [2]

53. Firm But Fair—Stochastic—Memory depth: 1. [46]

54. Fool Me Forever—Deterministic—Memory depth:1. [8]

55. Fool Me Once—Deterministic—Memory depth:1. [8]

56. Forgetful Fool Me Once: 0.05—Stochastic—Memory depth:1. [8]

57. Forgetful Grudger—Deterministic—Memory depth: 10. [8]

58. Forgiver—Deterministic—Memory depth:1. [8]

59. Forgiving Tit For Tat(FTfT)—Deterministic—Memory depth:1. [8]

60. Fortress3—Deterministic—Memory depth: 3—Number of states: 3. [21]

61. Fortress4—Deterministic—Memory depth: 4—Number of states: 4. [21]

62. GTFT: 0.33—Stochastic—Memory depth: 1. [22, 47]

63. General Soft Grudger: n = 1,d = 4,c = 2—Deterministic—Memory depth:1. [8]

64. Gradual—Deterministic—Memory depth:1. [48]

65. Gradual Killer: (‘D’, ‘D’, ‘D’, ‘D’, ‘D’, ‘C’, ‘C’)—Deterministic—Memory depth:1. [27]

66. Grofman—Stochastic—Memory depth:1. [2]

67. Grudger—Deterministic—Memory depth: 1. [2, 36, 44, 48, 49]

68. GrudgerAlternator—Deterministic—Memory depth:1. [27]

69. Grumpy: Nice, 10, -10—Deterministic—Memory depth:1. [8]

70. Handshake—Deterministic—Memory depth:1. [10]

71. Hard Go By Majority—Deterministic—Memory depth:1. [40]
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72. Hard Go By Majority: 10—Deterministic—Memory depth: 10. [8]

73. Hard Go By Majority: 20—Deterministic—Memory depth: 20. [8]

74. Hard Go By Majority: 40—Deterministic—Memory depth: 40. [8]

75. Hard Go By Majority: 5—Deterministic—Memory depth: 5. [8]

76. Hard Prober—Deterministic—Memory depth:1. [27]

77. Hard Tit For 2 Tats(HTf2T)—Deterministic—Memory depth: 3. [50]

78. Hard Tit For Tat(HTfT)—Deterministic—Memory depth: 3. [51]

79. Hesitant QLearner—Stochastic—Memory depth:1. [8]

80. Hopeless—Stochastic—Memory depth: 1. [44]

81. Inverse—Stochastic—Memory depth:1. [8]

82. Inverse Punisher—Deterministic—Memory depth:1. [8]

83. Joss: 0.9—Stochastic—Memory depth: 1. [2, 50]

84. Level Punisher—Deterministic—Memory depth:1. [52]

85. Limited Retaliate 2: 0.08, 15—Deterministic—Memory depth:1. [8]

86. Limited Retaliate 3: 0.05, 20—Deterministic—Memory depth:1. [8]

87. Limited Retaliate: 0.1, 20—Deterministic—Memory depth:1. [8]

88. MEM2—Deterministic—Memory depth:1. [14]

89. Math Constant Hunter—Deterministic—Memory depth:1. [8]

90. Meta Hunter Aggressive: 7 players—Deterministic—Memory depth:1. [8]

91. Meta Hunter: 6 players—Deterministic—Memory depth:1. [8]

92. Naive Prober: 0.1—Stochastic—Memory depth: 1. [36]

93. Negation—Stochastic—Memory depth: 1. [51]

94. Nice Average Copier—Stochastic—Memory depth:1. [8]

95. Nydegger—Deterministic—Memory depth: 3. [2]

96. Omega TFT: 3, 8—Deterministic—Memory depth:1. [37]

97. Once Bitten—Deterministic—Memory depth: 12. [8]

98. Opposite Grudger—Deterministic—Memory depth:1. [8]

99. PSO Gambler 1_1_1—Stochastic—Memory depth:1. [8]

100. PSO Gambler 2_2_2—Stochastic—Memory depth:1. [8]

101. PSO Gambler 2_2_2 Noise 05—Stochastic—Memory depth:1. [8]

102. PSO Gambler Mem1—Stochastic—Memory depth: 1. [8]

103. Predator—Deterministic—Memory depth: 9—Number of states: 9. [21]

104. Prober—Deterministic—Memory depth:1. [36]
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105. Prober 2—Deterministic—Memory depth:1. [27]

106. Prober 3—Deterministic—Memory depth:1. [27]

107. Prober 4—Deterministic—Memory depth:1. [27]

108. Pun1—Deterministic—Memory depth: 2—Number of states: 2. [21]

109. Punisher—Deterministic—Memory depth:1. [8]

110. Raider—Deterministic—Memory depth: 3—Number of states: 4. [53]

111. Random Hunter—Deterministic—Memory depth:1. [8]

112. Random: 0.5—Stochastic—Memory depth: 0. [2, 38]

113. Remorseful Prober: 0.1—Stochastic—Memory depth: 2. [36]

114. Resurrection—Deterministic—Memory depth: 1. [52]

115. Retaliate 2: 0.08—Deterministic—Memory depth:1. [8]

116. Retaliate 3: 0.05—Deterministic—Memory depth:1. [8]

117. Retaliate: 0.1—Deterministic—Memory depth:1. [8]

118. Revised Downing: True—Deterministic—Memory depth:1. [2]

119. Ripoff—Deterministic—Memory depth: 2—Number of states: 3. [54]

120. Risky QLearner—Stochastic—Memory depth:1. [8]

121. SelfSteem—Stochastic—Memory depth:1. [55]

122. ShortMem—Deterministic—Memory depth: 10. [55]

123. Shubik—Deterministic—Memory depth:1. [2]

124. Slow Tit For Two Tats—Deterministic—Memory depth: 2. [8]

125. Slow Tit For Two Tats 2—Deterministic—Memory depth: 2. [27]

126. Sneaky Tit For Tat—Deterministic—Memory depth:1. [8]

127. Soft Go By Majority—Deterministic—Memory depth:1. [39, 40]

128. Soft Go By Majority: 10—Deterministic—Memory depth: 10. [8]

129. Soft Go By Majority: 20—Deterministic—Memory depth: 20. [8]

130. Soft Go By Majority: 40—Deterministic—Memory depth: 40. [8]

131. Soft Go By Majority: 5—Deterministic—Memory depth: 5. [8]

132. Soft Grudger—Deterministic—Memory depth: 6. [36]

133. Soft Joss: 0.9—Stochastic—Memory depth: 1. [27]

134. SolutionB1—Deterministic—Memory depth: 3—Number of states: 3. [56]

135. SolutionB5—Deterministic—Memory depth: 5—Number of states: 6. [56]

136. Spiteful Tit For Tat—Deterministic—Memory depth:1. [27]

137. Stochastic Cooperator—Stochastic—Memory depth: 1. [18]
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138. Stochastic WSLS: 0.05—Stochastic—Memory depth: 1. [8]

139. Suspicious Tit For Tat—Deterministic—Memory depth: 1. [41, 48]

140. Tester—Deterministic—Memory depth:1. [45]

141. ThueMorse—Deterministic—Memory depth:1. [8]

142. ThueMorseInverse—Deterministic—Memory depth:1. [8]

143. Thumper—Deterministic—Memory depth: 2—Number of states: 2. [54]

144. Tit For 2 Tats(Tf2T)—Deterministic—Memory depth: 2. [39]

145. Tit For Tat(TfT)—Deterministic—Memory depth: 1. [2]

146. Tricky Cooperator—Deterministic—Memory depth: 10. [8]

147. Tricky Defector—Deterministic—Memory depth:1. [8]

148. Tullock: 11—Stochastic—Memory depth: 11. [2]

149. Two Tits For Tat(2TfT)—Deterministic—Memory depth: 2. [39]

150. VeryBad—Deterministic—Memory depth:1. [55]

151. Willing—Stochastic—Memory depth: 1. [44]

152. Win-Shift Lose-Stay: D(WShLSt)—Deterministic—Memory depth: 1. [36]

153. Win-Stay Lose-Shift: C(WSLS)—Deterministic—Memory depth: 1. [47, 50, 57]

154. Winner12—Deterministic—Memory depth: 2. [58]

155. Winner21—Deterministic—Memory depth: 2. [58]

156. Worse and Worse—Stochastic—Memory depth:1. [27]

157. Worse and Worse 2—Stochastic—Memory depth:1. [27]

158. Worse and Worse 3—Stochastic—Memory depth:1. [27]

159. ZD-Extort-2 v2: 0.125, 0.5, 1—Stochastic—Memory depth: 1. [59]

160. ZD-Extort-2: 0.1111111111111111, 0.5—Stochastic—Memory depth: 1. [50]

161. ZD-Extort-4: 0.23529411764705882, 0.25, 1—Stochastic—Memory depth: 1. [8]

162. ZD-GEN-2: 0.125, 0.5, 3—Stochastic—Memory depth: 1. [59]

163. ZD-GTFT-2: 0.25, 0.5—Stochastic—Memory depth: 1. [50]

164. ZD-SET-2: 0.25, 0.0, 2—Stochastic—Memory depth: 1. [59]

Supporting information

S1 Fig. The fixation probabilities x1 for N = 3.
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S2 Fig. The fixation probabilities x1 for N = 4.
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S3 Fig. The fixation probabilities x1 for N = 5.
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S4 Fig. The fixation probabilities x1 for N = 6.

(EPS)

S5 Fig. The fixation probabilities x1 for N = 7.
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S14 Fig. The fixation probabilities xN−1 for N = 4.
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S15 Fig. The fixation probabilities xN−1 for N = 5.
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