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Alzheimer’s disease (AD) is a progressive and neurodegenerative disorder of the cortex and hippocampus, which eventually
leads to cognitive impairment. Although the etiology of AD remains unclear, the presence of β-amyloid (Aβ) peptides in
these learning and memory regions is a hallmark of AD. Therefore, the inhibition of Aβ peptide aggregation has been
considered the primary therapeutic strategy for AD treatment. Many studies have shown that resveratrol has antioxidant,
anti-inflammatory, and neuroprotective properties and can decrease the toxicity and aggregation of Aβ peptides in the
hippocampus of AD patients, promote neurogenesis, and prevent hippocampal damage. In addition, the antioxidant
activity of resveratrol plays an important role in neuronal differentiation through the activation of silent information
regulator-1 (SIRT1). SIRT1 plays a vital role in the growth and differentiation of neurons and prevents the apoptotic death
of these neurons by deacetylating and repressing p53 activity; however, the exact mechanisms remain unclear. Resveratrol
also has anti-inflammatory effects as it suppresses M1 microglia activation, which is involved in the initiation of
neurodegeneration, and promotes Th2 responses by increasing anti-inflammatory cytokines and SIRT1 expression. This
review will focus on the antioxidant and anti-inflammatory neuroprotective effects of resveratrol, specifically on its role in
SIRT1 and the association with AD pathophysiology.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative pathology
that causes impaired cognitive functioning and memory
[1, 2]. Despite the disease being identified over 100 years
ago [3], efforts are currently being expended to discover
new chemical products (i.e., natural antioxidants) that act
at determined points to block the progression of the disease
[4, 5]. Resveratrol has been considered as a protector

compound for the treatment of neurodegenerative diseases
(i.e., AD, Parkinson disease, and amyotrophic lateral sclero-
sis) that have high levels of oxidative damage due to its anti-
oxidant and anti-inflammatory properties [6]. Moreover, this
compound can also modulate different molecular pathways
dependent on silent information regulator-1 (SIRT1) in neu-
rodegenerative diseases [6]. However, recent reviews also
report other multipathways that are involved in the neuro-
protective mechanisms of resveratrol such as inhibition of
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nuclear factor-κappa B (NF-κB) expression and alteration in
the signaling pathways of mitogen-activated protein kinases
(P38-MAPK), extracellular signal-regulated kinase 1/2
(ERK1/2) and phosphoinositide 3-kinase (PI3K)/Akt, activa-
tion of autophagy, among others [7–10].

Interest in resveratrol has grown recently due to its
beneficial effects in several neurological and autoimmune
disorders [11, 12]. Resveratrol is a phytoalexin that mainly
occurs in grapevine species (Vitis sp.) and other fruits, and
attention has been drawn to it due to its versatile biological
properties, including its antioxidant, anti-inflammatory,
and neuroprotective activities [13–15]. In this sense, resver-
atrol could indirectly activate SIRT1 expression [16] and
lead to neuroprotection in AD cases [17]. SIRT1 regulates
the activity of several substrates, including p53 and peroxi-
some proliferator-activated receptor-gamma coactivator 1α
(PGC-1α) [18], which decrease the accumulation of β-amy-
loid (Aβ) and improve mitochondrial dysfunction [19].

Some studies have shown that resveratrol improves the
impaired learning and memory in neurodegenerative dis-
ease and protects the memory decline in AD through its
antioxidant activity [20]. Resveratrol is also effective at pre-
venting blood-brain barrier (BBB) impairment and inhibit-
ing Aβ1–42 from crossing the BBB and accumulating in the
hippocampus [21, 22]. The hippocampus is a critical brain
component for cognitive and memory functions, is a region
that displays ongoing neurogenesis in adulthood, and is a
very sensitive area in AD [23–25]. However, a significant
reduction in hippocampal neurodegeneration was observed
after intracerebroventricular injection of resveratrol in an
animal model, which was associated with a decrease in
SIRT1 acetylation [26, 27].

Karuppagounder et al. [28] showed that mice treated
with resveratrol for 45 days had reduced Aβ toxicity. This
suggests that the onset of neurodegeneration may be delayed
by dietary chemopreventive agents (i.e., resveratrol) that pro-
tect against Aβ formation and oxidative stress [28]. Wang
et al. [29] recently showed that resveratrol protected neurons
against Aβ1–42-induced disruption of spatial learning,
memory, and synaptic plasticity and rescued the reduction
of SIRT1 expression in hippocampal rats. Thus, resveratrol
is effective at reducing central nervous system (CNS) damage
and decreasing the ischemia and toxicity induced by Aβ
peptide, showing its potential therapeutic use in neurodegen-
erative diseases [30].

One of the major neuroprotective mechanisms of resver-
atrol is the activation of SIRT1 that is expressed in the adult
mammalian brain, predominantly in neurons [31]. Activa-
tion of SIRT1 by resveratrol prevents Aβ-induced microglial
death and contributes to improved cognitive function [32].
Although the major mechanisms of resveratrol are associated
with the overexpression of SIRT1, its subsequent neuropro-
tective effect remains unknown. However, the overexpression
of SIRT1 plays an important role in neuronal protection as it
regulates reactive oxygen species (ROS), nitric oxide (NO),
proinflammatory cytokine production, and Aβ expression
in the brains of AD patients [33–36]. This review discusses
the neuroprotective effects of resveratrol that are dependent
on its action on SIRT1 and its implications in AD.

2. Resveratrol Plant Biosynthesis
and Pharmacokinetics

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a polyphenol
plant secondary metabolite that has a phytoalexin role in
high plant species. This metabolite is commonly found in
grapevines (Vitis vinifera), grape juice, and wine [37, 38].
Others food sources, including peanuts, pomegranate, spin-
ach, and bananas, also contain high concentrations of resver-
atrol [39–43]. Table 1 shows the concentration of resveratrol
in some food sources.

Resveratrol is synthesized in high plant species using the
phenylpropanoid pathway under biotic and abiotic stress
conditions (i.e., ultraviolet (UV) light radiation and tissue
disruption) and in response to fungal infections (i.e., V. vinif-
era leaves infected by Plasmopara viticola) [44–46]. The bio-
synthesis of resveratrol begins with the generation of 4-
coumaroyl-CoA units in the phenylpropanoid pathway
[47]. At this point, stilbene synthase (STS) and chalcone syn-
thase (CHS) enzymes promote the chain extension of 4-
coumaroyl-CoA via the addition of three malonyl-CoA mol-
ecules to generate a polyketide compound (Figure 1). Despite
both enzymes using the same substrate, STS possesses sub-
stantially more amino acids than CHS (the key enzyme in fla-
vonoid biosynthesis), which explains the difference in the
end products formed [48, 49].

The polyketide peptide suffers a fold that promotes the
generation of aromatic rings in a Claisen-like reaction cata-
lyzed by STS, which produces an unstable intermediate
metabolite called stilbene-2-carboxylic acid [50, 51]. The
final steps involve the stepwise reactions that promote the
decarboxylation, dehydration, and enolization of stilbene-2-
carboxylic acid to yield the resveratrol molecule [52]. Resver-
atrol can undergo other biochemical reactions to produce
new stilbenes, including ε-viniferin, t-piceid, t-piceatannol,
and t-pterostilbene [53].

Resveratrol is well absorbed but is quickly excreted,
mainly by the urinary system [54]. Calliari et al. [55]
reported that the pharmacokinetics of resveratrol have
been studied in several organs and that its therapeutic
effect is mainly dose dependent. After oral consumption,
resveratrol is primarily metabolized by phase II enzymes,
especially glucuronides and sulfatases, and absorbed in
the small gut, predominantly in its glucuronidated form
[12, 56]. In addition to the glucuronide metabolite, sul-
fated products of resveratrol are also commonly found in
biological samples [57]; however, only trace amounts of
free resveratrol can be detected in plasma [58]. In this
regard, Sergides et al. [59] demonstrated higher plasma
concentrations of glucuronidated (4083.9± 1704.4 ng/ml)
and sulfated (1516.0± 639.0 ng/ml) resveratrol than its
unmetabolized form (71.2± 42.4 ng/ml) following the con-
sumption of a single resveratrol (500mg) tablet in healthy
volunteers. Resveratrol is mainly attained by dietary intake;
however, there are some concerns regarding its low con-
centration in food sources and its poor oral bioavailability.
This has highlighted the need for strategies that allow
biologically active concentrations of resveratrol to reach
its target tissues, including the brain [60]. In this regard,

2 Oxidative Medicine and Cellular Longevity



Oliveira et al. [12] reported that the major problem of res-
veratrol treatment was its low bioavailability, with some
human studies reporting that even high-dose resveratrol
treatment (500mg/day) produced low plasma concentra-
tions (10–71.2 ng/ml) of this antioxidant.

The description of resveratrol concentrations in the brain
is a challenge that remains to be overcome. Frozza et al. [61]
reported that intravenous administration of resveratrol
reached satisfactory target brain regions, while oral resvera-
trol treatment was not well absorbed and resulted in reduced

Table 1: Resveratrol concentration in food sources.

Food source Family Resveratrol content Reference

Banana peel (Musa sp.) Musaceae 38.8± 0.1mg/100 g [41]

Caper bush (Capparis spinosa) Capparidaceae 235.31mg/100 g [42]

Whole grapes (V. vinifera) Vitaceae 8.4± 0.2mg/100 g [41]

White wine (V. vinifera cv. Chardonnay) Vitaceae 0.04± 0.01mg/l [43]

Red wine (V. vinifera cv. Shiraz) Vitaceae 0.53± 0.06mg/l [43]

Mulberry wine (Morus rubra) Moraceae 145.31± 8.89mg/l [43]

Whole Mentha (Mentha arvensis) Lamiaceae 9.4± 0.0mg/100 g [41]

Boiled peanuts (Arachis hypogaea) Fabaceae 5.1± 2.8 μg/g [40]

Peanut butter (A. hypogaea) Fabaceae 0.3± 0.1 μg/g [40]

Pomegranate pulp (Punica granatum) Punicaceae 19.9± 0.2mg/100 g [41]

Whole spinach (Spinacia oleracea) Amaranthaceae 19.3± 0.1mg/100 g [41]
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Figure 1: Resveratrol biosynthesis route in high plants.
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stability, increased photosensitivity, and accelerated metabo-
lism, thus making it difficult to reach the brain. Turner et al.
[62] showed that resveratrol and its metabolites crossed the
human BBB, and these authors detected resveratrol in both
the plasma and cerebrospinal fluid, thus showing its effects
on the CNS. Preclinical data suggest that the main metabolite
found in the rat brain after resveratrol consumption is
resveratrol-3-glucuronic acid, which is also the main metab-
olite found in plasma [63]. To try to overcome the low oral
bioavailability, several researchers focused on the microen-
capsulation technique or on the creation of prodrugs that,
after metabolization, will give rise to resveratrol molecules
[12, 64, 65]. Studies with new conjugated particles that
improve the pharmacokinetics of resveratrol in the brain
are of great importance, as the biologically active concentra-
tions observed in in vitro experiments are much higher than
those achieved after oral consumption are. Frozza et al. [61,
66] demonstrated that resveratrol nanoparticles reached the
brain at higher concentrations than free resveratrol, resulting
in increased bioavailability and possible neuroprotective
effects. Resveratrol is considered a low-toxic substance, as
humans have used several resveratrol-containing foods for
a long time without related toxic effects. Data also confirm
the safety of resveratrol on the basis of preclinical tests and
clinical trials [67, 68].

Some studies have reported that resveratrol is an activa-
tor of SIRT1 [27, 69], although further evidence shows that
resveratrol is not a direct activator of SIRT1 [70], and that
its role may be related to the activation of substrates of SIRT1
[71]. The overexpression of SIRT1 results in neuroprotection
in AD [17]. SIRT1 inhibits NF-κB signaling by decreasing
Aβ-induced toxicity in primary mouse neuronal cultures
[32]. SIRT1 may be capable of determining Aβ production
by modulating β-secretase 1 expression through NF-κB
signaling [32].

3. Role of SIRT1 in the Pathophysiology of AD

Oxidative stress and the overproduction of ROS are associ-
ated with the pathophysiology of neurodegenerative disor-
ders, including AD, and lead to neural membrane injury
and memory impairment [72–75]. Brain tissue is more sus-
ceptible to oxidative stress due to its high oxygen consump-
tion rate, low regenerative capability, high polyunsaturated
fatty acid content, and low concentration of antioxidants
[76, 77]. ROS are major neurotoxic factors released by acti-
vated microglia and include superoxide radicals (O2

⋅),
hydroxyl radicals (⋅OH), and hydrogen peroxide (H2O2).
These molecules are highly reactive, and their excessive pro-
duction can induce lipid peroxidation, (deoxyribonucleic
acid) DNA fragmentation, and protein oxidation and result
in further cell dysfunction and cell death [78]. Therefore,
mitochondria that are damaged during oxidative stress can
produce ROS that damage proteins, nucleic acids, and poly-
unsaturated fatty acid membranes and cause lipid peroxida-
tion, a loss of membrane integrity, and increased calcium
(Ca2+) permeability. ROS also increase the production of
Aβ peptides, which induce oxidative stress both in vitro
and in vivo [79]. Thus, a vicious cycle between ROS and Aβ

accumulation may accelerate the progression of AD [80].
Studies in vitro and in vivo have shown that ROS increases
Aβ production and induces oxidative stress, thus leading to
neuronal apoptosis and accelerating the progression of AD
[80–82].

AD is a progressive neurodegenerative disorder of the
cortex and hippocampus that eventually leads to cognitive
impairment. Although the etiology of AD remains unclear,
multiple cellular changes have been implicated, including
the production and accumulation of Aβ peptides, tau phos-
phorylation, oxidative stress, mitochondrial dysfunction,
synaptic damage, and biometal dyshomeostasis. The neu-
roinflammatory response via microglial activation and ace-
tylcholine deficits are also considered to play significant
roles in the pathophysiology of AD [83, 84]. The main path-
ogenic event in AD is the cerebral aggregation of Aβ peptides
[85]. Aβ is the major constituent of plaques and is generated
from amyloid precursor protein (APP) by the action of β
and γ-secretases [86]. The accumulation of Aβ could initi-
ate a series of downstream neurotoxic events that result in
neuronal dysfunction in AD patients [87, 88]. However,
oxidative stress is also an important event in the patho-
genesis of AD [89], as the generation and accumulation
of ROS and reactive nitrogen species can accelerate fibril-
lization, increase the toxicity of Aβ, and promote neuronal
death and neurodegeneration [90–93].

Decreased sirtuin levels, mainly SIRT1 expression levels,
were recently correlated with elevated Aβ production and
deposition in AD patients [94]. SIRT1 may regulate Aβ
metabolism through the modulation of APP processing,
and loss of SIRT1 is closely associated with exacerbated Aβ
production [95]. However, SIRT1 overexpression decreases
Aβ production [95, 96], which may represent an interesting
therapeutic approach to block the neurodegeneration and
cognitive impairments caused by the disease. SIRT1 is a
member of a sirtuin family that utilizes nicotinamide
(NAD+) as a substrate to catalyze the deacetylation of various
substrates [97]. SIRT1 plays an essential role in regulating
cellular homeostasis by influencing neuron survival, insulin
sensitivity, glucose metabolism, and mitochondrial biogene-
sis [98, 99]. In the adult brain, SIRT1 was shown to be essen-
tial for synaptic plasticity, cognitive functions [100], and the
modulation of learning and memory function [101].

During normal aging, SIRT1 is responsible for the main-
tenance of neural systems and behavior, including the modu-
lation of synaptic plasticity and memory processes [102]. The
absence of SIRT1 expression in hippocampal neurons is cor-
related with impaired cognitive abilities, including immediate
memory, classical conditioning, and spatial learning [100].
SIRT1 can also increase PGC-1α activity, which leads to the
inhibition of Aβ production and improved mitochondrial
dysfunction [19]. SIRT1 can also deacetylate a large number
of other substrates, including p53, NF-κB, and Forkhead
box O (FOXO), and prevent neuronal apoptosis [103, 104].
Therefore, the pharmacological activation of SIRT1 may
represent a promising approach to preventing Aβ deposi-
tion and neurodegeneration in AD [105]. Thus inhibiting
ROS production may be an important tool for protecting
neuronal cells from oxidative damage and a therapeutic
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strategy in the treatment of neurological disorders [106].
Figure 2 summarizes the pathways by which resveratrol
acts on SIRT1 in the pathology of Alzheimer’s disease.

3.1. Antioxidant Mechanisms of Resveratrol in AD: Role of
SIRT1. Oxidative stress induces neuronal damage, modulates
intracellular signaling, and leads to neuronal death by apo-
ptosis or necrosis. Therefore, antioxidant products (i.e., res-
veratrol) are used to protect against neuronal damage in
neurodegenerative disorders (i.e., AD) [80]. The antioxidant
properties of resveratrol were reported in several studies,
which demonstrated that chronic resveratrol treatment
reduced the production of malondialdehyde and nitrite and
restored glutathione (GSH) levels [107, 108]. Additional anti-
oxidant mechanisms of resveratrol were also described and
include SIRT1 activation, Aβ aggregation and toxicity inhibi-
tion, metal chelation, and ROS scavenging [106, 108, 109].
These results demonstrate that this compound is an effective
therapeutic strategy for AD therapy. Therefore, resveratrol
not only plays a role in ROS protection but it can also mod-
ulate important glial functions, including glutamate uptake
activity, GSH, improved functional recovery, and decreased
DNA fragmentation and apoptosis [110–112].

3.1.1. In Vitro Studies. Resveratrol can dysregulate the metal
ion balance (i.e., copper, zinc, and iron) and play a key role
in neurodegeneration, which is related to cellular function

changes and neuronal survival dysfunction [27]. These metal
ions are able to bind Aβ and neurofibrillary tangles and pro-
mote their aggregation [106, 109], enhance the production of
ROS, and contribute to AD pathogenesis. Hou et al. [113]
demonstrated the interaction between resveratrol and SIRT1
using molecular dynamics simulation. The authors proposed
that resveratrol was responsible for enhancing the binding
affinity between SIRT1 and the substrate, thus functioning
as a binding stabilizer. Nevertheless, Dasgupta andMilbrandt
show that resveratrol is a potent activator of AMP-activated
protein kinase (AMPK) function, and resveratrol-mediated
AMPK activation was independent of SIRT1 [114]. In addi-
tion, in cell lines, resveratrol presented a decrease in the acet-
ylation of PGC-1α, possibly due to the activation of AMPK
[115]. Thus, showing a dose-dependent effect, resveratrol
was able to activate AMPK independently of SIRT1 [116].
However, SIRT1 plays a key role in protecting neurons from
the oxidative effects of ROS, NO, and Aβ peptides in the
brains of AD subjects [117].

3.1.2. Animal Studies. One neuroprotective property attrib-
uted to resveratrol is the suppression of ROS formation
through the inhibition of prooxidative genes (i.e., nicotin-
amide adenine dinucleotide phosphate oxidase) [118].
Huang et al. [119] showed that the neuroprotective activity
of resveratrol included the suppression of inducible nitric
oxide synthase (iNOS) production, which is involved in
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Aβ-induced lipid peroxidation and heme oxygenase-1 down-
regulation, thereby protecting the rats from Aβ-induced
neurotoxicity [120]. Moreover, resveratrol induced the
expression of various antioxidant enzymes, such as superox-
ide dismutase (SOD), catalase, thioredoxin, and glutathione
peroxidase (GPx) [121, 122]. However, Lee et al. [123]
showed that resveratrol possesses chelator-metal ion proper-
ties to attenuate the metal imbalance and ROS production
[124]. Furthermore, the oral administered of resveratrol in
mice lowered the Aβ accumulation in the cortex due to the
activation of AMPK signaling by enhancing cytosolic Ca2+

levels in neuronal cultures [120, 125].
Other studies also showed the neuroprotective action

of resveratrol in animal models; for example, Simão et al.
[126] evaluated the response to a 7-day resveratrol treat-
ment (30mg/kg) on postinduced ischemia in rodent
models. Cerebral immunohistochemistry showed reduced
activation of astrocytes and microglia in the hippocampus
and suppression of the inflammatory response mediated
by NF-κB, cyclooxygenase 2 (COX-2), and nitric oxide
synthetase (NOS) in hippocampal cells, thus suggesting
the anti-inflammatory potential of resveratrol in brain
damage. Moreover, Wang et al. [127] suggested that res-
veratrol (200mg/kg/day for 8 weeks) could act as an
AD-adjuvant therapy after human umbilical cord stem cell
transplantation. This occurred due to the increased expres-
sion of brain-derived neurotrophic factor precursor
(BDNF), neuronal growth factor (NGF), and neurotrophin
3 (NT-3), which are associated with neurogenesis, survival,
learning, and memory. Thus, resveratrol positively stimu-
lated these cell-protected factors [128]. The overexpression
of these neurotrophic factors is related to the ability of
resveratrol to increase the activity of SIRT1 [13]. Similarly,
resveratrol also induced an increase of SIRT1 in a mice
model [129]. Another study also reported the preventive
action of resveratrol in decrease the formation of insoluble
Aβ plaques in the hippocampus of rats [21], as the etiol-
ogy of the disease is associated with an imbalance in Aβ
homeostasis. Resveratrol effectively reduced the cleavage
activation of APP and promoted peptide clearance [10];
therefore, the authors suggested that resveratrol was effi-
cient at reducing the formation of protein aggregates.

3.1.3. Human Studies. There are currently studies evaluating
the effectiveness of resveratrol in AD; for example, a random-
ized double-blind placebo-controlled study evaluated the
effects of resveratrol in 64 AD patients with a mild form of
the disease. A resveratrol dose of 500–1000mg was adminis-
tered orally to these patients. However, the results demon-
strate that resveratrol and its major metabolites able to
cross the BBB and cause weight loss and reactions such as
nausea and diarrhea. In addition, brain volume loss was
greater in the group receiving resveratrol. Conversely, Ima-
mura et al. [130] demonstrated the antioxidant effect of res-
veratrol on arterial stiffness in patients with type 2 diabetes
mellitus (T2DM). In this randomized double-blind placebo-
controlled clinical trial, 50 patients were selected: 25 received
resveratrol (100mg/day) and 25 received a placebo for 12
weeks. Supplementation with resveratrol improved several

parameters in the T2DM patients and decreased oxidative
stress, which was evaluated through metabolites of reactive
oxygen. Mansur et al. [131] also conducted a study to evalu-
ate the effects of resveratrol in humans. Slightly overweight
elderly individuals were randomly divided into two groups:
group one received 250mg of resveratrol orally twice daily,
while group two received a caloric restriction diet (1000 cal/
day). SIRT1 concentrations were determined in both groups
at the end of the 30-day treatment period. The serum concen-
tration of SIRT1 was increased in both groups; however, this
finding was not correlated with a better profile of metabolic
markers for atherosclerotic processes.

3.2. SIRT1 and Anti-Inflammatory Mechanisms of Resveratrol.
Neuroinflammation is an important contributor to the path-
ogenesis of AD [132]. Various reports show that inflammatory
responses occur in the CNS, including the activation of microg-
lia, astrocytes, lymphocytes, and macrophages that trigger
numerous proinflammatory mediators and neurotransmitters
[133]. However, the hallmark of brain neuroinflammation is
microglia activation, which releases highly proinflammatory
cytokines, ROS, and NO and leads to protein oxidation, lipid
peroxidation, DNA fragmentation, neuronal inflammation,
and cell death [78, 134]. Microglial cells are the resident
macrophage-like population within the CNS and are a prime
component of the brain immune system. In physiological
conditions, microglia actively survey the microenvironment
and ensure normal CNS activity by secreting neurotrophic
factors (i.e., NGF). Although microglial activation plays an
important role in the phagocytosis of dead cells in the
CNS, overactivated microglia cause inflammatory responses
that lead to neuronal and axonal degeneration and disrup-
tion of the immature BBB [135].

Inflammatory mediators such as interleukin-1β (IL-1β),
interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and
NO are produced by activated microglia and have recently
been linked to the pathogenesis of neurological disorders
[136]. Therefore, pharmacological interference with the over-
activation of microglia may have a therapeutic benefit in the
treatment of inflammation-mediated neurological disorders
[137]. The activities of resveratrol against neuroinflamma-
tion appear to target activated microglia and result in the
reduction of proinflammatory factors (i.e., TNF-α, IL-β,
prostaglandin E2, cyclooxygenases, and iNOS through the
modulation of signal transduction pathways) [138].

Gocmez et al. [139] showed that aging increased the
levels of TNF-α and led to chronic neuroinflammation in
the hippocampus and impaired spatial learning and memory.
However, chronic administration of resveratrol reversed the
cognitive deficits and inhibited the production of inflamma-
tory cytokines. In addition, resveratrol also inhibited the acti-
vation of signal transducer and activator of transcription
(STAT1 and STAT3) and prevented the proinflammatory
effect of Aβ and Aβ-triggered microglial activation [140].
However, the role of resveratrol in microglia activation
and the molecular mechanisms involved are not fully
elucidated. The major pathway seems to involve SIRT1
activation, which promotes Th2 responses by increasing
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anti-inflammatory cytokine expression and upregulating
PGC-1α (Figure 3) [141, 142].

3.2.1. In Vitro Studies. Resveratrol has numerous functions in
neuroinflammation, as it induces mitophagy [143, 144].
Wang et al. [80] used a differentiated lineage of cell lympho-
mas from rat pheochromocytoma as a cellular model of AD
treated with Aβ peptide Aβ1–42 (Aβ1–42). Resveratrol
decreased the mitophagy-mediated mitochondrial damage
and attenuated the oxidative stress caused by Aβ1–42
[141]. Neuroinflammation may also be related to the degra-
dation of the BBB [145]. The BBB is constituted of struc-
tural and functional elements such as brain endothelial
cells [146, 147]. Thus, Annabi et al. [145] demonstrated
that human brain microvascular endothelial cells treated
with a carcinogen can signal through NF-κB, allowing
release of inflammatory markers such as matrix metallo-
proteinase 9 (MMP-9) and COX-2. However, resveratrol
decreased secretion of MMP-9 and expression of COX-2
[145]. It also activated the expression of SIRT1, which
regulated inflammation, inhibited NF-κB signaling, and
prevented Aβ-induced degeneration [148].

3.2.2. Animal Studies. Several studies suggest that pharmaco-
logical activation of SIRT1 may represent a promising
approach to prevent amyloid deposition and neurodegenera-
tion in AD [99, 149]. The relationship between SIRT1 and
AD is paramount, as a study of the SIRT1 serum concentra-
tion in healthy subjects and AD patients showed a reduced
serum SIRT1 concentration that correlated with the increas-
ing age of an individual. The decline was much more
pronounced in patients with AD [93].

SIRT1 also exhibited therapeutic activity in a transgenic
mouse model of AD [150]. Wang et al. [127] assessed an
alternative therapy for AD that used mesenchymal stem
cells derived from the umbilical cord combined with resver-
atrol in a mouse model of AD. Resveratrol also favored the
formation of neurons and regulated SIRT1 expression in

the hippocampus of AD rats [127]. Resveratrol has anti-
inflammatory functions and can inhibit Aβ-induced NF-
κB signaling in microglia and astrocytes [151]. Another
study showed that mice overexpressing SIRT1 exhibited
reduced brain inflammation (due to its action in tau phos-
phorylation) and reduced cognitive defects that were spe-
cific to the APP transgenic mouse [149, 150].

3.2.3. Human Studies. Some neurodegenerative diseases, such
as AD, are associated with oxidative stress and neuroinflam-
mation, and proteins that are closely related to this neurolog-
ical disorder (i.e., AMPK, SIRT1, and PGC-1α) can be
modulated by resveratrol [152]; however, there are few clini-
cal studies on resveratrol in AD patients. Moussa et al. [153]
reported that patients treated with resveratrol (1 g/day) for 52
weeks demonstrated reduced MMP-9 levels (an inflamma-
tory marker related to AD) compared to a placebo group.
In addition, patients treated with resveratrol had less cere-
brospinal fluid decline, which resulted in less Aβ accumula-
tion in the brain. Resveratrol probably strengthened the
CNS, hampered the penetration of MMP-9, and reduced
the activity of this inflammatory agent [154].

The anti-inflammatory effects of resveratrol are medi-
ated, at least in part, by suppressing the activation of
NF-κB, extracellular signal-regulated kinase-1 and kinase-
2, and mitogen-activated protein kinase (MAPK) signaling
pathways, which are all important upstream modulators of
the production of proinflammatory mediators [137].
Resveratrol-mediated overexpression of SIRT1 markedly
reduced NF-κB signaling and Aβ-mediated microglial acti-
vation and had strong neuroprotective effects [68, 155].
The polymerization of Aβ peptides was markedly inhibited
by resveratrol, which stimulated the proteasomal degrada-
tion of Aβ peptides [30, 75].

Studies strongly suggest that resveratrol-induced SIRT1
inhibits NF-κB signaling in microglia and astrocytes and
protects AD neurons against Aβ-induced toxicity. This
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Figure 3: Anti-inflammatory effects of resveratrol and the role of SIRT1 in AD.
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NF-κB signaling controls the expression of iNOS, which
mediates apoptosis and neurodegeneration [32]. Resvera-
trol also effectively suppresses the apoptotic activities of
both p53 and FOXO via SIRT1 overexpression and confers
neuronal protection in AD [152, 156].

Therefore, the potential anti-inflammatory mechanisms
for resveratrol-mediated neuroprotection involve (i) reduc-
tion of proinflammatory cytokine expression, (ii) suppres-
sion of MAPK signal transduction pathways, and (iii)
activation of the SIRT1 pathway, which in turn suppresses
the activation of the NF-κB signaling pathway and protects
neurons against microglia-dependent Aβ toxicity [134].

In this context, the neuroprotective effects of resveratrol
can involve the scavenging of ROS, decreased NO levels,
improved antioxidant capacity, NF-κB inhibition, inhibition
of inflammatory mediators, promotion of neuronal survival
via SIRT1 activation [157, 158], the prevention of DNA
lesions, and the prevention of lipid peroxidation in cell mem-
branes [85]. Animal models also indicate that resveratrol
improves the spatial memory by decreasing the accumulation
of Aβ peptides and lipid peroxidation in the hippocampus,
thus protecting against neuronal apoptosis [159].

Therefore, it is also important to emphasize that these
neuroprotective effects can also be mediated by other action
mechanisms of resveratrol. Another neuroprotective mecha-
nisms of resveratrol include the following: (i) inhibits the
tauopathy by interfering with the MID1-PP2A (midline 1-
protein phosphatase 2A) complex or by altering or partially
inhibiting of the glycogen synthase kinase 3 beta (GSK3β)
and p53 interaction [6, 110]; (ii) improves learning and
long-term memory formation through the microRNA
(microribonucleic acid)-CREB (cAMP response element-
binding protein)-BDNF pathway [20]; (iii) protects against
Aβ-mediated neuronal impairment (inflammation and oxi-
dative stress) by activation of AMP-activated protein kinase-
(AMPK-) dependent signaling and inhibition of NF-κB
expression and iNOS levels [160]; (iv) antioxidative activity
by reduction in levels of ROS enhances the expression of
various antioxidant defensive enzymes (heme oxygenase 1,
catalase, glutathione peroxidase, and superoxide dismutase),
downregulation of prooxidative stress proteins (i.e., plaque-
induced glycogen synthase kinase-3β (GSK-3β), and AMPK
[8, 10]; (v) improves cognitive impairment due to inhibition
of cholinesterase activity [161]; (vi) inhibits the Aβ plaque
synthesis by restoration of normal cellular autophagy via
the TyrRS-PARP1 (auto-poly-ADP-ribosylation of poly
(ADP-ribose) polymerase 1)-SIRT1 signaling pathway and
enhancement of transthyretin (transporter protein) binding
to Aβ oligomers [162]; (vii) inhibits mammalian target of
rapamycin (mTOR) signaling and induces AMPK, thereby
stimulating the clearance of Aβ aggregates [110]; (viii)
prevents the neuronal cell death by attenuating apoptosis
via Akt/p38 MAPK signaling and inhibits caspase-3 and B
cell lymphoma-2 (Bcl-2)/Bcl-2-associated X protein signal-
ing [163, 164]; (ix) increases intracellular calcium levels, pro-
moting the activation of calcium/calmodulin-dependent
protein kinase kinase β-CamKKβ-AMPK pathway, which
alters mitochondrial function and leads to a decrease in
ROS generation [165]; (x) attenuated injury and promoted

proliferation of the neural stem cells, at least in part, by
upregulating the expression of nuclear factor (erythroid-
derived 2)-like 2 (Nrf2), HO-1, and NAD(P)H:quinone oxi-
doreductase 1 (NQO1) [166]; and (xi) inhibits the neuronal
electrical activity by mechanisms associated with large con-
ductance of Ca2+ potassium channels and attenuates Aβ-
induced early hippocampal neuron excitability impairment
[167]. Therefore, resveratrol may be an important tool to
protect neuronal cells from oxidative damage and a promis-
ing strategy in the treatment of AD.

4. Conclusions

Resveratrol is a potential compound for the treatment of
AD due to its antioxidant and anti-inflammatory proper-
ties. The key neuroprotective mechanism of resveratrol in
AD seems to be linked with SIRT1 activation. Although
the mechanisms that link resveratrol to the overexpression
of SIRT1 and neuroprotection are unknown, this expres-
sion may play an important role in neuronal protection
from ROS, NF-κB signaling in activated microglia, prevent
Aβ toxicity, and contribute to improved learning and
memory function. Resveratrol can also effectively suppress
the apoptotic activities of both p53 and FOXO via SIRT1
overexpression and confer neuronal protection in AD.
Although this review focuses on the importance of SIRT1
activation for the neuroprotective role of resveratrol, it is also
important to clarify that these mechanisms are still unclear
and fully elucidated. In addition, resveratrol may act on
CNS by inhibiting neuroinflammatory and prooxidant
mechanisms by multiple action mechanisms that are inde-
pendent of SIRT-1. These mechanisms are quite complex
and involve stimulation or inhibition of multiple signaling
pathways or alteration of potassium channels eading to inhi-
bition of neuronal electrical activity. In summary, the major
mechanisms that may be associated with the neuroprotective
effect of resveratrol, in addition to SIRT1, include stimulation
of regulation by microRNA-CREB-BDNF pathway, inhibi-
tion of mTOR and AMPK-dependent signaling pathways,
inhibition of enzymes (cholinesterase activity), transcription
factor (NF-κB) and apoptotic pathways, and stimulation of
cellular autophagy and expression of Nrf2, HO-1, NQO1,
among others. Therefore, we critically analyze and suggest
that SIRT1 is one of the main mechanisms related to the
beneficial effects of resveratrol; however, this compound
can change multiple pathways simultaneously, and then,
there is a need for crosstalk between signaling and regulatory
functions to provide improvements in the development
and progression of AD. In addition, caution is required
in therapies with natural products, since intrinsic aspects
of the patient, environmental factors, and characteristics
of the compound studied are important for efficacy and
therapeutic success.

Despite the neuroprotective potential of resveratrol
demonstrated in several in vitro studies, the major limita-
tion currently facing is the lack of information from clin-
ical studies that correlates the SIRT1 activation and the
inflammatory and oxidative status reduction associated
with improvement in the development and progression

8 Oxidative Medicine and Cellular Longevity



of AD. Overall, evidence from clinical trials is weak and
largely inconclusive. Most human studies establish a link
between consumption of foods rich in resveratrol and
reducing the incidence or prevalence of AD, as well as
improvement in learning, memory, visual and spatial
orientation, and social behavior. However, these observed
effects may be the result of complex direct and indirect
interactions of the various constituents present in the diet,
not only of resveratrol. In addition, other difficulties in
clinical trials are the following: (i) the studies are mainly
conducted with volunteers, not reflecting the target popu-
lation, (ii) the participants’ age is quite broad between 18
and over 80 years of age, and (iii) sample size is rarely calcu-
lated and the slow progression of AD is not investigated
because it requires longer clinical time in the trials. Another
important issue is the poor bioavailability of resveratrol,
which makes it difficult to link with the optimal concentra-
tions achieved in in vitro experiments. Although preclinical
studies also indicate that resveratrol is able to cross the
blood-brain barrier, low concentrations of this molecule have
been detected in the brain, and only higher concentrations of
resveratrol and its metabolites have been found in the
blood. In addition, it is emphasized that the neuroprotec-
tive effects of resveratrol are mainly short term, varying
according to dose, dosage form, duration of treatment,
pharmacokinetic and pharmacogenetic parameters, food
and drug interactions, among others. Thus, we conclude
that, to date, evidence based on clinical studies is still
insufficient, contradictory, and inconclusive, so we recom-
mend that further clinical trials be conducted to substantiate
the neuroprotective effects of resveratrol and its likely mech-
anisms of action in the body. However, we emphasize that
resveratrol is promising in health promotion, not only for
its antioxidant activities but also for its anti-inflammatory
and neuroprotective properties. Thereby, further studies
assessing other routes of administration or pharmaceutical
formulations (i.e., nanoencapsulation) are required to
improve the tissue-targeting concentration and allow resver-
atrol to exert its biological activities in AD.
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