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Abstract

Wheat production requires at least ~ 2.4% increase per year rate by 2050 globally to meet food
demands. However, heat stress results in serious yield loss of wheat worldwide. Correspondingly, wheat
has evolved genetic basis and molecular mechanisms to protect themselves from heat-induced damage.
Thus, it is very urgent to understand the underlying genetic basis and molecular mechanisms
responsive to elevated temperatures to provide important strategies for heat-tolerant varieties
breeding. In this review, we focused on the impact of heat stress on morphology variation at adult stage
in wheat breeding programs. We also summarize the recent studies of genetic and molecular factors
regulating heat tolerance, including identification of heat stress tolerance related QTLs/genes, and the
regulation pathway in response to heat stress. In addition, we discuss the potential ways to improve
heat tolerance by developing new technologies such as genome editing. This review of wheat responses
to heat stress may shed light on the understanding heat-responsive mechanisms, although the regu-

latory network of heat tolerance is still ambiguous in wheat.
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INTRODUCTION

Wheat (Triticum aestivum L.) is the most widely grown
staple crop in the world, cultivated from 67° N in
Scandinavia and Russia to 45° S in Argentina. It serves
as a rich source of proteins, minerals and other essential
nutrients for approximately 30% of the human popu-
lation (IWGSC 2014). Due to the increasing population,
wheat production requires ~ 2.4% increase per year to
meet global food demands by 2050 (Ray et al. 2013). As
a chimonophilous plant, wheat is sensitive to heat stress
and prefers an optimal daytime growing temperature of
20-24 °C during reproductive development (Farooq
et al. 2011). Model predictions indicate that global
wheat production will fall by 6% per 1 °C increase
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above optimum temperature (Asseng et al. 2015). Since
the Industrial Revolution, the average global surface
temperature has warmed by 0.85 °C (IWGSC 2014), and
this trend will continue and is expected to rise more
than 1.5 °C by the end of twenty-first century (Wheeler
and Braun 2013). According to the simulation analysis,
the average wheat yield decreased by 1-28% during
1981-2010 period caused by rising temperature (As-
seng et al. 2015). Thus, the warming temperature cau-
ses severe wheat yield loss and imposes a substantial
risk to global food security. To cope with climate vari-
ations and to protect themselves from injury and dam-
age, wheat has evolved complex systems to improve
their capability in response to heat stress. Therefore,
understanding the molecular and genetic basis of the
wheat response to heat stress would be helpful to
develop new strategies to minimize deleterious impacts
of heat stress during wheat breeding programs.
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PHENOTYPIC VARIATION IN REPRODUCTIVE STAGE
RESPONSIVE TO HEAT STRESS IN WHEAT

Heat stress imposes diverse negative effects on agro-
nomic traits at different wheat developmental stages,
but pre-flowering and anthesis stages are expected to be
the most sensitive stages to heat stress (Cossani and
Reynolds 2012), since unexpected high temperature
could reduce pollen viability and subsequently decrease
grain number, grain filling and grain quality (Asseng
et al. 2011; Ugarte et al. 2007). It is reported that wheat
pollen viability and seed setting rate will decrease sig-
nificantly when the high temperature (> 30 °C) appears
at the anthesis stage (Browne et al. 2021; Djanaguira-
man et al. 2020). Consistently, a five-day period with
moderate high temperate (~ 24 °C) at beginning of the
heading period can reduce floret fertility by 15%,
whereas extreme high temperature (~ 35 °C) will lead
to complete abortion (Prasad and Djanaguiraman
2014). Not surprisingly, daytime high temperature
(34 °C) at the anthesis stage significantly decreased
wheat seed set from 7 to 19% (Sun et al. 2018). In
addition, nighttime high temperature possesses similar
effects to seed set rate, and 7-day-long high temperature
at night (24 °C) in anthesis period result in decreased
seed set by 15% in wheat (Narayanan et al. 2015).

Besides grain number, seed size and thousand kernel
weight were also adversely affected by heat stress.
Although high temperature can accelerate grain filling
rate to some extent (Asseng et al. 2015; Barlow et al.
2015; Lobell et al. 2012), it shortens grain filling dura-
tion by 0.30-0.60% for every unit increase of high-
temperature days when temperature exceed 30 °C (Liu
et al. 2016). Bella and their colleagues reported that the
duration and the timing of heat stress can explain 51.6%
of phenotypic variation of thousand-kernel weight by
analyzing more than 100 wheat varieties with varied
geographic origins (Balla et al. 2019). Wang et al.
(2018) found that late sowing can cause an increase
of ~ 2 °C during the wheat filling stage and reduced
the grain filling duration by 1-2 weeks, finally resulted
in a substantial yield decrease. Bheemanahalli et al.
(2019) examined daytime heat response of 28 spring
wheat varieties during flowering and grain filling stage,
and found ~ 32 and ~ 16% decrease of thousand
kernel weight of main spike, respectively. Similarly,
nighttime high temperature at post-anthesis stage also
reduced wheat thousand-grain weight by ~ 3% per °C
increase (Garcia et al. 2016). Moreover, other studies
confirmed these observations both in field and in
greenhouse (Liu et al. 2020; Talukder et al. 2014a).

As we know, starch contributes about ~ 80% of the
dry weight of wheat seed, which has a close link with

wheat grain yield. Liu et al. (2011) applied 3-day period
heat stress to wheat at the different filling stage from 1
to 33 days after flowering, and found different effects of
heat stress at different periods of grain filling on grain
starch formation of wheat. The effect of heat treatment
at an early stage (6-8 days after flowering) is greater
than that at late stage (36-38 days after flowering).
Further investigation showed heat stress reduced both
amylose and amylopectin concentration, yet amy-
lopectin accumulation is more sensitive to the stress
than that of amylose (Liu et al. 2011). Consistent with
the observation, the expression patterns of starch
biosynthesis-related genes changed seriously in
response to heat stress, e.g. ADP-glucose pyrophospho-
rylase, one of the key enzymes during starch biosyn-
thesis, was down-regulated after heat stress together
with other related genes, and directly associated with
the decrease of starch accumulation (Hurkman et al.
2003).

GENETIC BASIS IN RESPONSE TO HEAT STRESS
IN WHEAT

Heat stress tolerance is a quantitative trait contributed
by many minor QTLs (Bohnert et al. 2006), and it is
more difficult to measure phenotypic variation in
response to heat stress compared with other agronomic
traits. Therefore, there is very limited available infor-
mation about the genetic basis of heat stress response in
wheat, and none heat-tolerance gene was isolated
according to map-based cloning strategy by now. Yet,
many studies have been trying to map genetic loci
controlling heat stress tolerance in wheat. In 1990’s,
Sun and Quick reported that chromosomes 3A, 3B, 44,
4B and 5A contained heat stress-tolerance related loci in
tetraploid wheat because their corresponding chromo-
some substitution lines showed impaired heat tolerance
by measuring membrane thermal stability (Sun and
Quick 1991). Later, Sun’s group further confirmed the
observation and found chromosomes 3A and 3B asso-
ciated with heat tolerance in wheat cultivar Hope (Xu
et al. 1996). In the twenty-first century, increasing heat
stress-tolerance related QTL loci were reported taking
advantage of developing molecular marker technology.
Yang and the colleagues generated an F, population
including 166 individuals using heat-tolerant cultivar
Ventnor and heat-susceptible cultivar Karl92, and
identified two QTLs controlling grain-filling duration in
response to heat stress on chromosomal 1B and 5A,
which linked to the simple sequence repeat marker
Xgwm11 and Xgwm293, respectively (Yang et al. 2002).
Using a similar heat treatment to Yang's method,
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Mohammadi et al. (2008) detected three heat-tolerance
QTLs on chromosomes 1B, 5B and 7B in terms of heat
susceptibility index (HSI, an indicator of heat response)
by examining 144 recombinant inbred lines (RILs) with
varied heat sensitivities derived from Kauz and
MTRWA116 cultivar. Later, Mason et al. (2010) analyzed
the HSI of yield component of a Halberd (heat tolerant)/
Cutter (heat susceptible) RIL population under con-
trolled heat stress environments (38 °C day/18 °C
night), and detected 27 QTLs associated with improved
heat tolerance, and among which, five (located on
chromosomes 1A, 24, 2B and 3B) were simultaneously
detected in two-year experiments. Moreover, a follow-up
study by the same group mapped 14 QTLs contributing
to heat tolerance in wheat by calculating HSI of kernel
number, total kernel weight, and single kernel weight
coupled with temperature depression of the main spike
and main flag leaf. Of these genomic loci, seven regions
were consistently detected in their two continuous
studies. Each QTL explains approximately 4.5-19.3%
phenotypic variance, and a combination of the superior
haplotype of three QTLs on chromosomes 1B, 5A, and
6D can improve the genetic effect of heat tolerance
compared with a single locus (Mason et al. 2011). Pinto
et al. (2010) also identified 16 QTLs associated with
heat stress adaptive traits using Seri/Babax RIL popu-
lation, and a QTL located on 4A explained 17% pheno-
typic variation wunder heat stress conditions.
Interestingly, six common QTLs were found to con-
tribute to both heat and drought stress tolerance, indi-
cating a crosstalk between two stresses (Pinto et al.
2010). Paliwal et al. (2012) identified two heat toler-
ance QTLs on chromosomes 2B and 7B by analyzing HSI
of 1000-grain weight, grain fill duration and canopy
temperature of 144 wheat RIL lines, which explained
phenotypic variation ranging from 9.78 to 20.34%.
Sangwan et al. (2019) created a RIL population of wheat
(Triticum aestivum L.) with heat-tolerant parent
WH1021 and heat-sensitive parent WH711, significant
genomic regions associated with heat tolerance were
detected on chromosomes 2A, 2D, 4A and 5A, and a
consistent QTL was found on chromosome 2D based on
photosynthetic rate analysis. Zhai et al. (2021) located a
TaHST1 locus in an interval of 0.949 Mbp at the distal
terminus of 4AL chromosome arm, which contained 19
high confidence genes and contributed to both vegeta-
tive and reproductive growth of wheat under heat stress
conditions. Moreover, genome-wide association analysis
(GWAS) was also exploited to detect heat responsive
QTLs using 205 wheat varieties with a late sown
method, and a total of 69 potential QTLs were identified
for ten different traits including grain filling duration
and grain filling rate (Kumar et al. 2020). In addition,
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Wang et al. (2021) performed GWAS analysis of 688
diverse winter wheat accessions on thousand-grain
weight and stress susceptibility index in response to
heat stress using 90 K array, and revealed that terminal
heat stress tolerance is not improved concurrently with
grain weight during wheat breeding programs during
recent decades, the authors proved superior alleles
regulating both grain weight and heat tolerance, which
can be used in marker-assisted selection for wheat in
future. We summarized the reported QTLs-related heat
response in wheat in Table 1 and Table S1.

OMICS-BASED IDENTIFICATION OF HEAT-
RESPONSIVE GENES IN WHEAT

Since map-based cloning of the heat tolerance gene of
wheat is still difficult in a forward genetic way, reverse
genetic methods have been widely used to identify heat-
responsive genes in wheat, e.g. multi-omics. Transcrip-
tome analysis including microarray and RNA-seq is
recognized as a high-throughput way to detect differ-
entially expressed genes in response to heat stress. Qin
and colleagues found that 10.7% probe sets were dif-
ferentially expressed in response to 40 °C treatment at
wheat seedling stage according to microarray analysis,
which were involved in phytohormone biosynthesis,
calcium and sugar signaling and ribosomal proteins
related functional pathways (Qin et al. 2008). Later,
Kumar et al. (2015a) identified 1525 heat-responsive
genes using RNA-seq analysis, and reported that heat
stress disturbed metabolic processes and oxidations-
reductions processes in wheat. Moreover, as a typical
allohexaploid, bread wheat experienced two indepen-
dent hybridization and polyploidization events and
theoretically contains three homeologs at each genomic
loci. Liu et al’s study revealed thousands of differen-
tially expressed genes under heat stress conditions
which exhibited varied time-course expression patterns.
Interestingly, ~ 68.4% of homoeologous triplets
showed diverse responses to heat stress, which might
contribute to enhance thermotolerance in polyploid
wheat (Liu et al. 2015).

Besides the transcriptional responses, post-tran-
scriptional regulation also plays an important role in re-
organizing transcriptome plasticity and proteomic
complexity in response to heat stress. For example,
alternative splicing (AS) refers to a RNA processing that
multiple transcripts generate from a single gene, which
extensively occurs in wheat genome (Yu et al. 2020). Liu
and colleagues found that AS occurrence is increased
by ~ 40% under heat stress conditions compared to
normal conditions, and identified 3576 genes exhibiting
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Table 1 continued

2

LOD

Confident interval (cM) or (bp)

Chromosomes

QTL Marker or flanking marker

Trait

Maulana et al.

0.061

145.29 ctM

7B

IWB34893

QLNHR.nri-7B

Number of leaves per

(2018)
Paliwal et al.

seedling

0.203

8.70

3.6 cM

7D

Xgwm1025 - Xgwm745

QHtHSI

HSI of thousand grain

(2012)
Paliwal et al.

oftgw.bhu—7B

QHLHSI

weight

0.098

3.50

3.1cM

7D

Xgwm1025 - Xgwm745

HSI of thousand grain

(2012)
Maulana et al.

oftgw.bhu—7D
QSLHR.nri-7D

weight
Shoot length

0.126

2692 cM

7D

IWB12476, IWB12582

(2018)

AS changes in response to heat stress. It is worth
noticing that a subset of homeologous triplets (7.5%)
showed altered splicing patterns (Liu et al. 2015, 2018).

In addition, epigenetic modification is also involved
in the post-transcriptional regulation of heat response
in wheat including DNA methylation and non-coding
RNAs. High temperature has a small but significant
effect on gene methylation, and approximately 0.1% of
genomic loci showed differential DNA methylation in
wheat seedlings between 27 and 12 °C conditions. Of
these sites, 63% of regions were also differentially
expressed in response to elevated temperature, indi-
cating differential methylation is closely associated with
expression changes in wheat (Gardiner et al. 2015).
Moreover, non-coding RNAs are also reported to par-
ticipate in regulating heat response in wheat (Kumar
et al. 2015b; Ragupathy et al. 2016; Xin et al. 2010). For
example, TamiR159 was downregulated after 2 h heat
treatment in heat-sensitive wheat genotype, which tar-
gets TaGAMYB1 and TaGAMYB2 and directs their
cleavage. Overexpression of TamiR159 in rice caused
increased heat sensitivity compared with wild type
(Wang et al. 2012). In addition, Xin et al. identified 77
differentially expressed long non-coding RNAs before
and after heat stress, parts of which functions probably
by generating siRNAs, and interestingly, H3Kq acetyla-
tion is likely associated with long non-coding RNA
expression patterns when subjecting to heat stress (Xin
et al. 2011).

Wheat responses to heat stress also occur at the
translational level. Pioneering studies discovered a set
of proteins showing a changed abundance in response
to heat stress using two-dimensional electrophoresis
and MALDI-TOF-MS methods (Laino et al. 2010; Majoul
et al. 2003, 2004; Yang et al. 2011). For example, it is
reported that more low molecular weight proteins were
produced in the flag leaf of heat-susceptible wheat
cultivar than that of heat-tolerant cultivar in response to
heat stress (Nandha et al. 2018). Whereas the abun-
dance of proteins in flag leaf related to chlorophyll
synthesis, carbon fixation, protein turnover and redox
regulation were significantly altered at the grain filling
stage (Lu et al. 2017). Furthermore, iTRAQ investigation
identified 256 proteins showing differential expression
patterns including 126 up-regulated and 130 down-
regulated proteins. These proteins were enriched in
stimulus response, stress response, kinase activity, and
transferase activity categories (Zhang et al. 2017).

© The Author(s) 2021
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FUNCTIONAL GENES IN RESPONSE TO HEAT STRESS
IN WHEAT

Multi-omics studies provide lots of potential candidate
genes responsible for heat tolerance, and their molec-
ular functional and signaling pathway analyses further
help us to understand underlying mechanisms. Heat
shock proteins (HSPs), acting as molecular chaperones
assisting correct protein conformation, were induced
rapidly in transcriptome analysis under heat stress
conditions mostly controlled by heat shock factors.
Because the stress can lead to the accumulation of
misfolded proteins, and HSPs would help these proteins
with correct folding (Vierling 1991). Rampino et al
(2009) reported that the accumulation of HSP tran-
scriptional abundance is proportional to the heat stress
duration in durum wheat varieties, and contribute to
acquired themo-tolerance. Wheat TaHSP23.9 was iden-
tified as a heat-responsive gene located in the endo-
plasmic reticulum based on TMT-labeled quantitative
proteomic analysis, and its overexpression transgenic
Arabidopsis exhibited improved heat tolerance (Wang
et al. 2020). Heat shock factors (HSFs) also play a cen-
tral role regulating HSP expression. There are 56 HSF
transcription factors in wheat according to the previous
prediction, and A2 and A6 type HSF members were
highly induced upon heat stress (Xue et al. 2014).
Consistently, Bi et al. (2020) demonstrated that ectopic
expression of wheat TaHsfA6f in Arabidopsis resulted in
improved tolerance to heat and other abiotic stresses in
terms of seedling survival rate (Bi et al. 2020).
According to the transcriptome analysis, Geng et al.
found that TabZIP60 was up-regulated and subjected to
atypical alternative splicing after heat stress, depending
on IRE1 gene which recognizes a dual stem-loop
structure. Surprisingly, overexpression of heat-induced
splicing form of wheat TabZIP60 (TabZIP60s) improved
heat tolerance in Arabidopsis, but not for the unspliced
form. As a transcription factor, TabZIP60s regulates
expression patterns of 1104 genes in response to heat
stress, including 35 genes, which significantly enriched
in ER stress-related GO categories (Geng et al. 2018). In
addition, Zang et al. found that TaFER (ferritin protein),
TaPEPKRZ2 (phosphoenolpyruvate carboxylase kinase-
related kinase protein), and TaOEP16-2 (plastid outer
envelope protein) identified from heat stress-responsive
transcriptome analysis, contributing to heat tolerance
by overexpression analysis in Arabidopsis, and ROS
accumulation is likely associated with heat tolerance in
TaFER  overexpression plants (Zang et al
2017a, b, 2018). Further investigation revealed that
constitutive expression of TaPEPKR2 in wheat resulted
in enhanced tolerance to both heat and dehydration

© The Author(s) 2021

stresses (Zang et al. 2018). Interestingly, the chromo-
somal location of this gene is close to the genomic
interval of heat tolerance-related QTL.ICD.Heat.09§ was
identified by Hassouni et al. (2019) with a physical
distance of ~ 2.7 Mb (Table S2). Guo et al. (2015) re-
ported that overexpressing wheat NAC transcription
factor TaNAC2L in Arabidopsis led to an increased sur-
vival rate of seedlings under heat stress conditions, and
26S proteasome is involved in the regulation of
TaNAC2L protein abundance at post-transcriptional
level in response to heat stress. Moreover, wheat
12-oxo-phytodienoic acid reductase (TaOPR3), involved
in jasmonate (JA) biosynthesis, is up-regulated when
facing heat stress, and its knockdown lines show
enhanced heat sensitivity, whereas overexpression lines
exhibit improved heat tolerance. In Arabidopsis, HSFA1b
binds heat shock elements of AtOPR3, a homolog of
TaOPR3, results in activation of AtOPR3 and JA accu-
mulation after heat stress, indicating a mechanistic link
between HSFs and JA signaling pathway in response to
heat stress (Tian et al. 2020) (Fig. 1).

CONCLUSIONS

Heat stress is a limiting factor resulting in wheat yield
loss worldwide, and the occurrence of heat events is
projected to increase in the future. It is estimated that
yield loss and post-heading heat stress are significantly
correlated, especially, when heat stress occurred toge-
ther with drought stress, their interaction will highlight
yield variability, explaining approximately a third
(32-39%) of wheat yield loss (Ray et al. 2015). There-
fore, understanding the genetic basis and molecular
mechanisms of heat response will pave a way to
improve heat tolerance during wheat breeding pro-
grams. Yet, this quantitative agronomic trait is con-
trolled by multiple genes with minor effects, and
probably due to huge genomic constitution, no major
gene responsive to heat stress has been isolated using
map-based cloning method in wheat till now, although a
bunch of heat stress-related QTLs were obtained.
However, with the release of wheat reference genome
and the advent of state-of-art technology, map-based
gene cloning is becoming easier nowadays than before
in wheat. Thus, it needs more effort to go into the
project of heat stress gene cloning during subsequent
studies. In addition, functional analysis of heat-respon-
sive wheat gene is often performed in model plants in
previous studies, because wheat transgene technology
is not reliable then. However, the situation is changed
now and overexpression, RNAi and CRISPR-Cas9 tech-
nology have been widely used in wheat recently.
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Fig. 1 Molecular basis in
response to heat stress in
wheat
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Therefore, we propose that map-based gene cloning and
molecular mechanisms of heat response gene will speed
up in wheat in the future. However, we have to notice
that overexpression or pyramiding of heat-responsive
gene often results in side effects on crop yield according
to the previous studies in model plants. How to improve
wheat heat tolerance without yield penalty is an
important issue we have to face. The study of the rice
TT1 gene provides us a new insight into the usage of
heat-tolerant gene that the substitution of one amino

acid might lead to protein conformation variation or
protein stability change when subjected to heat stress,
and subsequently contribute to heat tolerance (Li et al.
2015). Therefore, we should pay more attention to
superior allele identification, which can both promote
heat tolerance and reduce yield and quality penalty in a
wheat breeding program.
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