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Abstract
Camera traps (CTs) are an increasingly popular tool for wildlife survey and monitoring. 
Estimating relative abundance in unmarked species is often done using detection rate 
as an index of relative abundance, which assumes that detection rate has a positive 
linear relationship with true abundance. This assumption may be violated if movement 
behavior varies with density, but the degree to which movement behavior is density-
dependent across taxa is unclear. The potential confounding of population-level rela-
tive abundance indices by movement would depend on how regularly, and by what 
magnitude, movement rate and home-range size vary with density. We conducted a 
systematic review and meta-analysis to quantify relationships between movement 
rate, home-range size, and density, across terrestrial mammalian taxa. We then simu-
lated animal movements and CT sampling to test the effect of contrasting movement 
scenarios on CT detection rate indices. Overall, movement rate and home-range size 
were negatively correlated with density and positively correlated with one another. 
The strength of the relationships varied significantly between taxa and populations. 
In simulations, detection rates were related to true abundance but underestimated 
change, particularly for slower moving species with small home ranges. In situations 
where animal space use changes markedly with density, we estimate that up to thirty 
percent of a true change in relative abundance may be missed due to the confounding 
effect of movement, making trend estimation more difficult. The common assump-
tion that movement remains constant across densities is therefore violated across 
a wide range of mammal species. When studying unmarked species using CT de-
tection rates, researchers and managers should explicitly consider that such indices 
of relative abundance reflect both density and movement. Practitioners interpreting 
changes in camera detection rates should be aware that observed differences may 
be biased low relative to true changes in abundance. Further information on animal 
movement, or methods that do not depend on assumptions of density-independent 
movement, may be required to make robust inferences on population trends.

K E Y W O R D S

animal density, animal movement, camera trap, home range, imperfect detection, population 
ecology, spatial ecology, wildlife monitoring

www.ecolevol.org
https://orcid.org/0000-0003-1788-9187
mailto:﻿
https://orcid.org/0000-0002-8799-3847
https://orcid.org/0000-0002-8764-6976
https://orcid.org/0000-0001-6317-038X
http://creativecommons.org/licenses/by/4.0/
mailto:cole.burton@ubc.ca


14032  |     BROADLEY et al.

1  | INTRODUC TION

Accurate abundance estimation is at the core of wildlife manage-
ment, and camera traps (CTs) are an increasingly popular monitor-
ing tool (Burton et al., 2015; O'Connell, Nichols, & Karanth, 2011). 
Camera traps are triggered by a temperature differential and move-
ment across their detection zone, thus capturing images of warm-
blooded animals that pass by. Compared to traditional live trapping, 
camera trapping is less expensive and less invasive (Kucera & Barrett, 
2011), and it can be used for the simultaneous collection of data on 
multiple species (Burgar, Burton, & Fisher, 2019; Tobler, Carrillo-
Percastegui, Leite Pitman, Mares, & Powell, 2008). This makes CTs 
very attractive to those wishing to conduct large-scale, multispecies 
monitoring programs. The camera trapping technique has been par-
ticularly successful in the study of large species whose coat patterns 
allow individuals to be identified. Identification of such “marked” 
species allows for standard capture–recapture methods to be ap-
plied (Karanth & Nichols, 1998), and accurate density estimation of 
such populations has been further improved with the development 
of spatially explicit capture–recapture methods (Efford, 2004; Royle, 
Chandler, Sollmann, & Gardner, 2014).

However, most species cannot be reliably identified individually 
by unique markings. This presents a challenge to those wishing to 
monitor these populations, and so scientists and managers must rely 
on alternatives to standard capture–recapture methods for estima-
tion of density or abundance. Indices that document relative changes 
are one such alternative to more formal methods of density estima-
tion (Johnson, 2008; Williams, Nichols, Conroy, & Michael, 2002). In 
fact, indirect measures of population trends, like relative abundance 
and presence/absence, represent the most common ways CT data 
are analyzed, with relative abundance being reported in over 40% 
of studies (Burton et al., 2015). Relative abundance indices typically 
consist of detections standardized by effort (sampling duration): If 
camera and site conditions are appropriately controlled for, variation 
in detection rate will be driven solely by animal-specific factors, and 
if space use remains consistent, changes in population density should 
be the primary factor responsible for changes in detection rate. That 
is, if individual encounter rates (i.e., the probability that a given indi-
vidual will encounter a camera per unit time) remain constant across 
space and time, the overall detection rate serves as a valid index of 
abundance, and the change in detection rate over space or time is 
linearly related to the change in population density (O'Brien, 2011). 
Detection-based relative abundance indices have been employed in 
many published studies (e.g., Bengsen, Leung, Lapidge, & Gordon, 
2011; Carbone et al., 2001; O'Brien, 2011; O'Brien, Kinnaird, & 
Wibisono, 2003), while others have noted their frequent use within 
the gray literature of wildlife management reports and conservation 
strategies (Sollmann, Mohamed, Samejima, & Wilting, 2013).

Abundance, however, is not the only factor that influences de-
tection rates. Along with factors like the camera's settings, the size 
of its detection zone, vegetation cover, etc. (Burton et al., 2015), 
animal space use will also influence detectability (Neilson, Avgar, 
Burton, Broadley, & Boutin, 2018; Stewart, Fisher, Burton, & Volpe, 

2018; Figure 1). The core assumption of constant encounter prob-
ability is thus likely untrue (e.g. Harmsen, Foster, Silver, Ostro, & 
Doncaster, 2010; Sollmann, Mohamed, et al., 2013). Violation of 
this assumption poses a problem for the use of detection rates 
as an index of relative abundance when encounter probability 
covaries with density (Harmsen et al., 2010; Jennelle, Runge, & 
MacKenzie, 2002). Wide-ranging individuals are likely to encoun-
ter more cameras, but rarely encounter the same camera multiple 
times, compared to individuals with more spatially concentrated 
space use. When passive traps like cameras are distributed ran-
domly over large spatial scales, both the mean encounter rate and 
time to first encounter are strongly affected by animal movement 
speed, particularly given the small detection zone typical of camera 
traps (Gurarie & Ovaskainen, 2013). If home-range size and move-
ment rate are density-dependent, this could obscure true change in 
abundance inferred from a relative abundance index. This is partic-
ularly problematic if home range and movement rate are negatively 
correlated with density. At best, a relative abundance index will 
underestimate the true change in abundance. At worst, increased 
movement rates and home-range sizes at low densities could result 
in a few individuals producing more total detections than would a 
higher density population.

Habitat availability and quality is an obvious common driver 
of negative density-dependent movement and home-range size. 
Conceptually, home-range size is an emergent property of individual 
movements, where the duration spent in a location and/or the fre-
quency at which a location is revisited affects the overall space-use 
pattern of an animal (Van Moorter, Rolandsen, Basille, & Gaillard, 
2016). Higher-quality habitats support higher population densities, 
with each individual in those populations occupying a smaller home 
range and moving less (due to higher resource density and/or terri-
toriality; Avgar, Mosser, Brown, & Fryxell, 2013; Fryxell et al., 2008; 
Harestad & Bunnell, 1979; Owen-Smith, Fryxell, & Merrill, 2010). 
Conversely, individual space use may be driven by the intensity of in-
traspecific competition, with movement speed and range positively re-
lated to population density due to conspecific repulsion (e.g., Kuefler, 
Avgar, & Fryxell, 2012). Whichever is the case, covariation between 
movement, home-range size, and density is expected to be the norm 
across most animal populations, and one would expect the assumption 
of density-independent movement to be frequently violated.

This paper aims to quantify how home-range size, movement 
rate, and density covary across mammalian taxa, and to explore the 
effect, this covariation might have on CT-based relative abundance 
estimates. In order to quantify the relationships between movement 
rate, home-range size, and density, we conducted a systematic me-
ta-analysis of published studies that have reported any two of these 
parameters in any terrestrial mammalian taxa. We then used simu-
lations to quantify the magnitude of the expected effect of densi-
ty-dependent movement on interpretation of CT detection rates. 
We chose space-use scenarios that span the range of variation 
found in the meta-analysis, so as to reveal the full extent by which 
movement could confound relative abundance estimates from de-
tection rates.
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2  | METHODS

2.1 | Literature search

We searched for relevant articles in the Web of Science database 
using the following search terms: (“movement” OR “distance trav-
elled” OR “distance moved” OR “speed” OR “activity”) AND (“popu-
lation density” OR “abundance” OR “home range size” OR “territory 
size”) AND (“mammal” OR “mammalian”). The search was conducted 
in 2015 and restricted to English language papers published from 
2005 to 2015. Studies on any terrestrial mammalian taxa were con-
sidered. We retained those studies that reported at least two of ei-
ther movement rate, (relative) density/abundance, or home-range 
size (Table S1). The list was further restricted to only papers that 
reported these parameters for at least two different “populations” 

(defined spatially or temporally, i.e., the same population in different 
years); this allowed us to control for variation in methodology (Table 
S1) by using only within-study comparisons made with consistent 
methods. Excluded were any studies that used a telemetry location 
interval greater than 24 hr to calculate movement rates, or for which 
one of the parameters was confounded by the other parameter 
(e.g., a population density calculated as the number of home ranges 
that could fit in the study area would not be considered valid). Also 
omitted were studies that only compared single individuals as well 
as studies that compared islands to mainland areas so as to exclude 
situations of unusually constrained spatial geography.

For the resulting set of papers, the species, taxonomic order, pa-
rameters measured, and methods used to measure the relevant pa-
rameters were recorded. We defined movement rate as the average 
displacement between consecutively observed positions divided by 

F I G U R E  1   Space use is one factor affecting detections on CTs. Here, two aspects of space use are considered: home-range size and 
movement rate. (a) Individuals with smaller home ranges overlap fewer cameras on average (and those with very small ranges may not 
overlap any cameras). (b) Individuals with larger home ranges overlap and can be detected at more cameras. (c) Individuals that move through 
their home range more slowly will take longer to encounter cameras. (d) Individuals that move more quickly encounter cameras more 
frequently within the same span of time and produce more detections. Thus, detection rate is a function of both the relative abundance of 
the population, as well as the space use of the animals that make up that population
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the time interval between these positions. Movement rate is thus a 
relative measure of speed as fix rate varies between studies, and the 
lower the fix rate the more underestimated the movement rate com-
pared to the true speed of the animal (Street, Avgar, & Börger, 2018). 
Terminology for this parameter varies widely across movement stud-
ies, so the methods of each individual study were examined care-
fully. Only the parameter whose description matched the definition 
for movement rate given above was selected for analysis, regardless 
of the terminology originally applied in the source.

2.2 | Magnitude of variation

We considered three relationships: movement rate versus density, 
home-range size versus density, and home-range size versus move-
ment rate. To compare the relationships between studies and sys-
tems, we calculated the ratio of the higher value to the lower value 
for the populations in the study. The population with the lowest 
value for the predictor variable (either population density or home-
range size) was considered the “reference” population, and we then 
calculated the increase in that parameter from the “reference” to 
the other population. For studies with more than two populations, 
we used the populations that offered the greatest difference across 
the predictor variable range. We then calculated the value for the 
response variable (either home-range size or movement rate) as the 
percentage of its value in the “reference” population (such that 100% 
represents no change in value). This was done to quantify and visual-
ize the actual magnitudes of changes in these variables, rather than 
simply a positive or negative correlation.

2.3 | Meta-analysis

A meta-analysis calculates an overall effect size from a set of 
standardized effect sizes, thereby determining the magnitude 
of the effect of one variable on another (Rosenthal & DiMatteo, 
2001). Given that all of the parameters analyzed (density, move-
ment rate, and home-range size) are continuous, the correlation 
coefficient (r) was chosen as the most appropriate measure of ef-
fect size. In this context, the overall correlation coefficient repre-
sents the strength and direction of the association between a given 
pair of parameters. Correlation coefficients of individual studies 
were obtained either from direct reporting, or from converting 
other test statistics given. When a test statistic other than r was 
reported (e.g., t, χ2, F, and U), it was changed using standard con-
version formulae into the Fisher's Z transformation of r (Rosenthal 
& DiMatteo, 2001). For example, a t statistic from a study compar-
ing two mean movement rates can be converted into a correla-
tion coefficient using the formula r=

√

t2

t2+df
. Once standardized, 

these effect sizes (weighted by the inverse of their variances) were 
analyzed together using a random effects model to determine the 
overall strength and direction of the effect. Unlike a fixed effects 
model which assumes there is only one true effect size (and that 

all observed differences in effects are due to sampling error), a 
random effects model allows for the event that the true effect 
size varies from study to study. A random effects model is prefer-
able for ecological phenomena because it accounts for variance in 
true effect size across systems and allows generalization to stud-
ies outside of the meta-analysis (Cooper et al., 2009; Rosenthal & 
DiMatteo, 2001). Cochran's Q test for heterogeneity was used to 
assess the significance of variation in effect sizes across studies 
in the meta-analysis. Significant heterogeneity indicates that sam-
pling error alone cannot explain variance in effect sizes.

2.4 | Animal simulations

The effect of density-dependent movement on camera detection 
rates was examined using a set of computer simulations. To make 
our results as general as possible, we varied only two attributes 
of animal space-use dynamics; the degree of attraction to a focal 
point (giving rise to stable home ranges) and the rate of positional 
shifts (speed). Animal movement was simulated using a “stepping-
stone” approach, in which individuals move independently across 
a regular grid of 107 hexagonal cells (Avgar, Potts, Lewis, & Boyce, 
2016; see also Neilson et al., 2018). Assuming that cell area is 
100 m2, our domain represents a 1,000 km2 study area. The do-
main was wrapped around a torus, thus eliminating any edge ef-
fects. Individuals were given random home-range centers within 
this domain. The movement model comprises a discrete biased 
random walk, where during each time step, t, an individual could 
move to an adjacent hexagonal cell, or remain in place. The posi-
tion of the animal at the next time step is described by a truncated 
redistribution kernel of the form:

in which xt+τ represents the cell to be occupied by the animal at the 
next time step, τ (=10 s) is the time step's duration, x′ is the individual's 
home-range center, I is an indicator function valued at 1 or 0 based on 
the immediately following expression, α is the movement cost, and β 
is a parameter determining attraction to the home-range center. This 
model of animal movement allows for a realistic simulation of animal 
paths, as observed patterns in speed and home-range size are an 
emergent property of the movement process, rather than the result of 
imposed boundaries. By altering the movement cost (α) and the home-
range attraction (β) parameters, different space-use patterns can be 
simulated. The movement cost parameter (α) is easily converted into a 
more biologically relevant parameter: the probability that an animal will 
move during a time step, �=

[

1+
(

e�∕6
)]−1. Modifying this probability 

in turn modifies the movement rate. The steady-state home range (i.e., 
the utilization distribution the animal will eventually produce if given 
enough time) takes the form of a bivariate isotropic normal distribution 
with variance given by 

(

4 ⋅�
)−1. The steady-state home-range size is 

thus approximately 723.4∙β−1 m2, if 99% of the utilization distribution 
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is to be included (see Signer, Fieberg, & Avgar, 2017). In summary, 
our model simulates space-use patterns by a population of solitary 
nonterritorial animals with independently and randomly distributed 
home-range centers. We note that this model is a first step in modeling 
realistic animal movements, with many potential complexities remain-
ing to be explored in future research (e.g., territoriality, herding, and 
habitat selection).

Two contrasting movement scenarios were chosen to evaluate 
the relationship between animal density, speed, home-range size, 
and detection rate: one with fast movement rates and large home 
ranges, and one with slow movement and small home ranges. 
These scenarios were chosen to capture the relationship found in 
the meta-analysis, where movement rate and home-range size are 
both negatively correlated with density and positively correlated 
with one another. The fast, large home-range population had a 
steady-state home-range size of 100 km2 and �=1 (mean realized 
speed of approx. 180 m/hr). The slow, small home-range popula-
tion had a steady-state home-range size of 1 km2 and �=0.1 (mean 
realized speed of approx. 57 m/hr). These scenarios were chosen 
to reflect a range in movement that would encompass the possible 

variation found in real populations. For instance, movement rate 
can more than triple over a 25-fold change in home-range size 
(chacma baboon, Hoffman & O'Riain, 2012). By covering the pos-
sible range in variation found in nature, the simulation can repre-
sent a “worst-case scenario” and is able to reveal the full extent to 
which space use can confound population estimates.

Individuals were allowed to move for 3,153,600 time steps 
(1 year in total). To remove effects of the initial conditions, only the 
last 1,576,800 steps (6 months) were used for analysis. One thou-
sand random cells in the domain were designated as CT sites, such 
that the presence of an individual within that cell during a time step 
was counted as a detection on that camera. This represents an ideal 
scenario for camera trapping: an intense, random sampling regime 
with perfect detections (given that an animal is preset with the cell 
during the study). One hundred individuals were simulated for each 
movement scenario. The final output was a record of how many 
times a given animal was detected at each camera location over the 
duration of the simulation. To get the detection rate for a given cam-
era, the detections from all One hundred individuals at that camera 
were summed and then divided by the study duration. In order to 

F I G U R E  2   (a) Movement rate in a higher density population expressed as a percentage of the lower density population's movement rate 
(i.e., reference value). 100% represents no change in movement rate. Points that fall below the 100% line indicate a drop in movement rate 
over a given change in density; points that fall above the 100% line indicate an increase in movement rate over a given change in density. 
N = 11 studies. (b) Home-range size in a higher density population expressed as a percentage of the lower density population's home range 
(i.e., reference value). N = 26 studies. (c) Movement rate in a population with larger home ranges expressed as a percentage of the smaller 
home-range population's movement rate (i.e., reference value). N = 25 studies
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simulate variation in density, 25, 50, and 75 individuals were subsa-
mpled from the full population of 100, and their detections at a given 
camera location summed. The mean detection rate in all cases was 
then obtained by averaging the detection rates of all 1,000 cameras. 
A Tukey HSD test was used to test for significant differences be-
tween mean detection rates.

3  | RESULTS

3.1 | Meta-analysis

The literature review resulted in 42 studies covering 43 species from 
six orders, with carnivores (13), primates (13), rodents (10), and ungu-
lates (7) (see Appendix S1 for detailed study information).

Movement rates were included in only 11 studies that reported 
density (Figure 2a), and in 10 of these, the higher density pop-
ulation exhibited a lower movement rate. There appeared to be 
a nonlinear relationship between the magnitude of the decrease 
in movement rate and the magnitude of the density change. 
Movement rates decreased by a maximum of just over 50% de-
spite changes in density of up to 26-fold. Most density changes 
were on the order of <10-fold.

Increases in density were associated with decreases in home-range 
size in 22 of 27 cases (Figure 2b). While the most pronounced decrease 
was an approximate 90% reduction in home-range size over a 2.4-fold 
increase in density (coyotes; Wilson & Shivik, 2011), there was a non-
linear relationship between the magnitude of the decrease in home 
range and the magnitude of the density change (up to 42.2-fold). Three 
species, (white-tailed deer; Webb, Hewitt, & Hellickson, 2007; cham-
ois; Brambilla, Bocci, Ferrari, & Lovari, 2006; and degu; Quirici et al., 
2010) exhibited an increase in home-range size with density.

An increase in home-range size was usually associated with an 
increase in movement rate (Figure 2c). Movement rates increased 
to a maximum of just over 300% of the reference value while home-
range sizes differed by up to 25-fold. Most home-range size changes, 
however, were on the order of <5-fold.

Meta-analysis of effect sizes using a random effects model re-
vealed a significant negative relationship between movement rate 
and density (Figure 3, r  =  −.32, p  =  .03). Density and home-range 
size were also significantly negatively correlated (Figure 4, r = −.60, 
p  <  .0001). Furthermore, there was a significant positive relation-
ship between movement rate and home-range size (Figure 5, r = .92, 
p  =  .012). Effect sizes were significantly heterogeneous across 
studies for all three comparisons: movement rate versus density 
(Figure 3, Q6 = 277.99, p <  .0001), home-range size versus density 

F I G U R E  3   Forest plot indicating the mean effect size (correlation coefficient) of studies that reported movement rates across different 
densities. The effect size is significant if its 95% confidence interval (the black bar) does not overlap zero. Negative correlation coefficients 
indicate that movement rates are slower at higher densities. The diamond indicates the overall effect size as determined by a random effects 
model

F I G U R E  4   Forest plot indicating the 
mean effect size (correlation coefficient) 
of studies that reported home-range sizes 
across different densities. The effect 
size is significant if its 95% confidence 
interval (the black bar) does not overlap 
zero. Negative correlation coefficients 
indicate that home ranges are smaller at 
higher densities. The diamond indicates 
the overall effect size as determined by a 
random effects model
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(Figure 4, Q16 = 172.82, p < .0001), and movement rate versus home-
range size (Figure 5, Q9 = 2185.67, p < .0001).

3.2 | Animal simulations

Under the fast, large home-range scenario (realized speed 180 m/
hr, steady-state home range 100  km2), the mean detection rate 
changed linearly, such that a change in density was associated with 
a proportional change in detection rate. For instance, the mean 
detection rate produced by One hundred individuals/1,000 km2 
(Figure 6, mean  =  0.086  detections/day, SD  =  0.072) was ap-
proximately double the mean detection rate produced by 50  in-
dividuals/1,000  km2 (Figure 6, mean  =  0.043  detections/day, 
SD = 0.053).

In contrast, the slow, small home-range scenario (realized speed 
57  m/hr, steady-state home range 1  km2), produced a nonlinear 
trend in detection rate, where detections increased at a diminishing 
rate as density increased (Figure 6). Differences in detection rates 
between populations of different movement scenarios were only 
evident across relatively large density changes. For instance, the 
detection rate of the fast, large home-range population with 25 in-
dividuals/1,000  km2 was not significantly different from the slow, 
small home-range population unless it had a density of 75 individu-
als/1,000 km2 or greater (Table 1).

Comparisons between movement scenarios also inaccurately 
represented the true change in density. For example, the slower, 
smaller home-range scenario at One hundred individuals/1,000 km2 
(Figure 6, mean  =  0.074  detections/day, SD  =  0.42) had a detec-
tion rate approximately 1.7 times greater than the faster, larger 

F I G U R E  5   Forest plot indicating the mean effect size (correlation coefficient) of studies that reported movement rates across 
populations with different home-range sizes. The effect size is significant if its 95% confidence interval (the black bar) does not overlap 
zero. Positive correlation coefficients indicate that movement rates are slower at when home ranges are smaller. The diamond indicates the 
overall effect size as determined by a random effects model

F I G U R E  6   Mean detection rate 
under different densities and movement 
scenarios. Movement scenarios represent 
home-range sizes and movement rates 
that covary and encompass the possible 
range in behavior as seen in the meta-
analysis. Populations of 25, 50, 75, 
and One hundred individuals were 
simulated in a 1,000 km2 domain. The fast 
movement, large home-range scenario is 
indicated in red (realized speed 180 m/hr, 
steady-state home range 100 km2) while 
the slow movement, small home-range 
scenario is indicated in blue (realized 
speed 57 m/hr, steady-state home 
range 1 km2). Detection rates represent 
the mean detection rate across 1,000 
randomly placed cameras over a time span 
of 6 months. Error bars represent 95% 
confidence intervals
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home-range scenario with 50 individuals/1,000  km2 (Figure 6, 
mean = 0.043 detections/day, SD = 0.053).

4  | DISCUSSION

As predicted, our meta-analysis indicated that higher population 
densities were associated with significantly slower movement rates 
and smaller home ranges across multiple species. This relation-
ship violates the common assumption that changes in detection 
rates reflect only changes in relative abundance and not changes 
in movement, and has important implications for wildlife monitor-
ing programs that rely on unvalidated detection rate indices from 
CT sampling. Because a population in decline would produce more 
detections per individual through increased movement, one may 
falsely conclude that the population is stable (or at best declining 
less rapidly).

Despite overall significant negative relationships between den-
sity and both movement rate and home-range size, there were some 
exceptions. These cases exhibited a positive correlation between 
density and either movement rate or home-range size. Such a re-
lationship is also problematic for detection rate indices, as it would 
lead to overestimates of changes in relative abundance. At least 
one of these cases was explained by greater landscape patchiness 
in resource-rich areas (e.g., Brambilla et al., 2006). Delayed densi-
ty-dependence may also be the cause, as when a decrease in re-
sources has a delayed effect on population density (e.g., Quirici et 
al., 2010). Dispersal dynamics are another potential cause of posi-
tive density-dependent movement. High densities can drive some 
individuals to disperse as a way to avoid inbreeding, predators, 
parasites, exploitative competition, or interference competition 
(Bowler & Benton, 2005), although positive density-dependent dis-
persal is more commonly observed in experimentally manipulated 
populations rather than site-to-site or year-to-year comparisons 
(Matthysen, 2005).

Treatment 1 Treatment 2 Difference Lower limit Upper limit p value

fast_large:25 fast_large:50 0.0217 −0.0109 0.0542 .4681

fast_large:25 fast_large:75 0.0431 0.0106 0.0757 .0015*

fast_large:25 fast_large:100 0.0646 0.0321 0.0972 <.0001*

f*st_large:25 slow_small:25 −0.0070 −0.0395 0.0256 .9981

fast_large:25 slow_small:50 0.0202 −0.0124 0.0527 .5660

fast_large:25 slow_small:75 0.0402 0.0077 0.0728 .0045*

fast_large:25 slow_small:100 0.0526 0.0200 0.0851 <.0001*

fast_large:50 fast_large:75 0.0215 −0.0111 0.0540 .4824

fast_large:50 fast_large:100 0.0430 0.0104 0.0755 .0016*

fast_large:50 slow_small:50 −0.0015 −0.0341 0.0310 1.0000

fast_large:50 slow_small:75 0.0185 −0.0140 0.0511 .6698

fast_large:50 slow_small:100 0.0309 −0.0016 0.0634 .0769

fast_large:75 fast_large:100 0.0215 −0.0110 0.0540 .4799

fast_large:75 slow_small:75 −0.0029 −0.0355 0.0296 1.0000

fast_large:75 slow_small:100 0.0094 −0.0231 0.0420 .9878

fast_large:100 slow_small:100 −0.0120 −0.0446 0.0205 .9521

slow_small:25 fast_large:50 0.0287 −0.0039 0.0612 .1316

slow_small:25 fast_large:75 0.0501 0.0176 0.0827 .0001*

slow_small:25 fast_large:100 0.0716 0.0391 0.1042 <.0001*

slow_small:25 slow_small:50 0.0271 −0.0054 0.0597 .1832

slow_small:25 slow_small:75 0.0472 0.0147 0.0797 .0003*

slow_small:25 slow_small:100 0.0596 0.0270 0.0921 <.0001*

slow_small:50 fast_large:75 0.0230 −0.0096 0.0555 .3883

slow_small:50 fast_large:100 0.0445 0.0119 0.0770 .0009*

slow_small:50 slow_small:100 0.0324 −0.0001 0.0650 .0515

slow_small:50 slow_small:75 0.0201 −0.0125 0.0526 .5728

slow_small:75 fast_large:100 0.0244 −0.0081 0.0570 .3073

slow_small:75 slow_small:100 0.0124 −0.0202 0.0449 .9449

*signifies statistical significance at p < 0.01. 

TA B L E  1   Pairwise tests (Tukey HSD) 
of differences (and 95% confidence limits) 
in detection rates between simulation 
scenarios that compared fast versus slow 
movement rates and small versus large 
home-range sizes across four population 
densities (25, 50, 75, and One hundred 
individuals per 1,000 km2)
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While the predicted trends of density-dependent space use were 
common, the degree to which the relationship between density and 
movement affects interpretation of camera data depends on the 
magnitude. Significant heterogeneity between effect sizes observed 
in the meta-analysis indicates that no singular magnitude of effect 
can be expected across different taxa or systems. Movement rate 
and home-range size may change dramatically with density, or very 
little. The greatest change was seen in coyotes (Wilson & Shivik, 
2011), where a 2.4-fold higher density was associated with move-
ment rates less than half as fast and home ranges less than a tenth 
in size. While coyotes exhibited the most dramatic differences in 
movement rate and home-range size, it is difficult to generalize the 
magnitude of these effects across similar taxa. More groundwork 
needs to be done to assess movement rates of populations at differ-
ent densities. Because of the variation in effect sizes observed in our 
meta-analysis, species or populations that have not been extensively 
studied should be treated with caution when making inferences 
about abundance based on CT detection rates.

It is worth reiterating that the nature of telemetry data is to un-
derestimate true movement rates, as longer intervals between re-
locations will miss fine-scale movements and hence underestimate 
speed. In the context of home-range size, a fast animal that quickly 
covers its home range is consequently expected to turn frequently 
(e.g., at boundaries of home range), and may thus appear—when ob-
served at a coarse temporal resolution—to move as slow as, or even 
slower than, a slower animal traveling along straighter paths within 
a larger home range. Thus, telemetry studies with longer intervals 
between relocations are at risk of underestimating the magnitude 
of density-dependent changes in movement rates (Street et al., 
2018). Most of the telemetry studies included in our meta-analysis 
had relatively short fix intervals (≤1 hr; Table S1), and even studies 
with longer intervals showed the predicted correlation between 
density and movement (e.g., Panzacchi, Linnell, Odden, Odden, & 
Andersen, 2009 in Figures 3 and 4, Table S1).

In our simulations, we found that the performance of a detec-
tion rate index was influenced by space use. When the assumption 
of constant space use was upheld and individuals were moving fast 
over large ranges, the detection rate index performed well. Keeping 
movement rate and home-range size constant under such condi-
tions, doubling the abundance approximately doubled the mean 
detection rate. However, when movement patterns changed with 
density, the results were less clean. Compared to the fast-moving, 
large home-range scenario, the slower and smaller home-range pop-
ulation exhibited far greater variation in detection rates (see Neilson 
et al., 2018 for further discussion of these relationships). While it 
is encouraging that detection rates did track the general trend in 
abundance, being significantly different between the low density 
and high density populations (even under realistic changes in move-
ment), we feel that the large variability introduced by movement 
behavior undermines the ability of detection rate indices to reliably 
measure the magnitude of change in relative abundance.

It is also important to note that these simulation results reflect 
an otherwise ideal set of conditions for camera trapping: Identical 

individuals moving through a homogeneous landscape with random 
camera placement and perfect detection. Actual camera trap studies 
have to contend with additional sources of sampling error. If detec-
tion rate indices are nevertheless used to track relative abundance, 
scientists and managers should keep in mind that the estimated 
magnitude of the change could be up to 30% smaller than its true 
value due to density-dependent movement alone (given a scenario 
where the population exhibits much slower movement and smaller 
home-range sizes at high densities relative to low densities). While 
this is worrying if the goal is to accurately estimate the magnitude 
of change in relative abundance, it is nevertheless encouraging that 
changes in movement are unlikely to totally reverse the trend in de-
tection rate. By encompassing the range in space use found in the 
meta-analysis, our simulation likely covers the worst-case scenario 
as far as the strength of this particular confounding factor. However, 
future simulations could expand on this work by exploring the role 
of additional factors like nonrandom camera placement, density-de-
pendent functional responses in habitat selection, and more com-
plex movement behaviors (e.g., Van Beest, McLoughlin, Mysterud, 
& Brook, 2016). Finally, users of these indices should also consider 
differences in the variance of their estimates, as this may be an ear-
lier indicator of changes in the population, even if mean detection 
rates are not yet significantly different.

The relationships observed in this analysis could have a signifi-
cant impact on the outcome of management or conservation deci-
sions. Consider a hypothetical example involving a species of concern 
which is the target of a novel conservation strategy. Cameras are 
used to monitor the population response after the implementation 
of the strategy, with detection rate used as an index of relative 
abundance. Unfortunately, the conservation strategy fails, and the 
population declines to an even lower density. At this low density, 
individuals move faster over larger home ranges—perhaps due to re-
duced habitat quality and greater difficulty finding patches of good 
forage. This increases the average encounter rate between individu-
als and CTs, thus masking the effect of a reduction in the number of 
individuals on detection rate. An analysis of the camera data might 
reveal little to no significant change in detection rate after imple-
mentation of the strategy. Using detections as a relative abundance 
index, one might conclude that the novel strategy had successfully 
slowed or stopped the decline, when in fact it had failed. Therefore, 
determining the magnitude by which detection rates are affected 
by movement is a critical step in evaluating the reliability of these 
indices.

We provided quantitative evidence that across a broad range of 
taxa home range and movement rate are negatively density-depen-
dent, violating a core assumption of the use of camera trap detection 
rates as an index of population abundance. Through simulation anal-
ysis, we have shown that the confounding effect of changes in move-
ment and density can reduce the statistical power to detect change 
in relative abundance from detection data, and that estimates of rel-
ative abundance changes may miss up to 30% of the true change. 
These results support previous calls for caution in the use of relative 
abundance indices from CT sampling (Burton et al., 2015; Harmsen 
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et al., 2010; Jennelle et al., 2002; Sollmann, Mohamed, et al., 2013). 
While more statistically sophisticated alternatives are available for 
estimating density of unmarked populations from camera traps (e.g., 
Chandler & Royle, 2013; Howe, Buckland, Despres-Einspenner, & 
Kuhl, 2017; Moeller, Lukacs, & Horne, 2018; Nakashima, Fukasawa, 
& Samejima, 2018; Rowcliffe, Field, Turvey, & Carbone, 2008), these 
require careful planning of study design and entail other assump-
tions that are largely untested (cf Johnson, 2008). Such methods 
may require direct measurement, or a priori knowledge, of species 
movement characteristics, or be similarly susceptible to density-de-
pendent movement behaviur (e.g., Efford, Dawson, Jhala, & Qureshi, 
2016; Rowcliffe, Jansen, Kays, Kranstauber, & Carbone, 2016). These 
alternatives may thus be currently unattractive to practitioners who 
chose camera trapping for its simplicity, yet concern has been raised 
over the continued uncritical application of relative abundance indi-
ces to measure population change (Sollmann, Mohamed, et al., 2013). 
We hope that the evidence presented here will encourage a more 
cautious consideration of the merits of each analytical method, and 
more deliberate choice of study design. For example, camera trap 
detection rates may be suitable for estimating differences in animal 
activity or use of different habitats, or for general trends in abun-
dance where movement is known to be relatively constant. However, 
more detailed data on animal movement, and more robust analytical 
techniques, may be required for stronger inferences on population 
changes. Given that relative abundance indices are frequently used 
at the front lines of management and conservation, we urge a more 
critical look at their use and interpretation, and we call for further re-
search into the reliability of emerging alternative methods to estimate 
abundance of unmarked populations using camera traps.
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