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The combination of targeted therapy with BRAF and MEK inhibitors has become the standard of care in patients with
BRAFV600E mutant melanoma, but responses are not durable. In addition, the impressive clinical benefits with anti-PD-1
and anti-PD-L1 antibodies (Ab) in patients with heavily pretreated metastatic melanoma and the synergistic effect of
dabrafenib, trametinib and anti-PD-1 compared with single therapy alone groups support the idea that combining
dabrafenib, trametinib and immunotherapy based on PD-1 blockade could be an interesting approach in the treatment
of metastatic melanoma. With our mouse model of syngeneic BRAFV600E driven melanoma (SM1), we tested whether the
addition of an immunostimulatory Ab targeting CD137 (4-1BB) and/or CD134 (OX40) would enhance the antitumor
effect of dabrafenib, trametinib and anti-PD-1 or anti-PD-L1 therapy. In vitro studies showed that the combination
group of dabrafenib, trametinib and anti-PD-1 increases CD8C tumor infiltrating lymphocytes (TILs), as well as CD4C T
cells and tumor-associated macrophages (TAMs). An upregulation of PD-L1 was observed in the combination of
dabrafenib, trametinib and anti-PD-1 therapy. Combination of dabrafenib, trametinib and anti-PD-1, with either anti-
CD137 or anti-CD134, showed a superior antitumor effect, but the five-agent combination was not superior to the four-
agent combinations. In conclusion, the combination of dabrafenib, trametinib, anti-PD1 or anti-PD-L1 therapy results in
robust antitumor activity, which is further improved by adding the immune-stimulating Ab anti-CD137 or anti-CD134.
Our findings support the testing of these combinations in patients with BRAFV600E mutant metastatic melanoma.

Introduction

The success of immune checkpoint inhibitors in advanced
melanoma1-5 has positioned cancer immunotherapy as one of the
most exciting approaches to achieve long-term disease control of
a small subset of patients with metastatic cancers. Combined
BRAF and MEK inhibition prevents mitogen-activated protein
kinase (MAPK) reactivation 6 as a mechanism of resistance to
monotherapy with a BRAF inhibitor, increasing progression-free
survival (PFS) and objective response rate (ORR) compared to
BRAF inhibition alone,7 and is now considered the standard of
care treatment for patients with BRAFV600 mutant metastatic
melanoma. In BRAF mutant melanoma, there is interest to com-
bine MAPK targeted therapy and cancer immunotherapy with
the goal of achieving higher response rates with prolonged dura-
tion. The rationale behind this combination is based on the
potential sensitization of the immune system to target tumors by

increasing antigen presentation,8-10 antigen specific T-cell recog-
nition,8,11 reversing intratumoral immune suppression,12 and
homing of immune effector cells to the tumors,9,13,14 thus
improving effector functions.15

PD-1 is an inhibitory T-cell receptor (TCR) with high selec-
tivity for immune suppressive signals induced by PD-L1
expressed by cells within the tumor. An accepted mechanism of
PD-L1 regulation is termed “adaptive immune resistance,” which
occurs when tumor-resident cells expresses PD-L1 to protect
themselves from the antitumor effector functions of cytotoxic T
cells, mostly in response to interferons (IFNs).16,17 This immune
resistance mechanism has been characterized in tumor samples
from patients treated with BRAF inhibitors, where an increase in
the expression of T-cell exhaustion markers in post-dosing biop-
sies, including TIM3, PD-1 and PD-L1, has been described.9

The increased PD-L1 expression could be suppressed with the
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addition of a MEK inhibitor,18 providing a rational for combin-
ing target therapy and immunotherapy.

Preclinical evidence has recently shown that combined therapy
of dabrafenib, trametinib and anti-PD-1 provided superior anti-
tumor activity against the established BRAFV600E mutant murine
melanoma SM1 tumor compared with anti-PD-1 plus either
therapy alone, or isotype control with both dabrafenib and tra-
metinib.19 Additionally, there is growing evidence of synergistic
combinations with immunostimulatory agents in cancer preclini-
cal models.20-26 Ideal candidates to enhance antitumor immunity
include agents that potentiate CD8C T-cell activation, such as
the agonistic anti-CD137 (4-1BB) or anti-CD134 (OX40) Abs.

CD137 belongs to the tumor necrosis factor receptor
(TNFR) superfamily and is a T cell co-stimulatory recep-
tor.27,28 Its expression has been observed to be responsible for
a robust activation of CD8C T-cells, eradication of established
tumors, prevention of autoimmune diseases, and increased
graft survival.29-31 CD134, also a member of the TNFR super-
family, has been shown to be upregulated upon TCR engage-
ment 32 and can promote co-stimulatory signals to T-cells
leading to enhanced cell proliferation, survival, effector func-
tion and migration.33,34 Treatment of transplantable mouse
models with agonist Abs as monotherapies has shown clear
signs of efficacy in the case of anti-CD137 35 and anti-
CD13426 Abs. Beyond monotherapies, these and other immu-
nostimulatory agents can be used in combinatorial approaches,
in which synergy is often observed against transplantable
tumors.21,36 Moreover, synergy has also been observed on car-
cinogen-induced sarcomas using a combination that included
anti-CD40 and anti-CD137 Abs.37

Using a syngeneic mouse model of BRAFV600E mutant mela-
noma mouse,15 we tested the hypothesis that addition of immune
activating Ab to CD134 or CD137 to the combination of dabra-
fenib, trametinib and PD-1 blockade would increase antitumor
activity.

Results

Enhanced in vivo antitumor activity with dabrafenib (D) C
trametinib (T) combined with immunotherapy against SM1
tumors

Our tumor model was the previously described SM1
BRAFV600E mutant murine melanoma,15 syngeneic to fully
immune-competent C57BL/6 mice, derived from a spontane-
ously arising melanoma in a BRAFV600E transgenic mouse. Our
group has recently reported the superior antitumor activity of
dabrafenib and trametinib in SM1 tumors established subcutane-
ously in C57BL/6 mice, when compared with tumors treated
with dabrafenib or trametinib alone, or vehicle control.19 We
also observed a higher antitumor activity with the combination
of dabrafenib, trametinib and anti-PD-1 when compared to dab-
rafenib and trametinib combination alone.19 Here we explored
combinations of dabrafenib and trametinib with the immune
checkpoint inhibitor anti-PD-1, compared to the immune acti-
vating Ab to anti-CD137. In both triple combinations there

were superior antitumor effects compared to dabrafenib and tra-
metinib alone (Fig. 1). Consistent with a previous report,38 SM1
is innately resistant to PD-1 Ab alone. However, we observed
that combined therapy with dabrafenib or trametinib plus anti-
PD-1 increased antitumor response compared to anti-PD-1 ther-
apy alone, suggesting a synergistic effect of both dabrafenib and
trametinib in combination with anti-PD-1. This experiment was
performed in triplicate.

Increased effector T-cell homing to the tumors associated
with dabrafenib and trametinib in combination with anti-PD-1

To analyze the mechanism of improved antitumor activity
with the triple combination therapy, we harvested tumors and
spleens on day 5 after starting treatment and stained for CD3
and CD8C. A significant increase in CD3CCD8C cells could be
observed in the tumors treated with dabrafenib and trametinib
plus anti-PD-1 compared to anti-PD-1 monotherapy (p D
0.004) (Figs. 2A and 2B). Of note, dabrafenib and trametinib
without anti-PD-1 also significantly increased CD3CCD8C cells
in the tumors compared to vehicle, whereas a non-significant
trend toward an increase in CD3CCD8C cells was observed with
anti-PD-1, dabrafenib and anti-PD-1 or trametinib and anti-
PD-1. Effector cells harvested from the spleen did not show
statistically significant difference in distribution between the
treatment groups (Fig. 2A).

Increased helper T-cells to the tumors associated with
dabrafenib and trametinib in combination with anti-PD-1

Other important cell types potentially implicated in the mech-
anism of action of the triple combination included the analysis of
CD3CCD4C T-cells. Five days after starting treatment, tumors
and spleens were harvested and stained for CD3 and CD4C. A
statistically significant increase of CD3CCD4C cells in the
tumors treated with dabrafenib and trametinib or dabrafenib
plus trametinib in combination with anti-PD-1 when compared
to vehicle control treated tumors could be observed (Fig. 2C and

Figure 1. Enhanced in vivo antitumor activity with dabrafenib (D) C tra-
metinib (T) combined with PD-1 checkpoint blockade against SM1
tumors. In vivo tumor growth curves. SM1 bearing C57BL/6 mice were
treated when tumors were 3–5 mm with D 30 mg/kg and T 0.15 mg/kg
combination via oral gavage daily, 4 doses of 200 mg of anti-PD-1 (PD-1),
D C PD-1, T C PD-1, D C T C PD-1, D C T C anti-CD137 (CD137), PD-1 C
CD137 or vehicleC isotype control Ab (4 mice in each group). This is rep-
resentative graph of a three times repetition of this experiment.
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D). No change was observed in the dis-
tribution of CD3CCD4C T-cells har-
vested from the spleen between the
treatment groups (Fig. 2C).

Upregulation of PD-L1 was seen
with dabrafenib and trametinib with
anti-PD-1

Upregulating the expression of
ligands such as PD-L1 for inhibitory
receptors on tumor-specific lympho-
cytes that consequently inhibit antitu-
mor immune responses in the tumor
microenvironment suggested an
immune resistance mechanism
induced by the activation of effector
T-cells. Measurement of PD-L1
expression in the tumor cells mostly
includes PD-L1 on the surface of the
tumor cells but also on cells of the
immune system. PD-L1 was signifi-
cantly increased in the dabrafenib and
trametinib treated tumors and when
adding anti-PD-1 to both agents,
compared to vehicle control (Fig. 2E
and F). Flow cytometry analysis of
PD-L1 expression of SM1 spleens
after 5 d of treatments did not show
significant changes (Fig. 2E). Analysis
of the of PD-L1 positive macrophages
in the tumors demonstrated a decrease
in this subset of cells in all treatment
conditions compared to vehicle except
for the PD-1 treated group (Fig. S1F).

Increased MDSC number without
any change in the ratio of PMN/MO-
MDSC in combined treatment of
dabrafenib and trametinib with
anti-PD-1

To evaluate the effect of dabrafenib,
trametinib and anti-PD-1 combination
on other cellular components of the
tumor microenvironment, we harvested
tumors and spleens 5 d after treatment
started, and studied the cell populations
by multiplex FACS. We looked at
the myeloid-derived suppressor cells
(MDSC) and its two major subsets:
cells with granulocytic phenotype that express Ly6G marker
(PMN-MDSC, Ly6ClowLy6GhighCD11bC) and cells with
monocytic phenotype expressing Ly6C marker (MO-MDSC,
Ly6ChighLy6GlowCD11bC). Dabrafenib plus trametinib signifi-
cantly increased MDSCs in the tumors and spleens when com-
pared to vehicle control group (p D 0.02 and p D 0.01
respectively) (Fig. S1B) and in combination with anti-PD-1, also

in both the tumors and spleens (p D 0.01 and p D 0.03 respec-
tively). Dabrafenib plus anti-PD-1, or trametinib plus anti-PD-
1, did not change MDSCs in the tumors or spleens when com-
pared to anti-PD-1. PMN-MDSC and MO-MDSC, the two
major MDSCs subsets, were characterized, as percentage of
CD11bC cell (Fig. S1B). As shown in Fig. 3A and C, there was
no significant shift of the MO-MDSCs subset in the tumors

Figure 2. Increased tumor infiltrating effector and helper T-cells with dabrafenib and trametinib in
combination with anti-PD-1 in SM1 tumors. (A) Quantification of tumor infiltrating effector cells (TILs).
TILs and splenocytes harvested at day 5 after starting treatment were counted and analyzed by flow
cytometry for CD3/CD8C staining (six mice in each group). (B) Representative flow data of percentage
of CD3CCD8C TILs in tumors is shown. (C) Quantification of tumor infiltrating helper T-cells. TILs and
splenocytes harvested at day 5 after starting treatment were counted and analyzed by flow cytometry
for CD3/CD4C staining (six mice in each group). (D) Representative flow data of percentage of
CD3CCD4C TILs in tumors is shown. (E) Quantification of PD-L1 expression. TILs and splenocytes har-
vested at day 5 after starting treatment were counted and analyzed by flow cytometry for SSC/PD-L1
staining (six mice in each group). (F) Representative flow data of percentage for SSC/PD-L1 in tumors
is shown.
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among the different treatment conditions, while a non-significant
decreased PMN-MDSCs (Fig. 3B and C) associated with both
dabrafenib plus trametinib and combination treatments with
anti-PD-1 could be observed. There was no significant change
observed in the spleen among the different treatment groups
(Fig. 3A and B).

Increased TAMs and Tregs in
combined treatment of dabrafenib and
trametinib with anti-PD-1

We then looked at mature TAMs
(F4/80CCD11bC). Both dabrafenib C
trametinib with or without anti-PD-1
significantly increased TAMs in the
tumors when compared to vehicle con-
trol (p D 0.03 and p D 0.03 respec-
tively) (Fig. 3D and E). No significant
change was seen with either dabrafenib
C anti-PD-1 or trametinib C anti-
PD-1. There was no significant change
in macrophages in the spleen among
the different treatment groups. Analysis
of another immune suppressive cell
population, the T regulatory cells (Fig.
S1D, Tregs, CD4CCD25CFOXp3C)
showed significantly increased percent-
age in the tumors with dabrafenib C
trametinib treatment (p D 0.05), dabra-
fenib plus anti-PD-1 (p D 0.03) and
dabrafenib C trametinib C anti-PD-1
(p D 0.03), but no other significant
change observed (Fig. 3F and G).
These results indicated that dabrafenib
and trametinib alone and in combina-
tion with anti-PD1 increase macro-
phage infiltration and Tregs in the
tumor microenvironment. Moreover,
there is a trend for both dabrafenib and
trametinib C/¡ anti-PD-1 to decrease
PMN-MDSCs, although non-
significant.

Combined therapy with dabrafenib,
trametinib, anti-PD-L1 and anti-
CD137 improves antitumor responses
against SM1 tumors

The in vitro studies suggested to us
that there was margin for improving the
antitumor activity if we added further
immune activating Ab, with anti-CD137
being a first candidate based on prior
data.38 C57B/L6 mice with established
subcutaneous SM1 tumors received dab-
rafenib, trametinib, anti-PD-L1 and
anti-CD137 so that the effect of quadru-
ple combination could be revealed. Anti-
PD-L1 Ab was used in this experiment

instead of anti-PD-1 Ab, since previous experiments have dem-
onstrated similar antitumor effects in the SM1 tumor model
(Fig. S1E). In replicate studies, the quadruple combination dem-
onstrated superior antitumor response compared with either of
the double or triple combination groups. In order to see if the
antitumor effect mediated by quadruple combination could

Figure 3. Dabrafenib and trametinib changed the cellular components of the tumor microenviron-
ment. On day 5 post-treatment, tumors and spleens were isolated and stained with fluorescent
labeled antibodies, analyzed by FACS. (A) MO-MDSC (CD11bCLy6CHi Ly6GLo) presented as percent-
age of CD11bC cells in tumors and spleens. (B) PMN-MDSC (CD11bCLy6CLowLy6GHi) presented as
percentage of CD11bC cells in tumors and spleens. (C) Representative flow data of percentage of
CD11bCLy6CHi Ly6GLo and CD11bCLy6CLowLy6GHi in tumors is shown. (D) Analysis of macrophages
(F4/80CCD11bC). *p D 0.03 Vehicle vs. D C T, p D 0.03 Vehicle vs. D C T C PD-1, both in tumors. (E)
Representative flow data of percentage of F4/80CCD11bC cells in tumors is shown. (F) Analysis of T
regulatory cells (Tregs, CD4CCD25CFOXp3C). *p D 0.02 Vehicle vs. D C T, p D 0.03 Vehicle vs. D C
PD-1, p D 0.03 Vehicle vs. D C T C PD-1. (G) Representative flow data of percentage of CD4CCD25C

cells in tumors is shown.
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further be improved, continuous treatment of anti-PD-L1,
instead of just four doses, was given. However, there was no
improvement in antitumor activity in the quadruple combination
group with continuous anti-PD-L1 treatment (Fig. 4A). These
studies suggest that antitumor effect medicated by triple combi-
nation of dabrafenib, trametinib, anti-PD-L1 could further be
improved by anti-CD137.

Effect of quintuple combination overlapped with the effects
of quadruple combination

In order to test if the antitumor effect could be further
improved if an additional immunomodulating Ab was added to
the combination, anti-CD134 was combined with dabrafenib,
trametinib, anti-PD-L1 and anti-CD137. Anti-CD134 is
another immune activating approach based on positive induction
of the OX40 co-stimulatory receptor. However, there was no
improvement in the antitumor activity in the quintuple combi-
nation group, compared with the quadruple combination with
anti-CD134 or anti-CD137 (Fig. 4B).

Discussion

There is a growing body of evidence to support combinatorial
approaches that merge the significant response rate of BRAF
inhibitor-based targeted therapy with long-term durable
responses of immunotherapy in patients with advanced mela-
noma.39 These combinations should be explored in preclinical
models first to test for potential synergy between therapeutic
strategies. It was previously shown that combined therapy of dab-
rafenib, trametinib and anti-PD-1 provided superior activity
against established BRAFV600E mutant murine melanoma SM1
tumors compared with the combination of dabrafenib and tra-
metinib.19 PLX4720 is a widely used preclinical compound anal-
ogous to vemurafenib (PLX4032) that was used in combination
with trametinib. By using an immune competent mouse model
of BRAFV600E mutant melanoma, we demonstrated that the
addition of either the agonist Ab targeting CD137 or the check-
point inhibitor anti-PD1/L1 significantly improved the antitu-
mor effect of targeted therapy. The quadruple therapy with
dabrafenib, trametinib, anti-PD-L1 and anti-CD137 (or anti-
CD134) was even more active than dabrafenib, trametinib and
either anti-CD137 or anti-PD-L1.

The combination of anti-CD137 given intratumorally and
anti-PD-1 potentiated cancer therapeutic immunity in the CT26
mice tumor model in a previously described report,40 and this
effect was explained by the co-expression of PD-1 and CD137 in
the TILs. The fact that PD-L1 expression is associated with
tumor resistance to CD137 co-stimulatory therapy 41 supports
the rational for combining both agents. A previous report 38

assessed different monoclonal Ab-based immunotherapies against
SM1 alone and in combination with PLX4720 and illustrated the
significant antitumor activity of anti-CD137 alone and its
enhanced antitumor activity with prior PLX4720 treatment. No
antitumor activity was observed for anti-PD-1 Ab, either alone
or enhanced by prior PLX4720 therapy. The different scheduling
in generating combination effects with anti-PD-1 therapy might
have been partially responsible for the different outcome when
combining BRAF inhibition and PD-1 blockade in the SM-1
tumor model.

Other combinations of targeted therapy and immunotherapy
have been explored in preclinical models, such as PLX4720 and
anti-CTLA-4 Ab treatment, with no further increase in the anti-
tumor effect of PLX4720 with CTLA-4 blockade.42 To our
knowledge, no previous reports have described the activity of
dabrafenib and trametinib combined with anti-PD-L1 and/or
anti-CD137 Ab and there is no clinical data available regarding
the combination of BRAF and MEK inhibitors with immuno-
therapies such as anti-CTLA4 or anti-PD-1/L1, although several
phase I clinical trials are ongoing.

On step further in determining the best combination of tar-
geted therapy and immunotherapy, we combined dabrafenib and
trametinib with anti-PD-L1 plus anti-CD137, anti-CD137 plus
anti-CD134, anti-PD-L1 plus anti-CD134 or all five agents
together. Pre-clinical studies have shown that ligation of CD134
via agonist anti-CD134 Ab can drive robust T cell-mediated anti-
tumor immunity28,43 and treatment with an agonist anti-CD134

Figure 4. Addition of immune activating antibodies to CD137 or CD134
to the combination of dabrafenib, trametinib and anti-PD-1. (A) Effects
of anti-PD-L1 and anti-CD137 in combination with dabrafenib and trame-
tinib. Tumor growth curves of established SM1 tumors in C57BL/6 mice
that received dabrafenib, trametinib, anti-PD-L1 and anti-CD137 anti-
body. Treatment of anti-PD-L1, anti-CD137 or isotype antibody control
was started at the same time with dabrafenib and trametinib when the
tumor diameter reached 5 mm (4 mice in each group). This is represen-
tative graph of a three times repetition of this experiment. (B) Effects of
quintuple combination of dabrafenib, trametinib, anti-PD-L1, anti-CD137
and anti-CD134. Tumor growth curves of established SM1 tumors in
C57BL/6 mice that received dabrafenib, trametinib, anti-PD-L1, anti-
CD137 and anti-CD134. Treatment of anti-PD-L1, anti-CD137, anti-CD134
or isotype antibody control was started at the same time with dabrafenib
and trametinib when the tumor diameter reached 5 mm (4 mice in each
group). This is representative graph of a three times repetition of this
experiment.
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Ab in conjunction with IL-2 augmented tumor immunother-
apy.44 However, there are no reports that describe the combina-
tion of BRAF and MEK inhibitors with anti-CD134 Ab. We
concluded that the most active therapeutic combinations were
the ones that included anti-PD-L1 Ab and that the addition of
an additional immune activating Ab to a regimen containing
dabrafenib, trametinib, anti-PD-L1 and either anti-CD37 or
anti-CD134 did not provide any additional benefit. Potential
drawbacks for combining multiple agents include the potential
for an increase in the development of immune related adverse
events (irAE) or overlapping toxicities (i.e. liver) that might limit
the number of patients who can fully benefit from combination
cancer therapies. Utilizing a spontaneous mouse tumor model
such as the SM1 tumor model more faithfully recapitulates
human tumor development and may potentially allow for the
development of any therapy-induced toxicity, modeling tumor
immunity and irAE development.

We decided to focus on characterizing the cellular compo-
nents of the tumor microenvironment for the combination of
dabrafenib, trametinib and anti-PD-1 because of the more
advanced clinical development of this drug combination. We
evaluated the frequency of effector T-cells in vivo. Previous
reports documented increased numbers of TILs in biopsies of
patients with melanoma treated with BRAF inhibitors 9,13,14

and PD-145 therapy, with a better response in those patients
who had a more clonal TCR repertoire.45,46 The association
established between CD8C, PD-1 and PD-L1-cell densities in
baseline biopsies of patients treated with anti-PD-1 therapy
and the evidence of a physical interaction between PD-1 and
PD-L1 cells 45 suggested that the increase in the proliferating
CD8C T-cells in regressing tumors could be accompanied by
an increase in PD-L1 expression. In our SM1 model, we
observed an increase in both CD8C T-cells and PD-L1
expression with the combination of dabrafenib, trametinib
and anti-PD-1 compared to anti-PD-1 therapy alone, corre-
lating PD-L1 expression on tumor-resident cells and T-cell
activation with treatment outcome, which has been shown by
others upon release of the PD-1 immune checkpoint45,47,48

or upon treatment with adoptive cell transfer (ACT) of
gp100 TCR transgenic activated splenocytes obtained from
pmel-1 mice with both dabrafenib and trametinib.19 Anti-
PD-/1L1 blockade together with a BRAF inhibitor led to a
significant increase in the number and activity of TILs in a
syngeneic BRAF mutant melanoma model in the PTEN¡/¡
background,49 which further demonstrated synergy between
combined BRAF-targeted therapy and immune checkpoint
blockade. Regarding the activity of TILs in the SM1 tumor
model, published data did not show any difference in the
interferon-g (IFNg) secretion for pmel-1 ACT alone or the
combination with dabrafenib, trametinib or both drugs,
despite the different outcomes.19

Significant changes were observed in the percent of total CD4C

T-cells with dabrafenib and trametinib with or without the addition
of anti-PD-1 in the tumors compared to vehicle control. CD4C T-
cell number and function was extensively studied in a BRAFV600E

mutant murine melanoma model after PLX4720 treatment, where

both an increase in tumor-infiltrating CD4C population and an
increased IFNg production and CD40L expression by these cells
could be observed.50 The authors attributed a regulation of the
tumor microenvironment to the effector (IFNg) and helper
(CD40L) functions of CD4C T-cells and considered the role of
CD4C T-cells to be underappreciated. This differs from other
reports where no significant change in the frequency of total CD4C

T-cells between vehicle- and PLX4720-treated tumors was
observed.38 No difference in CD4C T-cell infiltrate was observed in
tumor biopsies from patients with metastatic melanoma undergo-
ing treatment with a BRAF inhibitor.9

Among the total CD4C T-cell population, an increased fre-
quency of Tregs (CD4CCD25CFoxP3C) was observed in all dab-
rafenib-containing treatment combinations compared to vehicle
control, similarly to the results reported in the SM1 tumor model
with ACT in combination with dabrafenib.19 Trametinib did not
increase the percent of Tregs when combined with anti-PD1 by
itself, but did not attenuate the effect by dabrafenib when com-
bined with both dabrafenib and anti-PD-1. MDSCs are used by
solid tumors to escape T-cell immunity51 and have been shown
to correlate negatively with prognosis and overall survival.52 Dif-
ferent subtypes of tumor-associated MDSC with distinct pheno-
type, morphology and immunosuppressive mechanisms have
been characterized.53,54 We observed an increase in the percent
of total MDSCs in the tumors and spleens of the dabrafenib plus
trametinib C/¡ anti-PD-1 treated groups compared to vehicle
control. No significant shift was observed in the PMN-MDSC or
MO-MDSC subset associated with any of the combination
treatments.

Theoretically, a potential limitation of combining BRAF tar-
geted therapy and immunotherapy for melanoma might be
related to an increase of immune suppressive cells, such as Tregs
and MDSC in the tumor microenvironment, due to the paradox-
ical activation of cells with wild type BRAF. Nevertheless, treat-
ment with dabrafenib, trametinib and anti-PD-1 showed an
increased antitumor effect when compared to dabrafenib or tra-
metinib plus anti-PD-1. The increased percent of Tregs and
MDSC in the dabrafenib, trametinib and anti-PD-1 combina-
tion might be responsible for the later tumor relapse. Others
have observed a reduction in the frequency of intratumor Tregs
(CD4C Foxp3C) following PLX4720 therapy.38 In view of these
findings, a logical rationale would be to study combinations that
include inhibitors of Tregs in preclinical models. Other immune
suppressive cells upregulated after treatment with dabrafenib and
trametinib or the combination of dabrafenib, trametinib and
anti-PD-1 included TAMs (F4/80CCD11bC).

Our study showed improved antitumor activity of dabrafenib
and trametinib with the addition of either the agonist Ab target-
ing CD137 or the checkpoint inhibitor anti-PD1/L1 and dem-
onstrated an increased synergic effect with targeted therapy based
on dabrafenib plus trametinib plus anti-PD-L1 and either anti-
CD137 or anti-CD134. An increase in effector and helper T cells
coincident with an upregulation of PD-L1 with dabrafenib, tra-
metinib and anti-PD-1 could be observed. This was accompanied
by a change in the tumor microenvironment consistent of an
increase in Tregs, MDSC and TAMs.
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Materials and Methods

Mice, cell lines and reagents
C57BL/6 mice (Jackson Laboratories, Bar Harbor, ME), were

bred and kept under defined-flora pathogen-free conditions at the
AALAC-approved animal facility of the Division of Experimental
Radiation Oncology, UCLA, and used under the UCLA Animal
Research Committee protocol #2004-159. The SM1 murine mela-
noma was generated from a spontaneously arising tumor in
BRAFV600Emutant transgenic mice as previously described.15 Dab-
rafenib and trametinib were obtained under a materials transfer
agreement with GSK (Brentford, UK). Dabrafenib and trametinib
were dissolved in dimethylsulfoxide (DMSO; Fisher Scientific,
Hanover Park, IL) and used for in vitro studies. For in vivo studies,
dabrafenib and trametinib were suspended in an aqueous mixture
of 0.5% hydroxypropyl methylcellulose (HPMC) and 0.2% tween
80 (Sigma-Aldrich, St. Louis, MO). One hundred mL of the sus-
pended drug was administered by daily oral gavage into mice at
30 mg/kg of dabrafenib or/and 0.6mg/kg of trametinib when
tumors reached 5 mm in diameter. Tumors were followed by cali-
per measurements three times per week.

Antibody treatment in in vivo model
SM1 tumors were implanted into C57BL/6 mice. When

tumor diameter reached 5 mm, 4 doses of 200 mg of each anti-
PD-1, anti-PD-L1, anti-CD137, anti-OX40 or isotype control
Ab (all purchased from BioXCell, West Lebanon, NH) was
injected intraperitoneally (i.p.) every 4 d.

Flow cytometry analysis
SM1 tumors and spleens were harvested frommice. Tumors were

further digested with collagenase (Sigma-Aldrich). Splenocytes and
cells obtained from digested SM1 tumors, were stained with Ab to
CD3 BV605 (clone 17A2), Ly6C FITC (Clone AL-21), PD-L1/
CD274 PE (CloneMIH5) (BectonDickinson Biosciences, San Jose,
CA), CD8a BV421 (Clone 53-6.7) (Biolegend, San Diego, CA), Ly-
6G (Gr1) PerCP 5.5 (clone RB6-8C5), CD11b APC (clone M1/

70), F4/80 Pacific blue/eFluor450 (clone BM8), CD25 APC
(PC61.5), CD4C FITC (RM4-5) (eBioscience, San Diego, CA),
and analyzed with LSR-II or FACSCalibur flow cytometers (Becton
Dickinson Biosciences), followed by analysis using Flow-Jo software
(FLOWJO, LLC, Ashland, OR). Intracellular staining of Foxp3 PE
(FJK-16s) (eBioscience) was done according to manufacturer’s rec-
ommendations. After applying a gating strategy for the selection of
the target population and exclusion of dead cells in tumors and
spleens (Fig. S1A), the different immune cell populations were ana-
lyzed. Cells were analyzed with a LSR-II or FACSCalibur flow
cytometers (BD Biosciences), followed by Flow-Jo software (Tree-
Star, Ashland, OR) analysis as previously described.49

Statistical analysis
Data were analyzed with GraphPad Prism (version 5) software

(GraphPad Software, La Jolla, CA). A Student’s t-test was used to
analyze experimental data.
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