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Identification of microbial composition directly from tumor tissue permits studying the relationship
between microbial changes and cancer pathogenesis. We interrogated bacterial presence in tumor and
adjacent normal tissue strictly in pairs utilizing human whole exome sequencing to generate microbial
profiles. Profiles were generated for 813 cases from stomach, liver, colon, rectal, lung, head & neck, cer-
vical and bladder TCGA cohorts. Core microbiota examination revealed twelve taxa to be common across
the nine cancer types at all classification levels. Paired analyses demonstrated significant differences in
bacterial shifts between tumor and adjacent normal tissue across stomach, colon, lung squamous cell,
and head & neck cohorts, whereas little or no differences were evident in liver, rectal, lung adenocarci-
noma, cervical and bladder cancer cohorts in adjusted models. Helicobacter pylori in stomach and
Bacteroides vulgatus in colon were found to be significantly higher in adjacent normal compared to tumor
tissue after false discovery rate correction. Computational results were validated with tissue from an
independent population by species-specific qPCR showing similar patterns of co-occurrence among
Fusobacterium nucleatum and Selenomonas sputigena in gastric samples. This study demonstrates the abil-
ity to identify bacteria differential composition derived from human tissue whole exome sequences.
Taken together our results suggest the microbial profiles shift with advanced disease and that the micro-
bial composition of the adjacent tissue can be indicative of cancer stage disease progression.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Bacteria have been associated with cancer progression exerting
beneficial or detrimental effects depending on the time and site of
the colonization [1,2]. Their highly site-specific colonization
enables modulation of the tumor microenvironment [3,4].
Microbial-host dynamics can promote or inhibit host immune
response [5,6]. These changes lead to the accumulation of insults
and epigenetic changes that can change the course of a developing
or established tumor [7]. Evidence has demonstrated that
infection-associated cancer subtypes are molecularly distinct
[8,9], which highlights the importance of microbial modulation
within the tumor cells. These findings are significant and reveal
important microbial patterns and mechanistic pathways in host-
response to cancer. However, microbial composition in many of
these studies has been derived from surrogate material like stool,
saliva, or aspirate, rather than directly from the tumor and sur-
rounding tissue.

The microbial presence within the tumor and adjacent tissue
can inform disease progression and bacterial roles in cancer patho-
genesis [10,30]. Recent studies suggest microbial presence infor-
mation can be derived from human whole exome sequencing
data [11], by computational subtraction, similar to transcriptomics
or metagenomics methods. Bioinformatics tools facilitate profiling
of tumor virome and bacteriome using human sequencing data in
the context of cancer-associated pathogenesis [1216]. These meth-
ods have proven useful and are reason of much exploration. Most
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studies to date examining microbial composition (viral, bacterial,
and other) using human sequencing data have done so using
RNA sequencing data. For instance, Khoury et al. (2013) interro-
gated TCGA cancer cohorts to characterize viral DNA presence,
and integration sites within tumor tissue. Khoury et al. described
important HPV, HBV, and HHV-4 differential integration sites
across TCGA cancer cohorts highlighting utility of RNA sequencing
data for tumor virome characterization [17]. However, this study
lacked validation in tumor tissue, either direct or cross-sectional.

Similarly, Tang et al. (2013) examined viral gene expression and
host fusion building a viral expression map across TCGA cancer
cohorts [18]. Salyakina et al. (2013) and Cao et al. (2016) also
examined viral expression in tumor and normal specimens within
TCGA cohorts across TCGA cohorts [19,20]. Cao et al. (2016)
demonstrated the ability to identify associations between different
viral strains and ethnic differences [20]. These works were all
based on RNA sequencing derived pathogen information. Can-
talupo et al. (2018) on the other hand, examined viral integration
using RNA, whole exome and genome sequencing data across 22
of the TCGA cancer cohorts mapping viral prevalence differences
and commonalities within the sample population [21]. None of
these findings were experimentally validated.

Similar to viral profiling, Riley et al. (2013) examined bacterial
DNA integration in 852 TCGA tumor and normal specimens [22].
They discovered significant bacterial gene integration within vari-
ous TCGA cohorts. However, the highest integration rates were
detected in groups for which no matched or paired normal sample
data were available, including stomach adenocarcinoma and acute
myeloid leukemia [22]. Robinson et al. (2017) later examined
potential bacterial contamination across 5 TCGA cohorts including
acute myeloid leukemia, breast, glioblastoma, ovarian and stomach
adenocarcinomas using RNA sequencing data from paired tumor
and adjacent normal samples [23]. Potential contaminants were
present across all cohorts such as Staphylococcus epidermis, Cutibac-
terium acnes, and Ralstonia species after controlling for batch
effects [23]. Like Riley (2013), Robinson et al. (2017) did not
include experimental validation. On the other hand, Zhang et al.
(2015) developed a workflow for the identification of low abun-
dant microbial species using whole exome and RNA sequencing
data derived from the Human Genome Project based on PathSeq
[24]. Zhang offered experimental validation in gastric biopsies
against TCGA whole genome sequencing data [25]. This study
demonstrated the ability to identify low abundant microbes within
the tumor.

Other studies examining tumor microbiota derived from human
sequences have looked at mutation interaction and gene expres-
sion associations in one or a few cancers. Thompson et al. (2017)
examined bacteria composition and gene expression profiles in
TCGA breast cancer cohort [26]. Thompson found that bacteria
presence correlates with genes that regulate tumor growth path-
ways. This study offered experimental validation via direct 16S
rRNA sequencing of bacterial presence with samples from whom
RNA sequencing data had initially been derived [26]. Greathouse
et al. (2018) examined the lung microbiome association with
TP53 mutation using 16S rRNA methods and confirmed findings
with TCGA lung cancer data [27]. These studies highlight the feasi-
bility of microbial profile identification and functional characteri-
zation from human sequencing data; however, the use of human
RNA sequencing data may not be the best approach at characteriz-
ing bacterial signatures. Use of RNA sequencing could reflect cDNA
library artifacts rather than actual RNA abundance [28]. Whole
exome sequencing data, on the contrary, may provide a better pic-
ture because it represents protein-coding region of DNA, and is not
subject to library artifacts [29].
To our knowledge, no studies have yet examined cross-cancer
microbial composition differential profiling using whole exome
sequencing data from tumor and adjacent normal in a strict paired
design. Here we have interrogated tumor and adjacent normal tis-
sue from paired solid cancers cases from TCGA. We generated bac-
terial composition across 9 cancer types (STAD: stomach
adenocarcinoma, LIHC: liver hepatocellular carcinoma, COAD:
colon adenocarcinoma, READ: rectal adenocarcinoma, LUSC: lung
squamous cell carcinoma, LUAD: lung adenocarcinoma, HNSC:
head & neck squamous cell carcinomas, CESC: cervical squamous
cell carcinoma, and BLCA: bladder carcinoma) encompassing
3758 total tumor and adjacent normal sample files from 813 cases.
We performed quantitative polymerase chain reaction (qPCR) in
some selected differentially abundant taxa for validation on an
independent sample population.
2. Methods

2.1. TCGA cancer database

We downloaded TCGA cancer types with whole exome
sequencing case pairs meeting selection criteria. Cases were
defined as solid tumor cancer types within TCGA that had
human-aligned sequencing reads from exome sequencing in binary
version of Sequence Alignment/Map (BAM) file format. The BAM
files of primary tumor and adjacent solid tissue normal (paired
cases) were selected at a 1:1 ratio along with available clinical data
for the bioinformatics interrogation.

2.2. Computational framework for microbial detection

TCGA Level-1 data were used to derive microbial information.
For microbiota identification, we used a computational pipeline
designed to generate microbial profiles from human whole exome
sequencing BAM files based on PathoScope 2.0 [15]. The pipeline
pre-processed, quality filtered, and mapped all the BAM files using
SAMtools and picard. Additional BLAST filtering step against hg38
reference genome was used to subtract any remaining human
reads and remaining reads were simultaneously aligned using a
custom library of known microbial genomes. Finally, the modified
pipeline produced reports of quantified microbial proportions.
Reports were used for bacterial differential analyses. Viral DNA
detection, mainly HPV, HBV, and EBV, was used as internal pipeline
validation by comparing viral detection rates with previous studies
[1721]. Our pipeline was primarily designed to identify DNA
sequences. So, RNA viruses like HCV were not detected. R-
software was used for phylogenic classification and statistical
analyses.

2.3. Core microbiota

Core taxa were defined as that identified at a minimum positive
detection rate, present in the majority of the population, and
shared between tumor and adjacent normal pairs with a minimum
of 20% prevalence in each sample type. Identification of core micro-
biota was completed under study assumptions of relative abun-
dance positivity threshold of 0.2% per microbe with a minimum
prevalence in the population. Assuming that each identified taxa
are present at least once in each sample with a minimum of 1 read,
a positivity detection rate of 0.2% was deemed reasonable. Core
taxa identification was verified using microbiome R-package (ver-
sion 1.3.3) with default settings and detection and prevalence rates
per study assumptions. Any species identified within each cohort
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were then compared across all cohorts. Visualization of shared taxa
was performed with UpSetR package (https://gehlenborglab.shi-
nyapps.io/upsetr).
2.4. Diversity metrics and differential abundance analyses

Diversity measurements of alpha diversity (within sample
diversity) and beta diversity (between samples) were completed
for each cancer type. Mean differences of 15% are considered clin-
ically relevant. Analyses were completed using R-software pack-
ages, phyloseq (v.1.25.3) and microbiome (v.1.3.3). Alpha
(Shannon-Wiener Index, Simpson Index of Diversity and Fishers
alpha) and Beta diversity were calculated using vegan R-package
(v.2.5-3) and Microsoft Excel (v.2013). Measures were calculated
at the taxonomy or operational taxonomic units (OTU) level and
collated at the species level (by aggregating strains and subspecies
of the same species). KRONA plots (https://github.com/marbl/
Krona/wiki) were created for relative abundance visualization
using Excel macro-enabled templates (Supplementary data FS2).
Quantified proportions of bacteria and viruses generated from
the bioinformatics pipeline were used to create plots. Including
total per microbe read count, average reads per microbe, percent
population prevalence, and relative abundance data. Differential
relative abundance was determined using the Wilcoxon Signed
Rank test within R-platform. Bacterial taxa with false discovery
rate (FDR) adjusted p-value <0.05 were considered significant at
the genus and species level. To determine the association between
differences in relative abundance in tumor and its adjacent normal
and clinical features, paired or unpaired t-test and analysis of vari-
ance (ANOVA) were used for two- and multi-group comparisons,
respectively. Equivalent non-parametric tests were used for non-
normally distributed data and to account for the compositional
Fig. 1. Sample selection workflow and computational pipeline designed to extract micro
813 cases were downloaded. From these cases, a total of 1681 sample sequences were
Bioinformatics pipeline includes additional filtering step described by Zhang et al. 2015
simultaneously aligned to custom library of known microbial genomes. Relative abund
tumor and adjacent normal tissues. Detection of DNA viral sequences used as internal val
adjacent normal) sample were removed. From PathoReport, strict one-to-one pairs wit
samples from 798 paired cases). Demographics and correlation analyses with clinical da
structure of microbial relative abundances. Chi-square test was
used for categorical data. Linear regression models were used to
adjust for clinical and demographical confounders.
2.5. PCR validation

We experimentally validated bioinformatics findings with de-
identified archival tissue from the Hawaii Tumor Registry-
Discard Residual Repository (RTR), a unique collection of
formalin-fixed, paraffin-embedded (FFPE) tissue from cancer
patients diagnosed within the catchment area of the Hawaii Tumor
Registry. The Hawaii Tumor Registry is one of three population-
based registries associated with the National Cancer Institute
(NCI) and the Surveillance, Epidemiology, and End-Results (SEER)
program. Archival tissue from a total of 85 paired cases from gas-
tric (21), and colon (64) cancers were selected for validation. Spec-
imen retrieval, cut & slide, sectioning, pathology review, and
nucleic acid extraction were performed by the University of Hawaii
Cancer Center Pathology Shared Resources. DNA was extracted
from FFPE using Qiagen All Prep FFPET Kit (Qiagen, Valencia, CA)
and quantified by NanoDrop spectrophotometer (Thermo-
Scientific, Wilmington, DE). PCR reactions were completed using
30 ng of DNA for every 25 çl of reaction mix using commercially
available species-specific primer-probe kits (Microbial DNA qPCR
assay kits 330033, Qiagen, Valencia CA) per manufacturer’s
instructions under the following conditions: Activation: 10 min
95¯C, followed by 45 cycles of Denaturation and Annealing at 95¯
C for 15 s and 60¯C for 2 min. Samples were tested in duplicates
plus positive and negative controls. Discrepancies were resolved
by repeat qPCR. Species-specific validation was performed for Heli-
cobacter pylori, Bacteroides vulgatus, Fusobacterium nucleatum, and
Selenomonas sputigena.
bial profiles based on PathoScope 2.0. Whole exome sequencing files (3758), from
processed through our modified pipeline (852 tumor and 829 adjacent normal).
. Additional filtering step completed against human reference genome (hg38) and
ance of PathoReport is calculated for each microbe based on normalized values in
idation. Sample sequences without microbial reads in at least 1 pair tissue (tumor or
h microbial reads were selected for bacterial differential analyses (a total of 1596
ta were completed for cases with available data (746).
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3. Results

3.1. Identification of microbial sequences in TCGA exome data

We generated microbial profiles for whole exome sequencing
files from 1690 samples representing 813 paired cases across 9
TCGA cancer cohorts using a modified PathoScope 2.0 workflow
(Fig. 1). Microbial reads were detected in 83% of the total samples
screened (Supplementary data Table S1). Primary tumor and its
paired adjacent normal with detected bacterial reads on either
sample were selected at a 1:1 ratio for analyses (Supplementary
data Table S2). We detected bacterial DNA presence in 94% of the
primary tumors and 92% adjacent solid tissue normal samples,
while viral DNA presence was 33% and 35%, respectively (Table 1).
The highest proportion of viral DNA positivity was detected in
colon and cervical cancers. Colorectal (COAD and READ) and HNSC
cohorts were found to have the highest percentage of cases with
bacterial DNA. The lowest proportion of samples with any bacterial
DNA presence was observed in BLCA cancer cohort (76% of the
samples).

3.2. Population characteristics

Out of 813 paired cases, only 746 cases had clinical data avail-
able and were used in association analyses (Table 2). Of the total,
69% of cases were White (independent of Hispanic origin), 9% were
African American (independent of Hispanic origin), 4% Asian, and
1% were of other racial groups, aggregated to protect privacy. Age
at diagnosis ranged from 20 to 90 years (mean̆ SD: 64̆ 11.9 yrs).
There were some expected differences in age at diagnosis among
the cancer cohorts with youngest population in CESC cohort
(47˘ 13.5 yrs) and oldest in COAD cohort (71˘ 12.3 yrs). There
was an 8% difference overall in the proportion of females to males
(54% vs. 46% respectively). Approximately 48% of the tumors were
classified as stage II or III.

3.3. Taxonomic composition

Our pipeline detected a total of 1,264,775 quality microbial
reads representing 1353 unique bacteria taxa, from which 882
were shared across cancer cohorts for tumor and adjacent normal
combined (Fig. 2). From these, 12 species were present in all
cohorts including Actinomyces oris, Bradyrhizobium sp. BTAi1
Bradyrhizobium sp. ORS, Cutibacterium acnes, Escherichia coli, Lep-
tothix cholodnii, Neisseria sicca, Ralstonia insidiosa, Rhodopseu-
Table 1
Proportion of samples with microbial reads at any detection level.

TCGA Cohort Samples with Bacteria in Tumor N
(%)

Samples with Bacteria in Adja
(%)

STAD
(n = 176)

74/88 (84) 73/88 (83)

LIHC (n = 141) 68/71 (81) 66/70 (79)
COAD

(n = 176)
88/88 (100) 88/88 (100)

READ (n = 36) 18/18 (100) 18/18 (100)
LUSC (n = 430) 211/221 (95) 209/221 (94)
LUAD

(n = 393)
200/200 (100) 193/200 (97)

HNSC
(n = 145)

72/72 (100) 71/73(97)

CESC (n = 16) 8/8 (100) 7/8 (88)
BLCA (n = 64) 28/35 (76) 28/29 (76)
Totals 767 (94) 753 (92)

Proportion of samples with microbial reads (bacterial and viral) prior to 1:1 pairing sele
presence between tumor and its adjacent normal tissue for any cohort. Overall, we detect
presence, mainly HHV-4, HPV and HBV in 33% of tumors and 35% of adjacent with cerv
domonas palustris, Shingomonas melonis, Sphingomonas panacis
and Bradyrhizobium diazoefficiens (Table S3). Species from eight
major phyla were found among all cancer cohorts with significant
differential relative abundances (p-value <0.05). One of the critical
findings was bacteria profile shifts observed in tumor compared to
adjacent normal in STAD, COAD, CESC and BLCA cancer types.
Meanwhile in LIHC, LUAD, and READ bacterial shifts were less
apparent at the phylum level (Fig. 3). Taxa from Proteobacteria
phylum were found in all nine cancer types. Firmicutes were
higher in STAD tumor and BLCA adjacent normal compared to their
paired corresponding paired tissues. Fusobacteria taxa were pre-
sent at low levels across STAD, LUSC, HNSC, and COAD.

Bacteroidetes were highest in COAD compared to other cohorts.
In STAD tumor we observed a 13% rise in the level of Bacteroidetes
compared to its adjacent normal, and a 22% rise in the level of Fir-
micutes species which, composed nearly half of the total reads
found in tumor while a 66% decrease was observed in the Pro-
teobacteria like species in STAD tumor compared to its adjacent
normal (Fig. 3; Table S4). In COAD, we detected a 31% decrease
of Bacteroidetes and 33% increase in Proteobacteria in tumor tissue
relative to adjacent normal. BLCA cohort cancer appeared to have
the most considerable shift change in composition where the
tumor was colonized almost entirely by Proteobacteria (96%) com-
pared to adjacent normal which had a more diverse composition.

The distribution of the most abundant species in tumor and
adjacent normal suggest that 24 species- Bacillus subtilis, Cutibac-
terium acnes, Escherichia coli, Mycoplasma mycoides, Corynebac-
terium pseudotuberculosis, Ralstonia pickettii, Bacillus mycoides,
Mitsuaria sp. 7, Streptomyces gilvosporeus, Bacteroides fragilis,
Roseateles depolymerans, Psychromicrobium lacuslunae, Bacteroides
thetaiotaomicron, Bacteroides dorei, Bacteroides ovatus, Bacteroides
vulgatus, Bacteroides caecimuris, Alistipes finegoldii, Bradyrhizobium
sp. BTAi1, Rothia mucilaginosa, Flavonifractor plautii, Arthrobacter
sp. IHBB 11108, Sphingomonas koreensis, and Roseburia hominis
commonly co-occurred across cohorts (Table S4-B). Other species
were found across cohorts with at least one read. Measures of total
read absolute abundance, reads proportional relative abundance
and percent prevalence provided different interpretation regarding
the taxonomy compositional structure.
3.4. Core taxa characterization

To identify differences and commonalities of species shared
between the tumor and its adjacent normal pair within each cohort
and across cancer types, core microbiota were characterized
cent N Samples with Virus in Tumor N
(%)

Samples with Virus in Adjacent N
(%)

30/88 (34) 35/88 (40)

13/71 (15) 17/70 (20)
88/88 (100) 88/88 (100)

11/18 (61) 10/18 (56)
63/221 (28) 81/221 (36)
41/200 (21) 34/200 (17)

11/72 (16) 9/73 (13)

8/8 (100) 8/8 (100)
2/35 (5) 1/29 (3)
267 (33) 283 (35)

ction. There was no significant difference in the number of samples with microbial
ed microbial reads in 94% of tumors and 92% of adjacent normal. We found DNA viral
ical and colon cancers having 100% of samples with at least one viral read.



Table 2
Basic population demographic characteristics of 9 TCGA cancer cohorts.

STAD
N = 85

LIHC
N = 81

COAD
N = 88

READ
N = 18

LUSC
N = 221

LUAD
N = 148

HNSC
N = 69

CESC
N = 8

BLCA
N = 28

Totals
N = 746

Race N (%)
White 54 (64) 64 (79) 37 (42) 8 (44) 147 (67) 120 (8) 56 (81) 4 (50) 25 (89) 515 (69)
African American 3 (3) 6 (7) 7 (8) 1 (6) 16 (7) 23 (16) 9 (13) 1 (13) 2 (7) 68 (9)
Asian 16 (19) 7 (9) 3 (1) 2 (1) 1 (1) 29 (4)
Other Race 1 (1) 1 (1) 2 (25) 4 (1)
Not reported 12 (14) 4 (5) 43 (49) 9 (50) 55 (25) 2 (1) 3 (4) 1 (13) 1 (4) 130 (17)

Age at diagnosis
Mean̆ SD Range 67̆ 10.5

4188
64̆ 14.7
2086

71̆ 12.3
4090

63̆ 14.6
4090

68̆ 8.4
4085

65̆ 10.3
4087

63̆ 12.2
2688

47̆ 13.5
2269

69̆ 10.7
4890

64̆ 11.9
2090

Sex N (%)
Male 48 (56) 46 (57) 47 (53) 7 (39) 64 (29) 63 (43) 48 (70) 19 (68) 342 (46)
female 37 (44) 35 (43) 41 (47) 11 (61) 157 (71) 85 (57) 21 (30) 8 (100) 9 (32) 404 (54)

Stage N (%)
I 14 (17) 33 (41) 11 (13) 4 (22) 121 (55) 79 (53) 1 (1) 4 (50) 3 (11) 270 (36)
II-III 47 (55) 35 (43) 62 (70) 9 (50) 96 (43) 61 (41) 30 (43) 4 (50) 11 (39) 355 (48)
IV 8 (9) 3 (4) 14 (16) 4 (22) 3 (1) 6 (4) 38 (55) 14 (50) 90 (12)
No staging 16 (19) 10 (12) 1 (1) 1 (6) 1 (1) 2 (1) 31 (4)

Cases with paired tumor and adjacent tissue normal with available clinical data Clinical. Out of 798 cases, with bacterial presence, clinical data was available for 746. Largest
fraction of cases without clinical data were from LUAD (n = 52). Other race include groups with 2 or less cases per group from Native American, Alaskan Native, Native
Hawaiian or other Pacific Islander to maintain privacy. () indicates not available or not applicable

Fig. 2. Frequency of shared bacterial species across 9 TCGA cohorts. Compositional bar graph showing size of individual core taxonomies (left horizontal bars) and intersect of
shared species (black dot and connecting lines) across cohorts with species frequency (vertical bars). Twelve taxa (yellow highlight), Actinomyces oris, Bradyrhizobium sp.
BTAi1 Bradyrhizobium sp. ORS, Cutibacterium acnes, Escherichia coli, Leptothix cholodnii, Neisseria sicca, Ralstonia insidiosa, Rhodopseudomonas palustris, Shingomonas melonis,
Sphingomonas panacis and Bradyrhizobium diazoefficiens were found to be shared across all nine cohorts at different rates, from which 3, Bradyrhizobium sp. BTAi1,
Cutibacterium acnes, and Escherichia coli, were detected in both pairs tumor and adjacent normal tissue. Colon (COAD) had the greatest number of unique taxa (260 non-
shared), while cervical (CESC) and bladder (BLCA) cancers had no unique species when comparing across cohorts.
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(Table S5). Three species, Escherichia coli, Cutibacterium acnes, and
Bradyrhizobium sp. BTAi1 were found to be present in all 9 cohorts.
As part of taxa characterization we identified 12 species as core
microbiota by study assumptions while microbiome R-package
resulted in 24 core species (Table S5). Bacillus subtilis as the most
frequent taxa in the population, present in 313 of the tumors and
351 of adjacent normal across five cohorts with a low proportion
of reads and relative abundances. (Tables S4.1A-S4.3B). Bradyrhizo-
bium like reads were 22 times higher in CESC tumor compared to
its paired adjacent normal. Yet, Bradyrhizobium sp. BTAi1 relative
abundances in core taxa calculations were lower in tumor than
adjacent normal CESC samples. Similarly Escherichia spp. reads
including Escherichia coli, Escherichia fergusonii and Escherichia
albertii were detected in multiple cohorts. Escherichia coli relative
abundances were also higher in CESC tumor. Overall, approxi-
mately 99% of the total reads detected in CESC were of viral origin



Fig. 3. The landscape of bacterial shift changes across 9 tumor types at the phylum
level. Proportion of bacterial reads and compositional shifts at the phylum level and
anatomical proximities per cancer type in tumor and adjacent normal tissues. Phyla
>1% of the total reads per tissue is shown, phyla < 1% grouped as other and may
include Verrucombia, Spirochaetes, Tenericutes, Fusobacteria, and Cyanobacteria
primarily from colon, gastric and head and neck cancer cohorts. Significant shifts in
bacterial composition are observed between the adjacent normal and tumor tissues
that may indicate disease status or disease progression within the tumor microen-
vironment in the continuum of disease.
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which may affect the impact the significance of these species as
core taxa in CESC specifically.

3.5. Microbial diversity and cancer-specific findings

Species richness, the number of species per sample, was overall
slightly higher in adjacent normal compared to tumor samples
with an average of 358 species in tumor vs. 382 species in adjacent
normal. Among STAD, and CESC and BLCA cohorts, richness was
higher in tumor. Richness was higher in adjacent normal among
COAD, LUSC and READ, while there were no differences noted in
LIHC, LUAD, HNSC and cohorts at the threshold for >15% significant
difference (Table S6). Diversity varied by age, sex, and histopatho-
logical staging at varying degrees across different cancer cohorts
(Table S7) and is presented in detail in cancer specific findings.
We compared the bacterial relative abundances and bacterial
diversity in tumor and its paired adjacent solid tissue normal for
each cancer type and across cancer groups as described in the
methods section. All specimens with aligned bacterial reads were
considered (Table S8).
3.5.1. Stomach
We examined 170 STAD paired primary tumor and adjacent

normal sample WXS from 85 cases. Average read per sample was
360 in tumor and 107 in adjacent normal. The average numbers
of species per sample in tumor samples were 24 compared to 19
in adjacent normal. There was a significant difference in the pro-
portions of taxa in tumor compared to taxa numbers in adjacent
normal independent of pairing (Fisher, p = 0.007). Four species,
Bacillus subtilis, Arthrobacter sp. IHBB11108, Cutibacterium acnes,
and Mycoplasma mycoideswere found to be present in 25% or more
of either sample type. Selenomonas sputigena was the most preva-
lent species in tumor samples with 13% of the total reads in tumor,
while Helicobacter pylori strains made 60% of the total reads in
adjacent normal. Fusobacterium nucleatum was detected in 9%
(n = 8) of tumors with a median relative abundance of 0.001 (range
0.002, 0.25). (STAD Krona Plots Fig. S2). Differential relative abun-
dance for 10 taxa representing 4 major phyla and 7 genus levels
were found to be higher in tumor than in adjacent normal. How-
ever, this difference was not statistically significant (p = <0.05
FDR = 1). Presence of Helicobacter pylori, was found to be signifi-
cantly higher in the adjacent normal compared to tumor tissue
(log2fc = 4.8, p = <0.0001 FDR = 0.01) while Veillonella parvula
was 16 times higher in tumor compared to adjacent normal
(log2fc = 4.5, p = 0.03, FDR = 1) though not significant after multiple
test correction. (Fig. S1, Table S8). Because gastric cancers molecu-
lar subtypes are associated with Epstein Barr virus, we evaluated
the presence of HHV-4 as pipeline internal validation. We detected
HHV-4 in 25 tumor and 25 adjacent normal samples. Status of
HHV-4 did not differ within the paired sample population. How-
ever, the proportions of reads detected in tumor were significantly
higher than those detected in adjacent normal tissue samples at a
ratio of 102:1.

3.5.2. Liver
In LIHC Escherichia coliwas the most abundant species, detected

in 67% of cases (Table S5). Species richness was higher in males cat-
egorized at tumor stage I (estimate = 4.5̆ 2.1, p0.034). We found no
difference in bacterial composition between tumor and adjacent
normal in paired tests (Table S8) and no difference in alpha or beta
diversity when stratifying by tumor stage and sex (Table S7). Given
the viral etiology of LIHC, we evaluated HBV and HHV-4 viral reads
as internal validation. HBV and HHV-4 represented <2% of the total
tumor or adjacent normal reads, detected in 10 cases. The number
of HBV reads in tumor samples were twice the number of reads in
adjacent normal (LIHC Krona Plots-Fig. S2). HHV-4 was noted to be
present only in tumor samples. Most samples with positive identi-
fication of HBV or HHV-4 did not have bacterial content. Of those
with bacterial reads, most commonly co-occurred with Actinobac-
teria and Proteobacteria species (data not shown).

3.5.3. Colorectal cancers
A total of 212 samples from 88 colon (COAD) and 18 rectal

(READ) paired cases were examined. In COAD, average read per
sample mapping to bacterial genomes was 2006 reads in tumor
compared to 3962 reads in adjacent normal (Table S2). Mean spe-
cies per sample was significantly different in tumor compared to
adjacent normal (mean difference = 12.3, p = 0.016, 95%CI 2.4,
22.2). For READ average read number per sample was 569 reads
in tumor and 708 reads in adjacent normal, while the average
number of species per sample was lower in tumor with 20 species
per sample compared to 29 in adjacent normal (p = 0.008). Both
colon and rectal cancers had a small proportion (<1%) of reads
mapping to viral genomes across 7 families. A number of Torque-
teno-virus like reads were also identified (Fig. S2).

The ratio of Proteobacteria to Bacteriodetes was significantly
increased in colon tumor compared to its adjacent normal (log2
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P/B tumor = 0.24, log2 P/B adjacent normal = 2.03). There was no
difference in within sample diversity index or the evenness spread
(t = 1.35, p = 0.18, 95%CI = 0.017, 0.005) by sample type. We
wanted to know if differences existed when stratifying by sex,
age at diagnosis, race and tumor stage. Intra-sample diversity mea-
sured by Shannon-Wiener diversity index did not differ by sex or
age group (p = 0.46). Bacteroides vulgatus was found to be signifi-
cantly different (log2fc = 0.8, p = <0.00001, FDR = 0.001) between
sample types, however the log 2 fold change was negligible at
0.8 higher in adjacent normal compared to tumor (Table S8). Mul-
tiple studies have reported overabundance of Fusobacterium
nucleatum in tumor tissue associated with colorectal cancer patho-
genesis [3135]. Based on these reports we wanted to evaluate the
presence of Fusobacterium nucleatum in our data set. Overall,
Fusobacteria reads represented less than 1% of the total mapped
reads in COAD and READ. Of these, 84% were identified as Fusobac-
terium nucleatum. We found that there were considerable differ-
ences between detected Fusobacterium reads in tumor and those
detected in adjacent normal specimens within the COAD cohort.
The relative abundance means within tumor and within adjacent
normal samples differed significantly (tumor p = <0.0001
FDR = 0.002, adjacent normal p = 0.006 FDR = 0.05, respectively).
However, in paired test by Wilcox Sign Rank, mean relative abun-
dance differences were non-significant when comparing tumor to
adjacent normal samples after multiple test correction
(log2fc = 2.39, p = 0.003, FDR = 0.52). In READ, differential abun-
dance of Fusobacteria reads were negligible.

3.5.4. Cancers of the lung
We analyzed sequencing files from 421 cases of lung squamous

cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). Of these,
23 cases in LUSC and 17 cases in LUAD had one or both samples
without microbial reads or only viral reads. Clinical data was not
available for 26% of LUAD cases (52 /200 cases). Stratified by sex
and sample type, there were no significant differences in age at
diagnosis, race, ethnicity, primary diagnosis, tumor stage, or sur-
vival days between the cohorts. In LUSC 43% were classified at
stage II or III compared to 30% in LUAD.

In LUSC, a total of 9622 reads in primary tumor and 50,630
reads in adjacent normal were mapped and aligned, from which
51% of the tumor reads were identified as viral like reads compared
to 15% in adjacent normal. In analyses of variance total number of
unique species was significantly lower in LUSC tumor compared to
the number of shared species and unique species in adjacent nor-
mal (F = 655.7, p = 0.0001) while no difference was observed in
LUAD. Based on the significant number of reads mapped/aligned
to viral reads in LUSC we wanted to explore the differences in dis-
tribution across tumor and adjacent normal. Total viral mapped
reads were 34% higher in tumor compared to adjacent normal
(Table S4). We found no statistically significant difference in spe-
cies richness, within sample alpha diversity (measured by
Shannon-Wiener Index), or the evenness spread (defined as alpha
diversity / log normal (species richness)) in either cohort.

3.5.5. Cancers of the head & neck
We analyzed 69 squamous cell carcinoma of the head and neck

region. There were significantly more males than females (70% vs
30%) in our subset of paired HNSC sample population. We found
that proportion of bacteria reads accounted for more than 99% of
the total reads. Relative abundance in tumor was not significantly
different compared to adjacent normal. There were no differences
in bacterial diversity means in paired tests comparing tumor to
adjacent normal (p = 0.6). Slight differences were observed by
anatomical site among HNSC larynx, LOP (lip, oral and pharynx
overlap), and tongue (base and non-specified) when compared
against floor of mouth within each tissue type when stratifying
by sex and sample type. In analyses of variance, anatomical site
was a predictor of alpha diversity (p < 0.001). When stratifying
by sample type and sex, alpha diversity was slightly higher among
females adjacent normal sample with significant differences by
anatomical site (p = 0.002) after controlling for sample type, tumor
stage, smoke, age, sex and race. Because the established association
with HPV etiology, we examined viral read presence. Overall we
detected viral reads in 14% of HNSC (20/143) samples, where
HHV-4 and HPV were most common. HHV-4 was detected in
approximately 13% of HNSC samples. Interestingly, specimens with
positive detection of HPV reads were not found to be co-infected
with HHV-4.

3.5.6. Cervical cancer
We analyzed 8 cervical squamous cell carcinoma specimens

from TCGA CESC cohort. Contrary to HNSC, bacterial reads were
less than 1% of the total aligned/mapped reads. In CESC cohort
HPV and HHV-4 were found to co-occur in several samples. Based
on casual, epidemiological and meta-analysis data (Zhu et al. 2016)
linking Chlamydia trachomatis co-infection to susceptibility to cer-
vical cancer after HPV infection, we evaluated co-occurrence of the
bacterium and HPV. We found no evidence of Chlamydia trachoma-
tis reads in our subset of CESC samples. No significant correlation
was found between HPV status and diversity or bacterial abun-
dance in CESC. There was no difference in CESC diversity index
means between tumor and adjacent normal samples (p = 0.11).

3.5.7. Bladder cancer
We examined 850 files from 412 BLCA cases. From these, most

were technical replicates, and a total of 56 paired tumor and adja-
cent normal samples from 28 cases were examined. The majority
of the cases were male (68%), White (89%) and 92% non-Hispanic.
Mean age at diagnosis was 69 years (̆10.7 SD) and 50% were classi-
fied at pathological tumor stage IV. Overall, Proteobacteria were
the most abundant species, making 93% of the total reads with Ste-
notrophomonas maltophilia the most abundant species (61% of the
total reads). However, prevalence within the sample population
was low. We found no statistically significant differences between
paired tumor and adjacent normal samples total number of reads,
relative abundance, or positivity ratio. No taxa were found to be
differentially abundant in paired analyses after multiple test cor-
rection. However, we note that Cutibacterium acnes reads were
uniquely identified in tumor samples (p = 0.03 FDR = 1, L2FC = 3.1).
Because the large number of non-paired files filtered out, we com-
pleted unpaired differential analyses (PathoStat-edgeR function).
When considering all available tumor and adjacent normal files
independent of 1:1 pairing, we found Mathylobacterium radiotoler-
ans, Pseudomonas aeruginosa and Pseudomonas putida to be differ-
entially abundant in tumor compared to normal after FDR
multiple test correction including (p = <0.001, FDR = <0.05,
LFC = 1.61, 2.99 and 1.65 respectively). Stenotrophomonas mal-
tophilia was not identified as differentially abundant in paired or
unpaired analyses. Presence of a combination of these species
could be indicative of disease status or sepsis. In fully adjusted
model, there are no significant differences in alpha diversity. No
statistical significant differences were noted in paired tumor and
adjacent normal analyses when stratifying by sex, race, anatomical
site or tumor stage (data not shown).

3.6. Validation of bacterial species in gastric and colorectal cancers

Computational findings were validated with tissue from an
independent population by species-specific qPCR. We examined
gastric and colorectal adenocarcinoma samples on the basis of
known or unknown infectious etiology. In TCGA STAD cohort, Sele-
nomonas sputigena had the highest proportion of mapped reads
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detected in tumor samples compared other species with a preva-
lence of 18% of tumor compared to 9% of adjacent normal samples.
In the other hand, Helicobacter pylori was found to be differentially
abundant between tumor and adjacent normal pairs with signifi-
cant higher prevalence in adjacent tissue compared to tumor sam-
ples (n = 23 and n = 7, respectively), whereas Fusobacterium
nucleatum was detected at very low abundance levels uniquely
identified in 8% of tumor samples. In TCGA COREAD (colon and rec-
tal cohorts combined) Bacteroides vulgatus was found in 70% of the
samples with statistically significant differential abundance with
higher prevalence in adjacent tissue compared to tumor (n = 80
and n = 68, respectively). Fusobacterium nucleatum was found in
24% (n = 25) of the COREAD cases (21 tumor and 10 adjacent nor-
mal). Bacteroides vulgatus and Fusobacterium nucleatum co-
occurred in 76% of tumors and 90% of adjacent normal samples.
We therefore wanted to validate detection of Selenomonas sputi-
gena, Fusobacterium nucleatum and Helicobacter pylori in tumor
and adjacent normal gastric specimens and presence of Bacteroides
vulgatus and Fusobacterium nucleatum in colorectal specimens.

We selected 62 gastric and 162 colorectal samples from the
Hawaii RTR based on paired tumor and adjacent normal tissue
availability (Table 3A). From the 226 samples, 58 did not yield suf-
ficient quality nucleic acid, 63 colorectal cases (52 colon and 11
rectal) and 21 gastric were tested by species specific qPCR. Popula-
tion characteristics are summarized in Table 3B.

Overall, positive detection in Hawaii RTR gastric dataset was
almost half that of TCGA-STAD dataset (27% vs 47%). Contrary to
TCGA STAD, in RTR gastric samples, there was no association
between bacterial presence and tissue type. One of the most signif-
icant findings from the qPCR examination of gastric tissue was
detection of Selenomonas sputigena and Fusobacterium nucleatum
with similar patterns of co-occurrence to TCGA STAD. Selenomonas
sputigena and Fusobacterium nucleatum were detected in 10%
(n = 2) of RTR tumor samples in the Hawaii RTR compared to 7%
(n = 6) of the gastric tumor samples in TCGA STAD cohort. In RTR
Table 3A
Comparison of qPCR validation in gastric and colorectal cancers.

RTR

Tumor Adjacent normal

Gastric (N = 21)
Helicobacter pylori positive positive

positive negative
RTR: P-value = 1 negative positive
TCGA: P-value = 0.001 negative negative
Fusobacterium nucleatum positive positive

positive negative
RTR: P-value = 1 negative positive
TCGA: P-value = 0.01 negative negative
Selenomonas sputigena (+) positive positive

positive negative
RTR: P-value = 0.479 negative positive
TCGA: P-value = 0.146 negative negative

Colorectal (N = 63)
Bacteroides vulgatus positive positive

positive negative
RTR: P-value = 1 negative positive
TCGA: P-value = 0.025 negative negative
Fusobacterium nucleatum positive positive

positive negative
RTR: P-value = 0.043 negative positive
TCGA: P-value = 0.021 negative negative

Bacteria presence counts for each taxa examined in tumor and adjacent normal gastric a
Fusobacterium nucleatumwere found to co-occur in Hawaii RTR gastric cases in similar pa
non-White for Fusobacterium nucleatum was similar in TCGA and Hawaii RTR (17% vs 18
different (64% vs 5% respectively). Possible explanation for differences observed could b
sample size. N = paired cases; P values were from McNemars test. Null hypothesis: th
presence.
dataset, bacteria presence of Helicobacter pylori, Fusobacterium
nucleatum and Selenomonas sputigena in tumor was associated with
tumor stage and anatomical site, while differences in TCGA STAD
were associated with race.

The Hawaii RTR colorectal cancer Bacteroides vulgatus was
detected in 13% of cases (n = 8, 6 tumor and 5 adjacent normal)
from which 88% were non White while Fusobacterium nucleatum
was found in 21% of cases (n = 13, 11 tumor and 3 adjacent nor-
mal). Bacteroides vulgatus and Fusobacterium nucleatum co-
occurred in 31% of positive tumor samples, while adjacent normal
positive for Bacteroides vulgatuswere not co-infected with Fusobac-
terium nucleatum. When looking at sample population composition
comparingWhite vs non-White, we find that Fusobacterium nuclea-
tum percent positivity was similar in TCGA cohorts and Hawaii RTR
derived samples (17% vs 18% of respectively), while percent posi-
tivity for Bacteroides vulgatus was strikingly different (64% vs 5%
respectively).

4. Discussion

Several studies have evaluated the viral composition in human
tumors using unmapped to humans sequencing data; however,
bacterial composition derived from human whole exome sequenc-
ing data is less explored. In this study we show differences in
microbial composition between strict paired tumor and adjacent
normal tissue samples across 9 TCGA cancer cohorts. Through
our microbial detection methods, we showed significant differen-
tial bacterial abundance in stomach and colon adenocarcinomas.
The role of Helicobacter pylori in stomach adenocarcinoma has been
firmly established. We add potential interaction with the microbial
community in the adjacent tissue as a sign of disease stage and
cancer progression. Noteworthy consistent with the literature, in
our study presence of Helicobacter pylori within TCGA gastric
cohort was higher in the adjacent normal tissue samples (16 times
higher) compared to their tumor pairs. Whereas in the tumor
TCGA

Cases Tumor Adjacent normal Cases

Gastric (N = 85)
1 positive positive 4
1 positive negative 3
1 negative positive 19
18 negative negative 59
2 positive positive 0
1 positive negative 8
0 negative positive 0
18 negative negative 77
0 positive positive 3
2 positive negative 12
0 negative positive 5
19 negative negative 65

Colorectal (N = 106)
3 positive positive 62
3 positive negative 6
2 negative positive 18
55 negative negative 20
1 positive positive 5
10 positive negative 15
2 negative positive 4
50 negative negative 82

nd colorectal cances in TCGA cohorts versus Hawaii RTR. Selenomonas sputigena and
tterns to those observed in TCGA gastric cancer cohort. Percent positivity in White vs
% of respectively), whereas percent positivity for Bacteroides vulgatus was strikingly
e due to other population characteristics (Table 3B), FFPE sample degradation and
ere is no difference between tumor and adjacent normal due to specific microbial



Table 3B
Population characteristics comparison between RTR and TCGA in gastric and colorectal cancers.

RTR TCGA

Gastric (N = 21) Gastric (N = 85)
Race other than White 95% 36%
Age > 60 years 76% 75%
Sex: Female 62% 44%
Diagnosis anatomical site 43% unspecified 31% antrum
Tumor classification 62% stage III 56% stage III

Colorectal (N = 63) Colorectal (N = 106)
Race other than White 73% 58%
Age > 60 years 38% 75%
Sex: Female 49% 49%
Diagnosis anatomical site 38% sigmoid/rectosigmoid region 34% unspecified colon/rectum
Tumor classification 31% stage II 40% stage II

Compared to TCGA gastric cancer subset, Hawaii RTR population characteristics were significantly different by race, sex and tumor site at initial diagnosis. While in colorectal
cancer subset, differences existed in race, age at time of diagnosis, and tumor site at initial diagnosis. We believe differences in positivity ratios could be due population
differences were in TCGA population is mostly White Eastern European compared to Hawaii RTR which is mostly Hawaiian and Asian ethnic subgroups.
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samples we found significantly higher levels or exclusive presence
of oral taxa including Fusobacterium nucleatum, Veillionella parvula
and Selenomonas sputigena. Interestingly, Selenomonas sputigena
has been detected in the tongue coatings of gastric cancer patients
and identified as a potential biomarker [41]. This is the first time
we note identification within the tumor tissue sequences of gastric
patients. The clinical significance of these oral species and their
interaction with the tumor microenvironment should be further
explored. Bacteroides vulgatus is known to be one of the most
numerically dominant species of the colonic microflora and
thought to have beneficial pro-inflammatory immune response
suppression effects [42]. Our findings of differential composition
in colon cancer with significant overexpression in adjacent normal
tissue could have important diagnostic and therapeutic implica-
tions. However, percent positivity within the Hawaii RTR popula-
tion compared to colorectal TCGA cohorts was relatively low at
13% and we are hesitant to make conclusions at this point. Differ-
ences could be in part due to FFPE sample degradation or popula-
tion composition differences. In liver hepatocellular carcinoma, we
found no difference in bacteria composition within paired samples
when comparing tumor to its adjacent normal tissue; however,
there was a visible difference within tissue type in this cohort. In
liver hepatocellular carcinoma, although the number of species
per sample appeared to be similar for both tumor and its adjacent
normal, diversity varied by stage, age at diagnosis and sex which
could have potential clinical significance particularly when we
seek to uncover targetable biomarkers to improve patient out-
comes. Not surprisingly, consistent with previous reports, we iden-
tified HPV reads in all CESC paired samples examined [18,21].
While in cancers of the head and neck, HPV was detected in 5%
of the samples. Previously reported the detection of HPV in head
and neck cancers ranges from 20% to 21% [17,21,37]. Compared
to previous head and neck studies reporting on whole exome
sequencing data, we feel confident that our results are similar
when considering the examined paired samples. Our study
included 69 paired head and neck cases. From these seven samples
(6 tumor, 1 adjacent solid tissue normal) corresponding to 6 cases
(1 female, 5 male) were positive for HPV. We observed mild inter-
action between viral and bacterial presence suggestive of poly-
microbial effects on disease stage. In CESC we found a (weak) neg-
ative correlation between HPV and Bradyrhizobium sp. which var-
ied by pathological stage. We note that our sample size was
small; perhaps correlation may be more prominent with increased
sample size. Interestingly, Riley et al. reported that Bradyrhizobium
like species including Bradyrhizobium BTAi1 were the most-
common strain level operational taxonomic units found within
the 1000 Genomes Project supporting lateral gene transfer (Riley,
2013). Bradyrhizobium sp. however, have been found to be com-
mon contaminants within the 1000 Genome Project and many
high-throughput efforts [38]. Bradyrhizobium diazoefficiens and
Bradyrhizobium BTAi1 are nitrogen fixating bacteria and their role
in disease is currently unknown. Nevertheless, these species may
have a potential role in cancer pathogenesis and cancer therapy
by means of their Hsp70 family molecular chaperone protein inter-
action with p53 [39,40]. Contrary to those, in our study, microbial
profiles were derived from a diverse population. Data has been col-
lected at various Institutes and was sequenced at different Centers.
Although water system or laboratory contaminants could be a
source of Bradyrhizobium reads, strict use of paired samples and
fold change analyses should assist with misidentification. In our
data, presence varied among cohorts with highest total reads
among CESC and COAD. We do point out that in our data, often
both case pairs had bacterial reads for Bradyrhizobium like species.
Presence in both tumor and its adjacent normal could be indicative
of core taxa microbiota within the tumor microenvironment, con-
tamination or laboratory artifacts. Riley, highlights that little is
known about the composition of the human tumor microbiome
and that although contamination can be suspected, the presence
of the microbe may be due to diet and lifestyle differences in the
population. Presence and clinical significance of these species
should be further examined as identification of core microbiota is
important to the understanding of the tumor microenvironment
and the role bacteria play in cancer pathogenesis [36]

In our study we found that there are significant differences in
diversity and composition of the tumor compared to adjacent nor-
mal across different cancer types with observable patterns when
stratifying by age, sex, race, and tumor stage within each cohort.
There were observable differences in clinical presentation among
cases from different cohorts. Differences in clinical presentation
among cancer patients may be explained by microbial abundance
and diversity patterns and similarly can be the focus of future stud-
ies. Taxonomic composition was found to be similar to that previ-
ously reported in RNA-seq, whole genome or whole exome
sequencing data [17,21,23,24]. We note that measures of relative
abundance alone or total number of reads do not provide sufficient
information regarding the compositional differences in the tumor
microenvironment. A high read count with low relative abun-
dances and vice versa, suggests that read counts could mask pop-
ulation prevalence. Measures of total reads, relative abundances,
and percent prevalence in the population need to be taken into
account for a more accurate description of the differences within
and across cohorts. We point out that all three measures must be
used for accurate characterization of the tumor microbiota with
greater weight on percent population prevalence and relative
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abundance when identifying clinically relevant taxonomy to avoid
erroneous conclusions.

Our study is not without its limitations, the low reads relative to
human sequences may not be sensitive to the magnitude of differ-
ential expression and it may be less powered because our paired
analyses filtration resulted in a low number of cases analysed.
We set limits to protect against this by not including any cancer
cohorts with less than 15 specimens (smallest sample size CESC
with 16 specimens). Our integrated analysis of exclusive one-to-
one paired samples is not sensitive to tissue-specific baseline rela-
tive abundance or inherited 16S compositional assumptions. Our
study is strengthen by each patient serving as their own control
eliminating interacting and confounding factors. In this study we
demonstrate the ability to identify the differential composition of
bacterial species derived from human tissue whole exome
sequencing data. This study highlights the importance of analysing
adjacent tissue which can be indicative of cancer stage progression.
5. Conclusions

We conclude that identifying microbial composition in tumor
and adjacent normal tissue, using whole exome sequencing data
provides useful and comparative tool similar to transcriptome
and metagenomic methods to study bacterial composition in can-
cer. Differences in bacterial composition and microbial interaction
within the tumor microenvironment could be indicative of disease
progression. Further qPCR validation of bacterial presence with tis-
sue specimens from Hawaii Tumor Registry as an independent
population strengthens our findings. We highlight co-occurrence
of Selenomonas sputigena and Fusobacterium nucleatum in tumor
tissue of stomach adenocarcinoma. Selenomonas sputigena has been
identified in the tongue coating of gastric patients, but has not yet
been identified in the tumor tissue. Similarly, Bacteroides vulgatus
is believed to have protective anti-tumorigenic effects and one of
the most commonly identified species from stool. Here we have
identified both species, Bacteroides vulgatus predominantly in adja-
cent normal tissue and Selenomonas sputigena in tumor tissue
which could have potential diagnostic and therapeutic implica-
tions. Additional studies are needed to better understand their
roles in the tumor microenvironment. Future studies seeking to
characterize the microbiota within the tumor microenvironment
should consider examination of the adjacent tissue weighing
prevalence within the population with equal weight to the total
amount of reads detected. This will facilitate microbial functional
predictions and distinguish between true presence and laboratory
artifacts or possible contamination.
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