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The prevalence of gastric cancer (GC) differs among regions worldwide, with the highest occurrence in east Asia. Thus, its etiology,
with respect to ethnic background, environmental factors, and lifestyles, is also thought to differ essentially. In addition, etiology of
GC is speculated to be changing due to the recent decrease in the Helicobacter pylori (H. pylori) infection in Japan. State-of-the-art
somatic/germline cancer genomics has clarified the etiologies of gastric carcinogenesis. In this review article, we summarize past
and present milestones in our understanding of GC achieved through genomic approaches, including a recent report that revealed
higher-than-expected frequencies of GCs attributed to east Asian-specific germline variants in ALDH2 or CDH1 in combination with
lifestyles. Based on this updated knowledge, we also discuss the possible impact of and high-risk approaches for GCs in the
upcoming “H. pylori-negative era.”
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INTRODUCTION
Gastric cancer (GC) is the fifth most frequently diagnosed
malignancy and the third leading cause of cancer mortality
worldwide [1]. However, the incidence of GC varies substantially
around the globe and is the highest in east Asian countries
including Japan, Korea, and China [1, 2]. In recent statistics in
Japan, GC was reported to be the second and fourth most
common cancer in men and women, respectively (https://ganjoho.
jp/reg_stat/statistics/stat/summary.html). The most popular etiol-
ogy of GC is Helicobacter pylori (H. pylori) infection. However, in
Japan, the prevalence of H. pylori infection in younger individuals
has been declining at an accelerating rate [3] and eradication
therapies for H. pylori have been approved by the national health
insurance in 2013; thus, the incidence of GC has been gradually
decreasing [4–6].
Recent advancements in cancer genome sequencing have

revealed the comprehensive somatic mutation profiles in GCs. The
Cancer Genome Atlas (TCGA) group has reported that GC can be
genetically/etiologically classified into four subgroups: genetically
stable, chromosomal instability, microsatellite instability, and EBV-
associated GCs [7]. Large-scale sequencing studies of GC identified
and confirmed frequent gene amplifications in genes encoding
receptor tyrosine kinases (e.g., ERBB2, ERBB3, EGFR, FGFR2, MET,
and VEGFR) and somatic mutations in p53, ARID1A, PIK3CA, SMAD4,
CDH1 (E-Cadherin), and RHOA genes, with high frequencies in the
last two specifically among diffuse-type GC (DGC) [7–12]. Somatic
gene fusion of CLDN18/ARHGAP has also been reported as a
frequent event in DGC [7, 13]. These somatic genetics have
clarified the molecularly defined subtypes of GC and their driver
events, which could be candidate therapeutic targets [14, 15].
Germline variations in the personal human genome are also

known to play important roles in carcinogenesis in various organs,
including the stomach [16]. Investigation of the cancer incidences

among Japanese migrants in Hawaii showed that the rates of GC
had decreased in the first- and then second-generation immi-
grants but were still higher than the rate in the local populations
in Hawaii [17], suggesting that individuals of east Asian ethnicity
harbor genetic traits predisposing them to GC. Large-scale
genome-wide association studies (GWAS) of sporadic GCs have
been conducted in east Asian populations and have identified
several common germline variations (described later) [18–21]. As
to rare variants with large effect sizes, well-known germline
variations among hereditary DGC (HDGC) families have been
found in CDH1 worldwide [22] and other variants have also been
reported in genes encoding DNA repair machineries (BRCA1/2,
PALB2, RAD51, MSH2, ATR, NBN, and RECQL5) [23, 24]. However,
hereditary GCs are clinically difficult to identify in east Asian
countries with considerably high incidences of sporadic GCs.
Therefore, in these regions, the precise frequency of hereditary GC
and the predisposing germline genetics have not been fully
elucidated.
Since the early 1960s, statistical epidemiology of cancer patients

has revealed various links of lifestyles, occupational environments,
and dietary factors to the development of cancers [25, 26].
Investigation of the epidemiological factors that predispose
individuals to malignancies have long been warranted in the
view of preventive medicine. However, cancers typically arise
because of complexed combinations of epidemiological factors,
and carcinogenesis occurs over a long duration of time, during
which the past epidemiological information of patients may
become obscure. Therefore, precise enumeration and evaluation
of the epidemiological links between lifestyles and cancer in a
scientifically robust manner has been challenging. Genetic analysis
so-called “mutational signatures” in the cancer genome has
rapidly emerged as a solution to this concern, which would make
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it feasible to evaluate so-far missing links between epidemiology
and carcinogenesis on a genetic basis [27–31].
In this review, we first summarize the recent findings regarding

the links between lifestyles and somatic/germline genetics in GC
patients among east Asian populations, with special focuses on
alcohol intake and smoking habits. We also summarize the
germline variations that predispose affected individuals to GC,
including a recent report of a higher-than-expected frequency of
CDH1 germline variants among Japanese patients with GCs,
most of which were clinically considered as sporadic cases [32].
Finally, we discuss the future perspectives of GC and its
prevention in the upcoming era of H. pylori-negative background
(Fig. 1).

EPIDEMIOLOGY OF H. PYLORI AND LIFESTYLES IN GC
The best-known extrinsic risk factor for GC is H. pylori infection
worldwide [33, 34]. Although the exact proportion of H. pylori-
positive GCs including those with past infections is a matter of
debate, as is how H. pylori-positivity should be evaluated
serologically, histologically, and endoscopically [35–39], the
incidence of H. pylori-positive GC is considered to be extremely
high in east Asian countries, such as 96.0% in Korea [35, 36] and
94.6% or higher in Japan [37–39]. A trans-ethnic meta-analysis of
12 studies of 1,228 GCs showed a statistical link between H. pylori
seropositivity and non-cardia GCs, with an odds ratio (OR) of 3.0
(95% confidence interval [CI], 2.3–3.8), and an even stronger
correlation (OR, 5.9; 95% CI, 3.4–10.3) when the duration between
blood data for H. pylori infection and GC diagnosis was longer
than 10 years [40]. Another trans-ethnic meta-analysis of 19 studies
with 2,491 GCs also showed an epidemiological link between H.
pylori seropositivity and GCs of any kinds with an OR of 1.92 (95%
CI, 1.32–2.78) [41]. Genetic variants of H. pylori strains, specifically
those in CagA and VacA genes, are also known to be linked to
differential risks for GC [34, 42, 43]. Dr Hatakeyama’s group
reported that east Asian CagA has higher binding affinity (by two
orders of magnitude) for the N-SH2 domain of SHP2 than type I
western CagA, and such strong binding makes the structure of the
N-SH2 more relaxed and more efficiently activates SHP2, leading
to the neoplastic transformation of gastric epithelial cells [44].
Given the strong correlation between H. pylori and GC, a
substantially large portion of GCs has been attributed to H. pylori
infection and the subsequent pathological inflammation/

regeneration of gastric mucosa [33, 34, 42]. However, the
prevalence of H. pylori infection is predicted to be decreasing in
Japan. A meta-analysis showed that the multivariable adjusted
prevalence of H. pylori infection has been drastically decreasing
among younger individuals [3]; the predicted prevalence among
populations born in 1920, 1930, 1990, and 2000 was 65.9% (95%
CI, 63.9–67.9), 67.4% (95% CI, 66.0–68.7), 15.6% (95% CI, 14.0–17.3),
and 6.6% (95% CI, 4.8–8.9), respectively. In addition, the Japanese
government broadened the application of H. pylori eradication
therapy for national health insurance in 2013, and ~1.5 million
people in Japan undergo the eradication of H. pylori each year [5].
Presumably due to the combinations of such decreasing
prevalence of H. pylori infection and increase of the eradication
therapy as well as the early detection surveillance of GC [45], the
incidence of GC in Japan has been gradually decreasing [4–6], and
deaths from GC have fallen from 48,427 in 2013 to 45,509 in 2016
[5]. Importantly, this continuously decreasing trend in H. pylori-
related GC implies the emergence of an era of GCs with H. pylori-
negative background in the coming decades. Therefore, investiga-
tions of the etiology and carcinogenesis of H. pylori-negative GC
are warranted.
Regarding our daily lifestyles, it has been shown that the intake

of salty and smoked foods is related to the development of GC
[46]. Like other human malignancies, epidemiological studies have
suggested that GC is attributed to alcohol intake and smoking
habits [47–49]. A large-scale investigation of 54,682 Japanese
population with a 13.4-year follow up revealed that alcohol intake
was significantly associated with an increased risk of GC among
men, with hazard ratio (HR) as high as 1.85 (95% CI, 1.35–2.53)
compared to nondrinkers [47]. This study also showed that every
10-g increase in alcohol intake led a HR of 1.07 (95% CI, 1.04–1.10)
for GC in men. Trans-ethnic meta-analyses of the risks of alcohol
intake for GC showed that alcohol elevated the risk of GC with an
OR of 1.39 (95% CI, 1.20–1.61) (in 19,302 individuals from ten
studies) [48] and a risk ratio of 1.17 (95% CI, 1.00–1.34) (in
5,886,792 individuals from 23 studies) [49]. For smoking, multiple
meta-analyses confirmed a risk for GC among populations from
various ethnic backgrounds [50, 51]. The Stomach cancer Pooling
Project, which included 10,290 patients with GC and 26,145
controls, showed that, when compared to never smokers, the OR
of current smokers was as high as 1.25 (95% CI, 1.11–1.40), and the
OR of individuals with a smoking history longer than 40 years was
elevated to 1.33 (95% CI, 1.14–1.54) [50].

Fig. 1 Future perspectives for gastric cancer (GC) in east Asia in the upcoming H. pylori-negative era. Schematic summary of this review article.
State-of-the-art somatic and germline genetic analyses have clarified the precise molecular pathology of gastric carcinogenesis (left). Based on
such knowledge of the genetics of GC in the current era, the future perspectives for new types of GC in the H. pylori-negative era are
speculated (right). Graphs of the mutational signatures are derived from COSMIC website (Mutational Signatures v2, https://cancer.sanger.ac.
uk/cosmic/signatures_v2.tt)
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MUTATIONAL SIGNATURES IN THE CANCER GENOME
The cancer genome harbors numerous somatic mutations
resulting from DNA damages and erroneous repairs caused by
various endogenous and exogenous processes, including muta-
genic chemical exposures, physical destruction of DNA, and
defective DNA repair pathways, among others. Single-nucleotide
substitutions (C>A, C>G, C>T, T>A, T>C, and T>G) can be classified
into 96 types according to their neighboring two nucleotides
(both 5′ and 3′), and somatic mutations in the cancer genome can
be defined as a set of those 96 types of substitutions. Interestingly,
analysis of the whole-genome or whole-exome sequences of large
cohorts of cancers has revealed that cancer genome mutations
can be mathematically factorized into a mixture of patterns based
on the combinations of these 96 substitution types (Fig. 2). These
patterns of somatic mutations are called mutational signatures (or
mutational spectra) [27–31]. A cancer genome is composed of
additive (nonnegative) accumulations of the source patterns of
the mutational signatures; thus, nonnegative matrix factorization
is utilized to compute contribution scores of the mutational
signatures in each of the cancer genome [29]. The Catalog of
Somatic Mutations in Cancer (COSMIC) group categorized such
mutational signatures into 30 types (Mutational Signature v2,
March 2015) (https://cancer.sanger.ac.uk/cosmic/signatures_v2.tt).
Some of these mutational signatures have been suggested to be
epidemiologically linked to specific carcinogenic factors, such as
smoking (Sig.4), ultraviolet exposure (Sig.7), alkylating agents
(Sig.11), aristolochic acid (Sig.22), aflatoxin (Sig.24), and tobacco
chewing habit (Sig.29), while others are etiologically linked to

intrinsic factors like ageing (Sig.1), altered activation of AID/
APOBEC cytidine deaminases (Sigs.2, 9, and 13), germline/somatic
BRCA mutations (Sig.3), defective mismatch repair (Sigs.6, 15, 20,
and 26), and altered activity of the error-prone polymerase POLE
(Sig.10) (Mutational Signature v2, COSMIC). Recently, COSMIC has
further extended these signatures into more than 60, including
those of possible sequence artefacts (Mutational Signature v3.1,
Aug 2020).
By analyzing the proportions of these mutational signatures in

the cancer genome, it can be feasible to mathematically
enumerate the relative contributions of each factor to carcinogen-
esis [27–31] (Fig. 2).

IDENTIFICATION OF AN EAST ASIAN-SPECIFIC SUBTYPE OF GC
LINKED BY MUTATIONAL SIGNATURES, GERMLINE FACTORS,
AND LIFESTYLES
In a recent report, in which a large cohort of trans-ethnic 531 GCs
was classified based on the patterns of the mutational signatures
in the cancer genome, a GC subgroup was shown to have a high
contribution of Sig.16 [32]. This GC subgroup was characteristic for
its Asian ethnicity and inactive ALDH2 allele (rs671 AA or AG). In a
focused investigation of 243-case Japanese GCs, it was revealed
that 6.6% (16/243) of cases were classified in a cluster with a high
contribution of Sig.16; furthermore, 68.8% (11/16) of these cases
were alcohol consumers with inactive ALDH2 allele (rs671 AA or
AG) [32]. In a detailed analysis of the frequencies of the Sig.16
mutations found in each of 243 Japanese GC, patients with both

Fig. 2 Mutational signatures in the cancer genome. The somatic mutation profile in an individual gastric cancer genome (center) can be
mathematically factorized into cumulative combinations of mutational signatures (outer graphs). To date, more than 60 mutational signatures
have been proposed by COSMIC, several of which are linked to specific carcinogenic factors (smoking, alcohol use, ultraviolet exposure,
ageing, etc.). By calculating the contribution score for each mutational signature (α, β, γ, etc.), the relative contributions of the causative factors
to carcinogenesis can precisely be estimated. Graphs of the mutational signatures are derived from COSMIC website (Mutational Signatures
v2, https://cancer.sanger.ac.uk/cosmic/signatures_v2.tt)
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an alcohol use habit and an inactive ALDH2 allele showed
synergistically increased numbers of Sig.16 somatic mutations
(11.1-fold) compared to other GC patients. The link between Sig.16
and alcohol use has also been reported for other malignancies
[52–54]. Although the molecular mechanism linking alcohol intake
and Sig.16 mutations remains to be investigated, various
acetaldehyde-derived DNA adducts have been identified [55],
which could be a cause of the frequent T>C transitions observed
in Sig.16. An intriguing additive effect of smoking on the
accumulation of Sig.16 in GCs was also identified, in which the
Sig.16 somatic mutations were synergistically increased among
overall GC patients with the triple combination of alcohol intake,
smoking, and a defective ALDH2 allele (p= 0.0339) [32]. This
phenomenon is highly east Asian-specific, based on the specificity
of the defective ALDH2 allele among Asian populations [56]. As
discussed above, epidemiology showed that alcohol intake and
smoking had significant but only mild associations with GCs [47–
51]; however, an integrated investigation of mutational signatures,
germline genetics, and lifestyle information showed that these risk
factors are apparently more obvious among specific east Asian
populations with a defined germline variant. It will also be
important to identify any characteristic mutational signatures
specifically among non-Asian populations.

GERMLINE VARIATIONS THAT PREDISPOSE AFFECTED
INDIVIDUALS TO GC
Large-scale GWAS of single-nucleotide polymorphisms (SNPs)
have also been conducted to identify susceptibility loci in GC.
These studies have been conducted almost exclusively in east
Asian populations such as Japanese and Chinese. Comprehensive
GWAS by Dr Hirohashi’s and Dr Matsuda’s groups in Japan
identified SNPs that were significantly associated with GC. SNPs of
prostate stem cell antigen (PSCA) (8q24.3) and Mucin1 (MUC1)
(1q22) were shown to be associated with DGC [18–20] (Table 1). In
addition, SNPs on 12q24.11-12 (cut like homeobox 2 [CUX2]),
20q11.21 (a gene cluster of the defensin beta family), and 9q34.2
(the ABO locus) were also associated with GC [20] (Table 1), and
were more strongly associated with DGC than intestinal-type GCs,
although it was not statistically significant. The high-risk SNPs of
PSCA and MUC1 identified among Japanese populations were
also confirmed among Korean populations [18, 19] (Table 1). A
GWAS of Chinese GCs showed that multiple variants on 10q23
were significantly correlated with GC, and a notable value was
found for rs2274223 in phospholipase C epsilon 1 (PLCE1) [21]
(Table 1).
The molecular biological functions of these SNPs have been

investigated, and the cancer-related functional disturbances they
presumably cause have been described. For instance, PSCA is
confirmed to be expressed in gastric epithelial cells, and
substitution of a C allele with the high-risk T allele at rs2294008
in the 1st exon reduced its transcriptional activity [18]. It is also
noteworthy that the alleles of this SNP of PSCA have opposing
effects in GC and duodenal ulcers [57]. The T allele, which results
in a longer membranous PSCA, has growth-promoting effects in
inflamed gastric epithelia, making the T allele a high-risk factor for
GC. In contrast, the C allele, which results in a shorter cytosolic
PSCA, may enhance the immune reaction and might accelerate
pathological inflammation in the duodenum as well as induce
antitumor immunity during gastric carcinogenesis [57]. It has also
been reported that the rs6490061 SNP in the CUX2 significantly
reduced its mRNA expression in response to H. pylori infection
[20]. Additional cell biological experiments investigating the
effects of the identified SNPs through gene editing using CRISPR
or other techniques would help reveal precise molecular
mechanisms underlying the significant predispositions to GCs in
affected individuals, which may reveal novel modality of
preventive strategies against GCs.

These polymorphisms, which were initially identified in
Japanese and/or Chinese populations, have been confirmed in
other studies of not only other east Asians [58–60] but also
western populations, including Caucasians [61–63] (Table 1).
However, at the same time, discrepancies have also been reported
in the significance of these SNPs among populations of different
ethnic backgrounds [64]. For instance, the significant association
of the PLCE1 polymorphism with GC identified among Chinese
populations has not been confirmed among Caucasian popula-
tions [64], and in fact, an inverted trend of correlation was
observed in a Korean population, although not statistically
significant [65] (Table 1). The abovementioned GWAS from Japan
did not find the PLCE1 SNP to be significant [18–20]. PLCE1 is a
phospholipase enzyme that connects signals from small GTPases
to various pathways, including MAP kinase cascades [66–68]; thus,
it may regulate cancer-related processes, such as cell growth and
differentiation. This PLCE1 SNP (rs2274223) was initially identified
as a common risk allele for both esophageal and GCs [21], and a
meta-analysis of Chinese populations reported that it is associated
with cardia GC [69]. The prevalence of cardia and non-cardia GCs
is known to differ substantially between ethnicities, and in Japan,
non-cardia GC has been characteristically prevalent [70, 71]; thus,
the inconsistency in the significance of the PLCE1 SNP between
Chinese and Japanese GCs might reflect the difference in the
preferred location of GC as well as its background environmental
factors.
From the viewpoint of preventive medicine, with the relatively

low ORs and small effect sizes of the common germline variants in
GCs identified thus far, genotyping of these SNPs alone is not
sufficient to stratify individuals for the prediction of gastric
carcinogenesis. Thus, a high-risk approach using a small number
of common variants may be insufficient to effectively prevent GC.

UNEXPECTEDLY HIGH INCIDENCE OF GERMLINE VARIANTS IN
CDH1 AMONG EAST ASIANS WITH GC
In addition to the germline genetics described above, HDGC is a
well-known GC-predisposing syndrome that is attributed to
germline variants of causative genes such as CDH1 [22]. CDH1 is
a member of cadherin superfamily consisting of a precursor
domain, five extracellular cadherin domains, a transmembrane
domain, and a cytoplasmic domain (Fig. 3) and plays an important
role in the epithelial cell-to-cell adhesion [72]. Its loss-of-function is
known to contribute to the disseminative and invasive pheno-
types of cancer cells by affecting various molecular pathways [72].
Germline variants in other genes have also been found in DNA
repair machinery (BRCA1/2, PALB2, RAD51, MSH2, ATR, NBN, and
RECQL5) [23, 24], as described later. The CDH1 germline variants
among HDGC was first discovered in Maori kindred in New
Zealand in 1998 [73]. Thus far, at least 155 germline CDH1 variants
have been identified worldwide [74–76], and recently, the
International Gastric Cancer Linkage Consortium (IGCLC) updated
the diagnostic criteria and clinical practice guidelines for HDGC
(Aug 2020) (https://hereditarydiffusegastriccancer.org/) [22].
However, most of the CDH1 variations were reported among

non-Asian populations. As high as 40% of detection rates of
germline CDH1 variants have been reported among non-Asian
HDGC families [77–80], although one report of European familial
GC identified no germline variants in CDH1 [81]. In contrast, the
results of several representative studies of germline CDH1 variants
in cases of possible HDGC or familial GC in Japan [82–86]
suggested that the detection rates of CDH1 variants among east
Asian populations are relatively rarer (Table 2). Thus, determining
the frequency of germline CDH1 variants in familial GCs among
east Asians has remained elusive, due in part to the paucity of
comprehensive studies with large cohorts of HDGC families as well
as the difficulty in identifying genuine cases of HDGC among east
Asians because of the high incidence of sporadic GC.
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The disease penetrance of the germline CDH1 variants had been
estimated to be substantially high among non-Asian populations,
and one study concluded that the cumulative risk of GC by 80
years of ages was 67% (95% CI, 39–99) and 83% (95% CI, 12–84) in
men and women, respectively [87], and another estimated these
risks as 40% (95% CI, 12%–91%) and 63% (95% CI, 19%–99%) by
the age of 75 years for men and women, respectively [78].
However, the disease penetrance among east Asian populations
has not been established to date.
To evaluate the actual germline contributions to unselected GCs

in east Asian populations, the germline genetics of the above-
mentioned 243-case Japanese GC cohort were investigated [32].
Analysis of 624 cancer-related genes revealed that the CDH1 gene
had the highest density of germline rare variants (ratio of variant
frequency to the length of the gene) [32]. In total, 18 out of the
243 Japanese GCs (7.4%) harbored germline variations in CDH1. All
the non-silent germline variations identified in the study are listed
in Table 3 and shown in Fig. 3. Most of the Japanese GCs with
CDH1 variations (77.8%, 14/18 cases) were diagnosed as DGC
(Table 3) [32], which is consistent with the molecular dysfunction
of CDH1 specifically in DGC [88] and strongly suggests pathogenic
roles for these variants in the gastric carcinogenesis. For DGC, the
frequency of CDH1 variants in this cohort (13.3%, 14/105 cases)
was 4.1-fold higher than that in non-Asian GCs of TCGA (3.2%, 2/
62 cases) [32]. Distributions of the variants in CDH1 gene among
Japanese GCs showed that they were enriched at five positions
that were shared with Korean populations with GC [89] but were
clearly different from those of non-Asians (Table 3) (Fig. 3). Four of
the five have previously been reported in early onset GCs in Korea
[89] and families with GCs in Japan and Brazil, including p.G62V in
a family of Japanese ethnicity [83, 86, 90]. Two of them, T340A and
V832M, were suggested to be pathogenic based on in vitro
experiments [91, 92]. Molecular links between the CDH1 variants
and gastric carcinogenesis specifically in relation to the differences
in ethnic backgrounds should be investigated further in the future.
It should be noted that the combined frequency of CDH1 rare

variants among Japanese DGCs is 3.96-fold higher than that of
general Japanese population (3.4%, 36/1,070). Furthermore, in the
first place, it was firstly documented that as high as 3.4% of the
general Japanese population harbors pathogenic germline CDH1
variants [32], which has significant impacts in clinical fields, as
discussed below. However, this observation needs to be
confirmed by an independent analysis with a larger cohort. As
to V832M, a negative study was recently reported in a Korean
population [93].
These germline CDH1 variants had not been identified as

pathogenic in any previous GWAS or other large-scale genetic

studies [18–21, 89]. One possible reason for this is the low minor
allele frequency of the variants. The frequency of even the most
common germline CDH1 variant found in the ToMMo database,
V832M, is only 0.93%; thus, the CDH1 rare variants had probably
been omitted from previous GWAS due to their insufficient
statistical power. Recent statistical methods to analyze rare
variants such as SKAT (SNP-set (Sequence) Kernel Association
Test) where sets of rare/common variants, for instance in a gene or
a region, can be evaluated integratively [94, 95] might make it
feasible to discover significant rare variants among GC including
those of CDH1. Another reason could be related to the ways of
curation in the discovery of pathogenic rare germline variants;
germline CDH1 variants were not intensively focused unless they
were clearly annotated by the ClinVar database [96] or if they
existed at measurable frequencies in general populations. None of
the CDH1 variants in Table 3 are currently annotated as
“pathogenic” in the ClinVar database.
Four out of the five condensed germline variants of CDH1

specifically among Japanese GCs were also shared in Korean
populations with GC [32, 89] (Table 3), indicating that these
germline variants of CDH1 are specifically and widely distributed
among east Asian populations. Thus, it is hypothesized that
common ancestral events in multiple loci of the CDH1 gene can
explain the increased incidence of GC in east Asia; however, their
evolutional significance, including any possible benefit, is still
unclear. Interestingly, one of the oldest modern humans, a 45,000-
year-old male individual found in Ust’-Ishim in Siberia [97],
harbored a heterozygous V832M (rs35572355 G>A) germline
variant in CDH1 (https://bioinf.eva.mpg.de/jbrowse). The Ust’-Ishim
genome shared more alleles with modern east Asian populations
among non-African populations [97]; thus, germline CDH1 variants
can be assumed to be rooted at least in that era.

GERMLINE VARIANTS OF BRCA FAMILY GENES AND GC
Germline variations in the genes encoding double-strand break
repair machinery, such as BRCA1/2, PALB2, and RAD51, have been
shown to be causative factors for familial GCs [23]. Variations in
other DNA repair genes, such as ATR, NBN, and RECQL5, and the
mismatch repair gene MSH2 have also been reported in cases of
HDGC without CDH1 variations [24]. It is generally difficult to
extract pathogenic rare variants from many other nonpathogenic
backgrounds because a statistical approach is not usually
effective. In addition, unlike breast and gynecological cancers,
there have been few reports of systematic germline surveys in
large-scale GC cohorts. In the study of a Japanese GC cohort
mentioned above, 9.1% of the Japanese GC patients (22/243

Fig. 3 Germline variants in CDH1 gene identified in GC patients. A histogram of non-silent germline variants of CDH1 gene identified in a
recent trans-ethnic study [32]. Colors of the circles represent ethnicities of the patients as indicated. Circles with black rims represent cases of
DGC. * and # represent CDH1 variants that were predicted as damaging in silico and found in clinical HDGC families, respectively
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cases) had probably pathogenic germline variants with functional
defects in BRCA pathways, i.e., cases with the BRCA-related
somatic mutational signature (Sig.3) [32]. This frequency is
comparable to that among non-Asian GCs in the TCGA data
(9.0%, 19/212 cases) [32]. These frequencies differ slightly from
those reported in other large-scale genetic studies. For instance,
the prevalence of pathogenic variants in BRCA pathway and TP53
genes were reported to be 5.7% in Japanese patients with breast
cancer [98], and pathogenic BRCA1/2 variants were detected in
12.1% and 12.7% of western European and Asian patients with
breast and ovarian cancers, respectively [99]; however, GCs were
not investigated in these studies and different criteria were
utilized for mutation detection. It has been proposed that
malignancies with the BRCA-related mutational signature are
good candidates for PARP inhibitors in combination with
platinum-induced DNA damage [100], which might be clinically
applicable for GC patients.

CLINICAL INTERVENTION FOR HEREDITARY GC
It is of worth noting that, in the abovementioned study [32], the
germline CDH1 variants found in east Asian populations exhibited
mild disease penetrance in affected individuals. Out of the 18
Japanese GC individuals with germline CDH1 variants, 11 had
family histories of cancers (Table 3), and one had a lobular breast
carcinoma, consistent with a germline variant of CDH1 [22].
However, only one individual fulfilled the IGCLC criteria for HDGC,
as a DGC was diagnosed in the 30s of age [32]. The seven other
individuals did not have any family history of malignancy. Thus,
Japanese individuals even with possibly pathogenic CDH1 variants
do not always develop GC. The reason why the disease
penetrance of the CDH1 variants among Japanese is lower is not
scientifically obvious to date. A possible reason for this might be
because gastric carcinogenesis requires additional etiological hits
that may be missing in the current lifestyles of east Asians. A
recent case report from Japan investigated familial GC in two
siblings; one sibling was infected with H. pylori and had an
advanced GC, while the other was free from H. pylori and had an
early-stage GC [101]. Although additional larger studies are
necessary to draw a conclusion, this suggests that H. pylori
infection plays a significantly additive role in gastric carcinogen-
esis, even in individuals with pathogenic germline CDH1 variants.
It is also speculated that the disease penetrance of HDGC in east
Asian populations is going to be modified due to yet undefined
and ever-changing lifestyle factors, even without H. pylori infection
in the upcoming H. pylori-negative era.
The updated ICGLC guidelines (Aug 2020) for HDGC has

recommended prophylactic gastrectomy for individuals with
pathogenic CDH1 variants [22]. However, as discussed above,
the disease penetrance and behaviors of CDH1 variants are
substantially different between Asian and non-Asian ethnic
backgrounds. Therefore, more careful consideration of prophylac-
tic surgery is recommended for individuals of east Asian ethnicity
who are just uncertainly suspected as familial GC than for
Caucasians [22, 102–104]. A more specific and practical definition
of HDGC among east Asian populations, with evaluations of the
pathogenicity and influence of lifestyle/environmental factors on
the penetrance of CDH1 variants, including their future trends, is
needed.
As has also been discussed by the IGCLC group [22], routine

endoscopic surveillance of the stomach is another possible
method to prevent the development of advanced GC in the
affected individuals. In fact, histologically detectable cancer foci
have been discovered by endoscopic multiple sampling in a large
portion of individuals with germline CDH1 variants [105–107], and
one study succeeded in identifying HDGC based on endoscopic
observations [108]. Advancements in technologies for high-
definition endoscopy, including fluorescent techniques, Raman

spectrometry, and artificial intelligence [109–113], will hopefully
provide increasing evidence that periodic endoscopic surveillance
of pathogenic CDH1 variant carriers is an adequate preventive
option for those at risk of GC. Recent advancements in liquid
biopsy such as detecting cell-free DNA and circulating tumor cells
would also help identify and monitor early-stage GC [114–116].
Thus, prophylactic surgeries would be considered only when
genuine high-risk individuals could be identified based on the
findings of future research on HDGC.

FUTURE PERSPECTIVES
In accordance with the changes in our daily lifestyles and
environmental factors in the coming decades, the incidence and
epidemiology of GCs in east Asia will also be gradually changing.
The recent decrease in H. pylori infection among populations such
as in Japan [3–6] will greatly impact the epidemiology of GC. It is
scientifically hard to speculate the precise molecular pathology of
future GCs. As a hypothesis, we postulate that GCs in the H. pylori-
negative era will be found only among individuals with specific
genetic backgrounds combined with risky lifestyles. Individuals
with pathogenic germline variants may have risks of developing
GC, even without H. pylori infection, possibly due to causative
lifestyle and dietary factors that induce chronic gastritis, such as
intake of salty and smoky foods, smoking, oxidative stresses, and
chemical agents that modulate host immunity, as well as other yet
unidentified factors [117–120]. Currently, with the high prevalence
of H. pylori-induced GC, the etiological effects of other lifestyle/
dietary factors have been masked in epidemiological studies.
However, in the upcoming H. pylori-negative era, previously
undefined lifestyle and environmental factors related to GC,
combined with germline backgrounds, might be manifested more
clearly (Fig. 1).
Based on our current knowledge of the genetics of the GC

development, the relative frequency of GC with high Sig.16
contributions among individuals with alcohol use/smoking habits
with an inactive ALDH2 allele will likely increase among east Asian
populations. The risk of GC among such populations is substan-
tially lower compared to the risk of esophageal cancers, in which
smoking and alcohol use combined with ALDH2/ADH1B risk alleles
has an OR of 189.26 (95% CI, 95.1–376.6) [121]. However, when
considering a high-risk approach for the prevention of future GC, it
is epidemiologically important to reduce the risky daily habits of
alcohol use and smoking, especially for east Asian individuals with
germline variants of ALDH2.
It should be underscored that a higher-than-expected fre-

quency (3.4%) of germline CDH1 variations among the general
Japanese population was recently documented; moreover, enrich-
ment of these variants among Japanese patients with DGC was
essentially higher (13.3%) [32]. Thus far, the relative contribution
of the germline CDH1 variants to the overall prevalence of GC in
east Asians had been considered to be lower than that in other
ethnic groups. However, the frequencies of such GCs among east
Asians with genetic background will probably rise in the coming
era of H. pylori-negative GC in combinations with changes in yet
undefined lifestyles that would function as additive hits in gastric
carcinogenesis. Thus, in the next H. pylori-negative era, it can be
predicted that genetic predispositions of GC would be revealed
more clearly, with the aid of the advancements in statistical
methods. In clinical fields, it is necessary to consider the possibility
of germline variants in patients with GC in daily practice, even
when they are clinically considered sporadic cases. Establishment
of practical endoscopic and liquid biopsy strategies to discover
early-stage HDGCs are also needed.
The definitive clinical features of H. pylori-negative GCs among

east Asian populations have not been established due to the
difficulties in identifying truly H. pylori-negative cases in east Asian
countries. Previous studies have suggested some characteristics of
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H. pylori-negative GCs in east Asia, including early diagnosis (often
under 60 years of age); more frequently located in the cardia
(although controversial); more advanced TNM stage and poorer
prognosis; and a higher proportion of DGC and signet-ring cell
carcinoma, although these were not always statistically significant
[35, 36, 39]. As to TCGA classification of GCs [7], MSI and EBV GCs
might arise by etiologies independent of H. pylori, although it is
worth noting that EBV is known to activate H. pylori CagA via
inhibition of host SHP1 [122]. Thus, these GCs may be more
prevalent among H. pylori-negative GCs; however, they will benefit
from immune checkpoint inhibitors [123], due to the higher neo-
antigen or viral antigen burdens.
In this decade, it is necessary for researchers to extensively

characterize H. pylori-negative GCs in preparation for its global
impact in the upcoming era. Through precise investigations of the
somatic and germline genetics of GCs, along with stratifications
according to patients’ lifestyles, as shown in this review, it should
be feasible to clarify robust, personalized molecular mechanisms
of both the current and novel types of GC in the upcoming H.
pylori-negative era.
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