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ABSTRACT

Genetic recombination is important for generating
diversity and to ensure faithful segregation of chro-
mosomes at meiosis. However, few crossovers (COs)
are formed per meiosis despite an excess of DNA
double-strand break precursors. This reflects the ex-
istence of active mechanisms that limit CO formation.
We previously showed that AtFANCM is a meiotic
anti-CO factor. The same genetic screen now iden-
tified AtMHF2 as another player of the same anti-CO
pathway. FANCM and MHF2 are both Fanconi Anemia
(FA) associated proteins, prompting us to test the
other FA genes conserved in Arabidopsis for a role
in CO control at meiosis. This revealed that among
the FA proteins tested, only FANCM and its two DNA-
binding co-factors MHF1 and MHF2 limit CO forma-
tion at meiosis.

INTRODUCTION

One prominent feature of eukaryotic sexual reproduction
is meiosis, a specific type of cell division where two rounds
of chromosome segregation follow a single round of DNA
replication. This produces haploid spores from a diploid
mother cell. At the first division, correct chromosome segre-
gation relies on physical connections between homologues
which are provided by crossovers (COs). COs are reciprocal
exchanges of genetic material between homologues. These
events are initiated by the formation of DNA double-strand
breaks (DSBs) which will be repaired by homologous re-
combination as COs or non-crossovers (NCOs). At least
two pathways to CO formation exist with different genetic
requirements. Species exist with only one of these pathways;

however Arabidopsis, humans and budding yeast, for ex-
ample, have both (1). The first pathway, which is promi-
nent in most species, is dependent on a group of proteins
collectively referred to as ZMMs (for Zip1, Zip2, Zip3 and
Zip4, Mer3 and Msh4–Msh5) and on the Mlh1–Mlh3 het-
erodimer, first identified in Saccharomyces cerevisiae and
conserved in a large range of eukaryotes (2,3). The COs
that arise from this pathway are sensitive to a phenomenon
known as CO interference where one CO reduces the prob-
ability of another CO occurring at adjacent loci (4). The
second pathway of CO formation involves the endonucle-
ase MUS81 and produces COs that are not sensitive to in-
terference (1). Interestingly, CO number is relatively low in
most eukaryotes, being very close to the one, obligatory, CO
per chromosome pair, despite a large excess of recombina-
tion precursors (5). This suggests that active mechanisms
limit CO frequency, whose molecular factors remain largely
unknown. The helicase Fanconi Anemia Complementation
Group M (FANCM) has been found to be a major meiotic
anti-CO factor in Arabidopsis, limiting MUS81-dependent
CO formation, a normally minor pathway of CO forma-
tion in Arabidopsis thaliana (6). This function seems to be
evolutionarily conserved as Fml1, the fission yeast FANCM
ortholog, also directs NCO formation (7).

Fanconi Anemia (FA) is a rare heritable human disease
that is characterized by early onset of bone marrow fail-
ure and susceptibility to certain cancers. The FA pathway,
which implicates at least 16 proteins in human cells, appears
to be present in all eukaryotes and promotes genome sta-
bility by resolving blocked replication forks (8,9). The FA
genes have been initially identified as preventing FA in hu-
mans. The FA proteins can be categorized into three groups,
according to their biochemical function. (i) The core com-
plex is the first recruited to DNA stalled replication forks,
using FANCM as a landing pad. Two newly discovered co-
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factors of FANCM, namely MHF1 and MHF2, have been
shown to stimulate FANCM DNA-binding activity and its
targeting to chromatin (10,11). (ii) The FA-ID complex is
recruited and ubiquitinated by the core complex at the dam-
age site. (iii) The downstream partners are thought to act
independently of the first two groups but have strong links
with the homologous recombination machinery, and mu-
tation of any leads to development of the disease in hu-
man (8). Implication of FANCM in the control of meiotic
CO formation raises the question whether other FA pro-
teins limit meiotic COs, or if the FANCM meiotic func-
tion is unique among FA proteins. Here, using both forward
and reverse genetic screens, we show that from a series of
FA proteins conserved in Arabidopsis, only AtMHF1 and
AtMHF2 were identified as CO-limiting factors. We pro-
pose that FANCM and its direct DNA-binding cofactors
MHF1 and MHF2 prevent meiotic CO formation, without
the other FA proteins being involved.

MATERIALS AND METHODS

FA protein identification

Homologues and putative homologues of FA-
associated genes were identified using literature searches
and reciprocal BLASTp and PSI-BLAST (http:
//www.ncbi.nlm.nih.gov/, http://www.arabidopsis.org/
and http://bioinformatics.psb.ugent.be/plaza).

Genetic material

The lines used in this study were Atmhf1–3 (N576310), At-
fanci (N555483), Atfancd2 (N613293), Atfance (N553587),
Atfancl (37079–– identified from the Max-Planck In-
stitute für Züchtungsforschung collection from Köln,
Germany (12)), zip4-1 (EJD21) (13), zip4-2 (N568052) (13),
shoc1-1 (N557589) (14), msh5-2 (N526553) (15), mus81-2
(N607515) (16), spo11-1-3 (N646172) (17), fancm-1 (6),
hei10-2 (N514624) (18), fluorescent-tagged lines (FTLs)
I2ab (FTL1506/FTL1524/FTL965/qrt1-2) (19). Geno-
typing by polymerase chain reaction was performed with
two primer pairs. The first pair is specific to the wild-type
allele, and the second pair is specific to the left border of
the inserted sequence as follows: Atmhf1-3 (N576310U
5′-CCTAAACC-ATCCTCCAGCTTC-3′ and N576310L
5′-CAATTTAAAGACGCAGGATCG-3′, N576310L and
LBSalk2 5′-GCTTTCTTCCCTTCCTTTCTC-3′); Atfanci
(N555483U 5′-AGTCCAACACATGTCCTCCAC-3′
and N555483L 5′-TGAGTTTGGTGATTCGAAAGG-
3′, N555483L and LBSalk2); Atfancd2 (N613293U
5′-AATTCACCGGAATGTCACAAC-3′ and
N613293L 5′-AATTCACCGGAATGTCACAAC-3′,
and N613293L and LBSalk2); Atfance (N553587U
5′- TCAGCTGATGAAGACAGCATG-3′ and
N553587L 5′-ATGTCAACCCACAGAGGATTG-3′,
and N553587L and LBSalk2); Atfancl (FANCL-U 5′-
ACAGAGATAAGAAGGGAAGAG-3′ and FANCL-L
ATTATCATTAACCCGTCATTC, and FANCL-L and
LB Gabi o8409 5′-ATATTGACCATCATACTCATTGC-
3′). mhf2 alleles were genotyped by dCAPS
as follows: mhf2-1 locus amplification with 5′-
ATCTGCGAGCTTTTTTATTCGATTGCGATGAA-3′

and 5′-AGGAGTTACGATACCAAATGA-3′, subse-
quent digestion by MboII (104+33 bp for the wild-type
amplicon and 137 bp for the mutant); mhf2-2 locus am-
plification with 5′-AAGCGTTTATGTATTTTTAGA-3′
and 5′-CTTCTGGTTCGTTTATACACT-3′, subsequent
digestion with BseNI (350 bp for the wild-type and 330+20
for the mutant).

Atzip4(s)2 (Atmhf2-1) was sequenced using Illumina
technology. Mutations were identified through MutDetect
pipeline developed by Bioinformatics and Informatics IJPB
team (Supplementary Methods).

Cytology

Meiotic chromosome spreads have been performed as de-
scribed previously (20). Immuno-localizations were per-
formed as described in (21). Observations were made using
a ZEISS AxioObserver microscope.

RESULTS AND DISCUSSION

zmm suppressor screens identified MHF2 as an anti-CO fac-
tor

We sought to find Arabidopsis mutants with increased CO-
formation. However, increased meiotic CO formation does
not confer any obvious macroscopic phenotype prevent-
ing easy genetic screening (6). In contrast, reduction in CO
formation is easily detectable because without the physical
connection provided by CO, pairs of homologous chromo-
somes do not associate as bivalents at metaphase I and ap-
pear cytologically as univalents that segregate randomly at
anaphase I. At the macroscopic level, this lack of CO is re-
flected by reduced fertility easily noticed by shorter fruit.
For instance, zmm mutants show a 75% reduction in biva-
lent formation and are almost sterile (2). Here we continue
a previously described genetic screen, based on the idea that
mutations increasing CO frequency will restore the fidelity
of chromosome segregation and subsequently restore the
fertility of zmm mutants (6). We continued the Atzip4 (13)
suppressor screen that previously revealed AtFANCM as an
anti-CO gene. Among 2000 lines screened, eight recessive
suppressors were found, falling into three complementation
groups, the first of which corresponding to FANCM (6). The
second complementation group contained one line, zip4
suppressor 2 (zip4(s)2), and is the focus of this study. Map-
based cloning defined a region between 27.15 Mb and 30.29
Mb on chromosome 1 as containing the causal mutation.
Following whole genome sequencing, we identified a candi-
date mutation in the splice donor site of exon 2 in the gene
At1g78790. In parallel, we ran a second screen looking for
suppressors of another zmm mutant, Athei10 (18). Among
2000 lines screened, 19 suppressors were found. Systematic
sequencing of At1g78790 in the suppressors revealed that
two lines (hei10(s)174 and hei10(s)170) also contained a
mutation in this gene: one non-sense mutation deleting the
last five amino acids of the protein and one in the splice
donor site of exon 4 (Supplementary Table S1, Supplemen-
tary Figure S1). The hei10(s)174 and hei10(s)170 muta-
tions were shown to be allelic, confirming that mutations in
At1g78790 cause the fertility restoration of zmm mutants.

http://www.ncbi.nlm.nih.gov/
http://www.arabidopsis.org/
http://bioinformatics.psb.ugent.be/plaza
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Figure 1. Bivalent formation analysis at metaphase I. (A–C) Metaphase I chromosome spreads of male meiocytes in three representative genotypes (A)
wild type, (B) Atzip4 (C) Atzip4 Atmhf2-1. Scale bar = 5 �m. (D) Average number of bivalents (blue) and pairs of univalents (red) per male meiocyte at
metaphase I. Number of cells analysed is indicated in parentheses. fancm zip4 and zip4 data are from (6).
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Figure 2. Genetic distances (cM) are increased in mhf2 mutants. Genetic distances in two adjacent intervals on chromosome 2 using FTLs (19) were
calculated with the Perkins equation (23) and are given in centiMorgans (cM). Error bars indicate standard deviation (± SD). Raw data and calculation
can be found in Supplementary Table S2. One tetrad example and its interpretation are shown on the top right corner.

Table 1. Conservation of FA proteins among a selection of eukaryotes

H. sapiens A. thaliana S. cerevisiae S. pombe D. melanogaster C. elegans

FA core
complex

FANCA (8) - - - - -

FANCB (24) - - - - -
FANCC (8) - - - - -
FANCE (8) FANCE (At4g29560) - - - -
FANCF (25) - - - - -
FANCG/XRCC9 (8) - - - - -
FANCL (8) FANCL (At5g65740) (26) - - FANCL (27)a -
FANCM/FAAP250 (8) FANCM (At1g35530)

(6,28)a
Mph1 (29,30)a Fml1 (7,31) FANCM (27) FANCM-

1/DRH3
(32,33)a

MHF1/CENP-S/FAAP16
(10,11)

MHF1 (At5g50930) (34) Mhf1 (10)a Mhf1 (7)a - MHF1
(Y48E1C.1)

MHF2/CENP-X/FAAP10
(10,11)

MHF2 (At1g78790) Mhf2 (10)a Mhf2 (7)a - MHF2
(F35H10.5)

FAAP20 (35) - - - - -
FAAP24 (36) - - - - -
FAAP100 (37) - - - - -

-
Fml1
Mhf1 -
Mhf2 -

FA-ID and
FAN1

FANCI (8) FANCI (At5g49110) - - FANCI FANCI-1
(32,33)a

FANCD2 (8) FANCD2 (At4g14970) (26) - - FANCD2 (27)a FACD-2
(32–33,38–39)a

FAN1 (8) FAN1 (At1g48360) - Fan1 (40)a - FAN-1 (41–43)a

FA
downstream
partners

FANCD1/BRCA2 (8) FANCD1 (At5g01630 &
At4g00020) (64)a

- - BRCA2 (44)a BRC-2 (33,45)a

FANCJ/BRIP1/ BACH1 (8) FANCJ (At1g20720 &
At1g20750) (46)

- - - DOG-1 (47)a

FANCN/PALB2 (8) - - - - -
FANCO/RAD51C (8) FANCO/RAD51C

(At2g45280) (48,65–66)a
- - Spindle D (49)a RFS-1/RAD51C

(50)a

FANCP/SLX4/ BTBD12
(51)

- Slx4 (52)a Slx4 (53)a MUS312
(54,55)a

HIM-18/SLX4
(56)a

FANCQ/ERCC4/

XPF/RAD1 (57)
FANCQ/RAD1 (At5g41150)
(58,67)a

Rad1 (59)a Rad16 (60)a MEI9 (55)a XPF (56)a

Experimentally tested and putative homologues based on sequence similarity are shown.
The “-” symbol indicates no gene encoding protein with significant similarity was found.
aExperimental evidence of a role in DNA repair.
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Figure 3. Genetic interaction of Atmhf1, Atmhf2 and Atfancm with Atmus81. (A) Six weeks old plants are shown with the corresponding genotype indicated
below. The arrow points to the sick Atfancm Atmus81 double mutant for which an enlargement (top view) is shown. (B) Anaphase I chromosome spreads.
Chromosome fragmentation can be observed in Atfancm-1 Atmus81, Atmhf1–3 Atmus81 and Atmhf2-1 Atmus81. Scale bar = 5 �m.

This gene encodes a protein with high similarity
with mammalian MHF2, and reciprocal Basic Local
Alignment Search Tool (BLAST) analyses showed that
At1g78790 encodes the single MHF2 homologue in the
Arabidopsis genome (Supplementary Figure S1). We then
named At1g78790, AtMHF2, and the three mutations
Atmhf2-1 (zip4(s)2), Atmhf2-2 (hei10(s)174) and Atmhf2-
3 (hei10(s)170) (Supplementary Table S1). Human MHF1
and MHF2 were recently identified as a heterotetramer pro-
moting FANCM activity and participating in somatic DNA
damage repair and genome maintenance (10,11). Further,
MHF1 and MHF2 have been shown to direct meiotic re-
combination outcome to NCOs in fission yeast (7).

In the three suppressors with mutations in AtMHF2,
chromosome spreads were performed to assess the level of
bivalent formation. This showed that the restored fertility
was indeed associated with increased bivalent formation
at metaphase I compared to their zmm counterpart (Fig-
ure 1), suggesting that MHF2 has an anti-CO activity at

meiosis in Arabidopsis. The restoration of bivalent forma-
tion was not complete, the zmm mutants, zmm mhf2 double
mutants and wild type having ∼1, ∼4 and 5 bivalent pairs,
respectively (Figure 1). In contrast, Atfancm mutation al-
most completely restored bivalent formation of zmm mu-
tants (4.9 bivalent pairs) suggesting that mutating AtMHF2
has a lesser anti-CO effect than mutating FANCM at meio-
sis (Figure 1).

In the single Atmhf2 mutants, metaphase I was indistin-
guishable from wild type with five bivalents (Figure 1, Sup-
plementary Figure S2). Meiotic CO frequency in Atmhf2
was then measured genetically using pollen tetrad analysis
(19,22,23) (Figure 2, Supplementary Table S2). In the single
mutants Atmhf2-2 and Atmhf2-1 map distances increased
by ∼60% compared to wild type on the two intervals tested
(Z-test, P < 6×10−3), demonstrating that MHF2 is a CO-
limiting factor. This increase, while significant, is lower that
what is observed in fancm (P < 10−6), further supporting
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the conclusion that AtFANCM is a more effective barrier
to CO formation than AtMHF2.

Mutations in MHF1, but not FANCL, FANCE, FANCI nor
FANCD2 restore CO formation in zmm mutants

The identification of AtMHF2 (this study) and AtFANCM
(6) as factors limiting CO formation in Arabidopsis,
prompted us to test for a similar role of other FA proteins.
First, we examined the conservation of FA proteins among
a selection of eukaryotes through reciprocal BLAST anal-
ysis and literature survey (6–8,10,11,24-60) (Table 1). The
FA proteins known in humans can be categorized into three
classes, according to the cascade of events in the process of
repairing blocked replication forks: the FA core complex,
the FA-ID complex and the downstream factors (8,10,11).
Many FA proteins are conserved in animals and plants, sug-
gesting that the pathway may be conserved in these king-
doms, making Arabidopsis a suitable model to address the
function of FA factors. In contrast, fungi seem to lack the
majority of FA components. In Arabidopsis, unique ho-
mologues of components of the core complex (in addition
to FANCM and MHF2) were identified (FANC -E, -L,
MHF1), as well as all three FA-ID complex members (-D2,
-I, FAN1). Among the downstream genes two unique ho-
mologues were identified (-D1, -O), and a third possesses
two homologues organized as a tandem duplication (-J).
No putative homologues were found for the other FA mem-
bers (Table 1). For MHF1, two genes predictions corre-
sponding to the same locus are present in the Arabidop-
sis databases: AT5E46180 (61) and AT5G50930.1 (62) but
it has recently been shown that only the transcript corre-
sponding to AT5E46180 exists in vivo (63).

We analysed mutant lines in the three members of the core
complex (AtMHF1, AtFANCE, AtFANCL) and two mem-
bers of the FA-ID complex (AtFANCD2, AtFANCI) (see
Materials and Methods).

For each targeted gene, we identified a T-DNA inser-
tion that disrupts the genomic coding sequence (Supple-
mentary Figure S3). We did not analyse the downstream
partners AtFANCD1/BRCA2 and AtFANCO/RAD51C
because they are essential for the repair of meiotic recombi-
nation intermediates in Arabidopsis and CO formation (64–
66), and are therefore unlikely candidates for a role in lim-
iting meiotic COs that could be detected. We did not anal-
yse FANCJ either, because it is present as a tandem dupli-
cation, making its mutation unrealistic to obtain. None of
the tested lines showed any obvious somatic defects. Meio-
sis was indistinguishable from wild type on chromosome
spreads in Atmhf1, as shown above for Atmhf2 (Supplemen-
tary Figure S2). This contrasts with the situation in fission
yeast where MHF1/CENP-S and MHF2/CENP-X are re-
quired for balanced segregation of chromosomes at meiosis,
through the establishment of proper kinetochore function,
independently of FANCM and recombination (68). How-
ever a low frequency of univalents was detected in Atfancd2,
Atfance, Atfanci and Atfancl, suggesting that these genes
may have a minor role in promoting CO formation (Figure
1D and Supplementary Figure S2).

To assess the putative anti-CO activity of these genes we
tested if their mutation could suppress the zmm lack of biva-

lents, as do the mutations in the genes FANCM and MHF2.
For each T-DNA line, we obtained a double mutant with
either Atmsh5 or Athei10 (15,18). None of the mutations
of AtFANCE, AtFANCL, AtFANCD2, AtFANCI (Figure
1) nor AtFANCQ/RAD1 (67) increased the number of bi-
valent in a zmm background. Even if we cannot formally
exclude that some activity could be retained in the T-DNA
mutants (although it appears unlikely in view of the posi-
tions of the 4.5 kb T-DNA insertions; Supplementary Fig-
ure S3), these results suggest that these FA genes do not
have any anti-CO activity like FANCM and MHF2. In con-
trast, the double mutant Atmhf1-3 Atmsh5 showed a large
increase of bivalent formation compared to Atmsh5 (Fig-
ure 1), showing that AtMHF1 possesses a meiotic anti-CO
function. The Salk 119435 insertion (mhf1-1 in (63)), which
is inserted 41 base pairs in 3′ of the ATG was unable to
restore bivalent formation of Atmsh5. This suggests that a
functional MHF1 protein is produced at meiosis in this line.

The effect of AtMHF1 depletion at meiosis was similar
to that of AtMHF2, and thus weaker than that of FANCM,
suggesting that like MHF2, MHF1 is a less efficient barrier
to CO formation than FANCM. In summary, these data
suggest that only a subset of the FA associated proteins,
namely FANCM, MHF1 and MHF2, are involved in limit-
ing meiotic COs.

MHF1, MHF2 and FANCM act in the same pathway to limit
meiotic COs

We then tested whether AtMHF1, AtMHF2 and At-
FANCM act in the same pathway to limit meiotic COs.
First, a triple mutant hei10 mhf1 mhf2 showed the same level
of bivalent formation compared to msh5 mhf1, msh5 mhf2,
or hei10 mhf2 (Figure 1D), suggesting that AtMHF1 and
AtMHF2 act in the same pathway. As fancm mutation re-
stores bivalent formation of zmm mutants to near wild-type
levels, it cannot be tested if bivalent formation can be re-
stored further in combination with mhf1or mhf2. This lim-
itation can be overcome by measuring genetic CO forma-
tion. We therefore tested the effect of mutating both At-
FANCM and AtMHF2, using tetrad analysis on one pair
of adjacent intervals (I2a/I2b) (Figure 3). The genetic dis-
tances in Atfancm Atmhf2-2 double mutant was higher than
wild type (Z-test, P < 10−5) and Atmhf2-2 (Z-test, P <
10−4), but not different from Atfancm (Z-test, P > 0.05),
demonstrating that AtFANCM and AtMHF2 limit COs in
the same genetic pathway. This predicts that the extra COs
in an Atmhf2 mutant would arise from the class II pathway,
as described for Atfancm (6). Consistently, the number of
MLH1 foci per cell, a marker of class I, ZMM-dependent
COs, are unchanged in Atmhf2-1 compared to wild type
[9.2±1.7 (n = 21) and 8.9±1.4 (n = 16), T-test P = 0.54]
(Supplementary Figure S4). Further, as class II COs do
not display interference, interference should be impaired in
Atmhf2 mutants. We used the tetrad data set to analyse in-
terference through the calculation of the interference ratio
(IR) (Supplementary Table S2). IR measures the effect of
having recombination in one interval on the genetic distance
of the adjacent interval. IR is close to 0 when having COs in
one interval prevents CO formation in the adjacent interval,
thus indicating positive interference; IR = 1 when interfer-



Nucleic Acids Research, 2014, Vol. 42, No. 14 9093

ence is absent (22). Interference was detected in wild-type
(IR I2b/I2a = 0.37; Z test P(IR = 1) = 1.2 10−6) but was un-
detectable in Atmhf2-1 (IR I2b/I2a = 0.89; P(IR = 1) = 0.6)
and Atmhf2-2 (IR I2b/I2a = 1.02; P(IR = 1) = 0.9) (Sup-
plementary Table S2C). Finally, as MUS81 promotes class
II COs, we produced Atmhf1-3 Atmus81 and Atmhf2-1 At-
mus81 double mutants (Figure 3). In these double mutants,
chromosome fragmentation was observed at anaphase I,
while this is not the case for the respective single mutants;
Atmhf1, Atmhf2 and Atmus81 (Figure 3B). This shows that
in absence of MHF1 or MHF2, MUS81 becomes necessary
for efficient repair of DNA DSBs. This is reminiscent of the
Atfancm Atmus81 meiotic defects (6). Altogether this con-
firms that MHF1 and MHF2 act in the same pathway of
FANCM to restrain class II meiotic CO. However, based on
the partial restoration of bivalent formation in a zmm con-
text (Figure 1) and on the measurement of recombination
levels (Figure 2), it appears that MHF1 and MHF2 have a
less prominent role than FANCM in limiting COs. While
Atfancm-1 Atmus81 plants are barely viable (6), growth and
development of Atmhf1-3 Atmus81 and Atmhf2-1 Atmus81
plants did not have the same synthetic growth defect (Fig-
ure 3) until they enter into the reproductive phase and have
reduced fertility. Similar results were reported by Dangel
and colleagues (63). This suggests that MHF1 and MHF2
have a less important role than FANCM in the repair of so-
matic DNA damage, as they have a less important role in
limiting meiotic COs. Similarly, in human HeLa cells, the
absence of MHF1 or MHF2 leads to less severe genotoxic
agent sensitivity than the absence of FANCM (10). Further,
the MHF1 and MHF2 form a heterotetramer that enhances
FANCM DNA binding and DNA branch migration activ-
ity in vitro but FANCM alone retains some activity indepen-
dently of these two co-factors (10,11,69,70). We thus pro-
pose that during meiosis, MHF1 and MHF2 support the
FANCM helicase anti-CO activity, but that FANCM is able
to function partially in the absence of MHF1/MHF2. The
other conserved members of the FA pathway, including the
members of the core complex, do not seem to play a role
in the FANCM-MHFs anti-CO activity. It has been previ-
ously suggested that FANCM, in addition to being a core
component of the FA pathway, also has a function in so-
matic DNA repair independently of the FA pathway (dis-
cussed in (71)). Here we showed that the FANCM-MHF1-
MHF2 module ensures a specific function as a barrier to
CO formation in meiosis.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Bauknecht,M., Schröpfer,S., Franklin,F.C.H. and Puchta,H. (2012)
The Fanconi anemia ortholog FANCM ensures ordered homologous
recombination in both somatic and meiotic cells in Arabidopsis.
Plant Cell, 24, 1448–1464.
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Lademann,C., Cannavó,E., Sartori,A.A., Hengartner,M.O. and
Jiricny,J. (2010) Deficiency of FANCD2-associated nuclease
KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents.
Cell, 142, 77–88.

42. Smogorzewska,A., Desetty,R., Saito,T.T., Schlabach,M., Lach,F.P.,
Sowa,M.E., Clark,A.B., Kunkel,T.A., Harper,J.W., Colaiácovo,M.P.
et al. (2010) A genetic screen identifies FAN1, a Fanconi
anemia-associated nuclease necessary for DNA interstrand crosslink
repair. Mol. Cell, 39, 36–47.
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