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Abstract: Introduction: Only a minority of patients with platinum refractory head and neck squa-
mous cell carcinoma (PR/HNSCC) gain some lasting benefit from immunotherapy. Methods: The
combined role of the comprehensive genomic (through the FoundationOne Cdx test) and immune
profiles of 10 PR/HNSCC patients treated with the anti-PD-1 nivolumab was evaluated. The im-
mune profiles were studied both at baseline and at the second cycle of immunotherapy, weighing
20 circulating cytokines/chemokines, adhesion molecules, and 14 soluble immune checkpoints
dosed through a multiplex assay. A connectivity map was obtained by calculating the Spearman
correlation between the expression profiles of circulating molecules. Results: Early progression
occurred in five patients, each of them showing TP53 alteration and three of them showing a muta-
tion/loss/amplification of genes involved in the cyclin-dependent kinase pathway. In addition, ERB2
amplification (1 patient), BRCA1 mutation (1 patient), and NOTCH1 genes alteration (3 patients)
occurred. Five patients achieved either stable disease or partial response. Four of them carried
mutations in PI3K/AKT/PTEN pathways. In the only two patients, with a long response to im-
munotherapy, the tumor mutational burden (TMB) was high. Moreover, a distinct signature, in
terms of network connectivity of the circulating soluble molecules, characterizing responder and
non-responder patients, was evidenced. Moreover, a strong negative and statistically significant
(p-value ≤ 0.05) correlation with alive status was evidenced for sE-selectin at T1. Conclusions: Our
results highlighted the complexity and heterogeneity of HNSCCs, even though it was in a small
cohort. Molecular and immune approaches, combined in a single profile, could represent a promising
strategy, in the context of precision immunotherapy.

Keywords: head and neck cancer; gene mutation; immunotherapy; cytokines profile; chemokines;
soluble immune checkpoints
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1. Introduction

Management of recurrent/metastatic head and neck carcinoma (R/M HNSCC) has
been profoundly changed by the advent of immunotherapy [1,2]. The programmed death 1
(PD-1) and programmed death ligand 1 (PD-L1) axis are involved in the genesis, mainte-
nance, and progression of HNSCC and represent the main target of immune checkpoint
inhibitors (ICIs) [3–5]. ICIs revolutionized the standard of care in the first-line setting, as
well as in platinum-refractory R/M HNSCCs [6–10]. Nevertheless, emerging data from
clinical trials and real-world evidence showed that only a relatively small subset of HNSCC
patients benefit from treatment with ICIs in the long term. In particular, patients with
platinum-refractory disease are particularly difficult to treat, due to a poor response rate to
immunotherapy and limited median overall survival (OS). Despite the ability of immune
cells to recognize, control, and kill tumor cells, with a strong impact on the genesis, mainte-
nance, and tumor progression, HNSCC tumor cells employ several mechanisms, in order
to escape the control of the immune system [11,12].

The mechanisms of tumor immune resistance are complex and involve multiple factors,
such as host-related ones (gender, age, distribution of body fat, gut microbiome), genetic
mutations, metabolism, inflammation, and abnormal neovascularization [13]. HNSCC is
distinguished by a tumor immunosuppressive microenvironment induced by a strong in-
flammatory component and high levels of tumor-infiltrating lymphocytes (TILs) [4,13–16],
high regulatory T-cells (Tregs) [17,18], tumor-associated macrophages (TAMs), and den-
dritic cells (DCs) [19], with a tumor heterogeneity between different patients and an intra-
and inter-tumor variability, in relation to the anatomical site of the metastasis [5]. Moreover,
previous treatments, including specific oncology drugs, radical and bilateral neck dissection
plus radiotherapy, and concomitant use of certain drugs, such as opioids, antibiotics, and
corticosteroids, may also affect the response of HNSCC to ICIs [20–22].

Early detection of intrinsically resistant patients is a crucial issue in clinical practice,
as it could prevent immunotherapy failure. The study of cytokines and chemokines at
baseline and during immunotherapy is a repeatable and noninvasive method of monitor-
ing the patient’s immune profile [23–27]. Moreover, the study of soluble factors and/or
surface-bound molecules, related to the tumor microenvironment, is becoming increasingly
of interest, as they are involved in the dysfunctional activity of the immune system [28]. Sol-
uble factors are produced either by alternative splicing of mRNA, through the proteolytic
shedding of extracellular regions of the cellular membrane, or released by immune cells
associated with exosomes and micro-vesicles. The ability of circulating immune checkpoint
molecules to regulate the immune system is manifold, either acting as a decoy for the drug
directly, preventing the effectiveness of ICI antibodies, or by inhibiting the activation of
infiltrating or circulating T lymphocytes by means of the PD-1/PD-L1 axis. Furthermore,
soluble CD-137 negatively regulates the activation of T lymphocytes, blocking the interac-
tion between T lymphocytes and APC [29]. Recent results suggest that the concentration of
these soluble factors is lower in patients benefiting from immunotherapy, with a potential
role in predicting the time to treatment failure [30–32].

The evaluation of the biomarkers of response to immunotherapy cannot fail to include
the analysis of the genomic driver sensibility or primary resistance to ICIs. Increased tumor
mutational burden (TMB), which is a set of non-synonymous mutations in tumors, is closely
related to increased neoantigen levels, conferring the high immunogenicity and increased
T-cell infiltration associated with greater sensitivity to immunotherapeutic agents, prompt-
ing the FDA to approve the anti-PD-1 pembrolizumab in pediatric and adult solid tumors
with microsatellite instability status (MSI) or mismatch repair deficiency, leading to the first
approval based on a specific biomarker, rather than on an organ-specific histology [33–36].
The genomic analysis of HNSCC highlighted a distinct number of mutations in genes that
play key roles in cellular proliferation, differentiation, survival, and metastasis. While the
functions of these genes have been studied extensively, the central role of their impact
on the immune response is only beginning to be appreciated [37]. Primary HNSCC gene
mutation analysis allowed for the categorization of HNSCCs into distinct groups (basal,
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mesenchymal, atypical, and classical), comprising cell-cycle regulating genes (CDKN2A
and CCND1), genes involved in cell proliferation and survival regulation (TP53, HRAS,
PIK3CA, and EGFR), genes responsible for cellular differentiation (NOTCH1), and genes
involved in the modulation of adhesion and invasion of a mesenchymal-enriched subtype
(Wnt signaling pathway regulator gene FAT1, protocadherin). All of these groups show sta-
tistically significant differences in recurrence-free survival. In a more recent study, HNSCCs
were further categorized into five groups (non-human papilloma virus (HPV) basal, HPV
classical, non-HPV classical, HPV mesenchymal, and non-HPV mesenchymal). Based on
the findings, these groups were further classified into three primary subgroups: (i) the basal
subgroup, characterized by an absence of an immune response related to a hypoxic tumor
microenvironment; (ii) the classic subgroup, related to heavy smoking and an amplification
in genetic mutations; (iii) the mesenchymal subgroup, with a high expression of mesenchy-
mal transition markers and immune cells sharing many genetic expression features with the
basal subgroup, with extensive stromal epithelial to mesenchymal transition (EMT) [38,39].

A combined approach, able to reflect the complexity of the relationships between
the genetic profile of the HNSCC patients and their immune system, would be the most
effective, rather than using a single biomarker, in order to predict response/resistance
to immunotherapy. Genomic profiling of HNSCC cancers may enhance the predictive
utility of the TMB profile and allow evaluation of how the patterns of gene expression
regulate the immunophenotype, thus affecting the immune response of R/M HNSCCs and
facilitating the establishment of a personalized combination of immunotherapy approach
in genomically-defined subgroups.

To this purpose, we conducted an exploratory combined evaluation, aiming to iden-
tify the implications of genetic alterations and their relationship with the basal and dy-
namic changes of the immune profile and with the response to immunotherapy treatments
and clinical outcomes. A large spectrum of circulating molecules, including cytokines,
chemokines, soluble immune checkpoints, molecules of adhesion, and indoleamine-2,3-
dioxygenase (IDO, an important microenvironmental factor suppressing antitumor immune
responses), were analyzed through a network analysis, in the serum of patients with R/M
HNSCC, before and during ICIs treatment [40]. These were then correlated with the analy-
sis of genetic alterations of the patients. The primary objective was to identify any possible
biomarker that could influence outcomes in the responders and refractory patients affected
by HPV-negative platinum-refractory HNSCC treated with immunotherapy.

2. Materials and Methods
2.1. Patient Enrolment

Patients with R/M platinum-refractory HPV-negative HNSCC, eligible for immunother-
apy (regardless of PDL1 expression), who started treatment with the anti-PD1 nivolumab
were enrolled. Data regarding age, gender, baseline Eastern Cooperative Oncology Group
performance status (ECOG PS) evaluated before the start of nivolumab, history of to-
bacco smoking and alcohol abuse, tumor site(s), previous locoregional treatment, previous
first-line chemotherapy, and histology were collected. Contrast-enhanced computed to-
mography (CT) scan and contrast-enhanced magnetic resonance imaging (MRI) and/or
CT-PET (positron emission tomography), when appropriate, were used to stage patients.
Inclusion criteria were: age 18 years or older, histologically confirmed R/M HNSCC, lo-
calization of the primary tumor in the oral cavity, oropharynx, and larynx. The disease
had to be non-susceptible to other local therapies with curative intent (surgery and/or
radiotherapy) and had to have progressed on or within 6 months from the last platinum
dose administered in a first-line setting. Patients fit for immunotherapy with adequate
bone marrow, liver, and renal function, ECOG PS ≤ 2, were included in the study. All
patients provided an informed consent to be included in the study and for blood samples
to be collected. Patients who received anti-neoplastic immunotherapy for other previous or
concomitant pathologies, with PS > 2, with a non-squamous histology, with uncontrolled
autoimmune or infectious diseases, or not compliant with protocol requirements were
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excluded from the study. Protocol approval from the local ethics committee was obtained
(CE 4421). Nivolumab was administered at a dose of 240 mg every 15 days, until either
disease progression or unacceptable toxicity was recorded. Radiological response was
assessed according to immune RECIST criteria every three months. Early progression
was defined as the occurrence of disease progression within 3 months from the start of
immunotherapy. Progression-free survival (PFS) was defined as the time, in months, from
the start of immunotherapy until the occurrence of either progression or death, or the date
of the last follow-up. OS was the time, in months, from the start of immunotherapy to
the date of death or of the last follow-up visit. Based on the response to immunotherapy,
patients were classified as non-responders if early progression occurred or responders if
the response was at least that of stable disease (SD) for at least 4 months.

2.2. Samples Collection

Peripheral blood samples were collected from 10 R/M HNSCC patients, both at
baseline (T0) before the first administration of nivolumab and after the second cycle of the
anti-PD1 therapy (T1). At the same time, after centrifugation, serum samples were collected
and stored at −80 ◦C until use.

2.3. Circulating Soluble Molecules

For each patient, 50 µL of serum was used and added to a 96-well plate, together with
a mixture of magnetic beads coated with antibody, according to the manufacturer’s instruc-
tions. Serum concentration of cytokines (TNF alpha, IFN alpha, IFN gamma, IL1 alpha, IL1
beta, IL10, IL12p70, IL13, IL17A, IL4, IL6, GM-CSF), chemokines (MCP1, MIP-1alpha, MIP-1
beta, IL8, IP10), soluble immune checkpoints (BTLA, sCD137 sCD27, sCD28, sCD80, sCTLA-
4, sGITR, HEVM, sLAG3, sPD1, sPDL-1, sPDL-2, sTIM3), adhesion molecules (sE-selectin,
sP-selectin, sI-CAM-1), and IDO were evaluated. The concentration of the molecules was
dosed through a multiplex assay using the Human Immuno-Oncology Checkpoint 14-plex
ProcartaPlex panel 1 (catalog number: EPX14A-15803-901) (eBioscience) (Thermo Fischer
Scientific, Waltham, MA, USA) and the Human Immuno-Oncology Checkpoint 14-plex
ProcartaPlex Human Inflammation panel (catalog number: EPX200-12185-901). Samples
were analyzed using Luminex 200 platform (BioPlex, Bio-Rad, Hercules, CA, USA). Data
(expressed in pg/mL) were analyzed with Bio-Plex Manager Software.

2.4. Statistical Analysis

A total of 34 molecules from 10 patients (of which, 5 were classified as responders
to the therapy, with 5 as non-responders to the therapy and 3 classified as alive versus
7 classified as dead) were analyzed. Data were first pre-processed through the application
of a logarithmic transformation, and experimental differences between the expression levels
in the responder patients and non-responder patients were then tested for statistical signifi-
cance via Mann–Whitney test at two different times: T0 (i.e., basal) and T1 (i.e., after three
months). Statistical significance was defined by a p-value ≤ 0.05. Given the exploratory
nature of the study, corrections for multiple testing were not applied.

2.5. Connectivity Analysis

In order to investigate the relationships between soluble immune-related molecules
levels and therapy response, a connectivity map was first obtained by calculating Spearman
correlation coefficients between the expression profiles of the investigated circulating
molecules available from 10 patients and the distribution of their corresponding therapy
response values. In order to further investigate the differences, in terms of the connectivity
of the analyzed molecules in responder and non-responder patients, two connectivity
matrices were built by calculating the Spearman correlation coefficients among each pair of
molecules, one for responder patients and one for non-responder ones, and were rendered
as two connectivity maps where correlation values increased from red to blue. Correlation
values with p ≤ 0.05 were considered to be statistically significant. The two corresponding
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networks of connectivity were then constructed, in which nodes represented molecules,
and a link occurred between them if the absolute value of Spearman correlation between
their expression levels was greater than the selected threshold (i.e., the 85th percentile of
the overall distribution corresponding to 0.8) and statistically significant (p-value ≤ 0.05).
All the connectivity networks, along with their corresponding values of correlation and
statistical p-values, were detailed as edge lists in Supplementary Table S1 (for time T0)
and Supplementary Table S2 (for time T1). A further exploratory data analysis of the
34 molecule expression levels from 10 patients grouped by patient status (alive versus
dead) was performed. To investigate the difference in the patterns of molecule connectivity,
even in terms of patient status, two connectivity maps between each pair of molecule
expression values were built, one for alive patients and one for dead patients, both at T0
and at T1, respectively.

2.6. Comprehensive Genomic Cancer Profiling

Genomic cancer profile was defined through Foundation One® CDx, a next gener-
ation sequencing tissue-certified comprehensive genomic profiling service for all types
of solid tumors, capable of detecting 4 main classes of genomic alterations (substitution
of bases, insertions and deletions, alterations in the number of copies, gene rearrange-
ments) in 324 tumor-related genes, as well as genomic signatures, including TMB and
MSI [41–44]. Formalin-fixed, paraffin-embedded samples of the tumor were collected at
the first diagnosis for each patient and were used for genomic cancer profiling.

3. Results

A total of 10 consecutive patients with HPV-negative R/M platinum refractory HNSCC
who started nivolumab between December 2018 and July 2019 were included. All of the
patients received platinum-based chemotherapy in a first-line setting and underwent
disease progression at or within 6 months from the last platinum dose. Their clinical and
pathological features are reported in Table 1. Median age was 66 years (range, 46–66 years),
and eight patients were male. Baseline ECOG PS was 0 and 1 in two and eight patients,
respectively. The primary tumor site was the oropharynx in one patient, the larynx in
five patients, and the oral cavity in four patients. Grading was G2 and G3 in four and six
patients, respectively. HPV status was negative in all of the patients, including the one
with oropharyngeal cancer. One patient had exclusively recurrent disease not curable with
locoregional treatments, while the other patients had at least one metastatic site.

Table 1. Clinicopathological characteristics of platinum refractory HPV 2 negative R/M HNSCC and
previous treatment.

Characteristics All Patients N 10

Age (years)
Median age (range) 66 (46–76)

Gender
Male

Female
8
2

Baseline PS 1

0
1

2
8

Risk factors
Smoking history (SH)
Alcohol abuse (AA)

8
3

Tumor Location
Oral cavity

Oropharynx
Larynx

4
1
5
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Table 1. Cont.

Characteristics All Patients N 10

Histology
Squamous cell carcinoma 10

Grading
2
3

4
6

HPV 2

Positive
Negative

0
10

Only recurrent disease
Metastatic site ≥ 1

Previous I line (extreme)

1
9

10
1 PS: ECOG performance status at baseline, before nivolumab treatment. 2 HPV: human papilloma virus.

3.1. Outcomes

The median follow-up time was 27 months (22–31). The median PFS was 3 (1–33)
months and median OS 6.5 (2–33) months. Five (50%) patients were classified as non-
responders, as early progression occurred (cases 1–5) (Table 2). Among the other cases,
three patients underwent progression within 6 months of starting nivolumab (cases 6, 7,
and 10), while the remaining two patients obtained a prolonged response (20–33 months).
Case number 8 was still undergoing nivolumab treatment at the time of writing the present
manuscript. Four patients received an additional line of chemotherapy after nivolumab
progression (cases nos. 2, 4, 7, and 9). Three patients (cases 2–8–9) were alive at the time of
the last visit, while the other seven patients succumbed to the disease (Table 2).

Table 2. Case series: clinicopathological features, molecular characteristics, and outcomes.

Patients Age Primary
Tumor PS Best

Response
PFS

(Months)
OS

(Months)
Early Pro-
gression

Patient
Status 1 Genomic Signature

Case 1 62 Oral
cavity 1 PD 2 6 Yes DOD

TMB-intermediate 8
mut/MB

MSI-stable

Case 2 65 Larynx 1 PD 1 21 Yes ALIVE TMB 6 muts/MB
MSI-stable

Case 3 76 Larynx 1 PD 2 2 Yes DOD TMB 6 muts/MB
MSI-stable

Case 4 65 Oral
cavity 1 PD 2 11 Yes DOD TMB 3 muts/MB

MSI-stable

Case 5 53 Larynx 1 PD 1 3 Yes DOD TMB 4 muts/MB
MSI-stable

Case 6 52 Oropharynx 1 SD 5 6 No DOD TMB 5 muts/MB
MSI-stable

Case 7 63 Oral
cavity 1 SD 6 7 No DOD TMB 3 muts/MB

MSI-stable

Case 8 71(F) Larynx 0 PR 33 33 No ALIVE TMB 30 muts/MB
MSI-stable

Case 9 67 Larynx 0 PR 20 39 No ALIVE TMB 15 muts/MB
MSI-stable

Case 10 46(F) Oral
cavity 1 PR 4 5 No DOD TMB 1 muts/MB

MSI-stable
1 At the last follow-up visit; DOD: death of disease; PFS: progression free survival; OS: overall survival;
SD: stable disease; PD: progressive disease; PR: partial response; TMB: tumor mutational burden; MSI:
microsatellite instability.
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3.2. Early Progressive Disease (Cases 1–5)

The median PFS was slightly low (2 months), and the median OS was 11 months
(3–21). Case 2 showed a prolonged response to a third-line treatment, based on weekly
paclitaxel, which resulted in a long survival (Table 2). In each patient who experienced
early progression, both TMB and MSI were defined (Table 3): MSI was stable in all of
the patients, and TMB was low in four out of five patients, with six mutations or less
reported. In the last patient (case 1), the TMB was intermediate (eight mutations/Mb).
Alteration in TP53 was evidenced in all the patients with early progression. Alterations in
other tumor suppressor genes (ARID1A and NOTCH genes) were reported. Alteration in
NOTCH genes, involved in cellular differentiation, occurred in three out of five patients,
showing early progression. Mutation in genes involved in genomic stability maintenance,
always in association with other mutations, were also recorded in two patients. One of
them showed the BRCA1 mutation (case 1). In another patient who experienced early
progression, TERC amplification was recorded (case 3). Early progression occurred in
one patient with ERB2 amplification (case 3). Other genes of the EGFR family (PI3K
amplification, SOX2 amplification) were also amplified in the same case. Three out of
five patients (cases 1, 3, and 5) showed mutation/loss/amplification of genes involved
in the cyclin-dependent kinase (CDK) pathway. Alteration in one gene involved in cell
adhesion, cytoskeletal organization, migration, and angiogenesis was evidenced (EPHB4
amplification). In case 1, the simultaneous alteration of the genes involved in the chromatin
remodeling, genomic stability, cell-cycle control, and the alteration of the antiapoptotic
BCL2L1 and NFE2L2 genes, involved in the response to oxidative and electrophilic stress,
was evidenced. The genomic analysis reported six mutations in ARID1A, BCL2L1, BRCA1,
CDKN2A/B, NFE2L2, and Tp53 (case 1). The genomic analysis of case 2 detected two
mutations: NOTCH1 and Tp53. In case 4, the same mutation in Tp53, plus the RB1 and
NOTCH2 mutations, were detected. The genomic analysis of case 3 detected 13 mutations
(the greatest number of mutations in our series) involving TP53, the NOTCH pathway,
and the EGFR pathway, genes involved in the dysregulation of cell-cycle control and cell
adhesion. This is the only case with mutations in SOX2 and ERB2. The genomic analysis
of case 5 detected five mutations: CDKN2A/B, SMAD4, which are involved in cell-cycle
control, TERT (involved in genomic stability), NOTCH1, and TP53 (Table 3).

3.3. Responders Patients (Cases 6–10)

In patients who achieved a response to treatment, the median PFS was 13.6 months
(4–33), and the median OS was 16.4 months (5–33). MSI was stable in all of the patients;
however, TMB was high in two patients (cases 8 and 9). Patient no. 9 was a long re-
sponder with a PFS of 20 months and was alive at the time of writing (OS 39 months)
(TMB 15 muts/MB). Alteration in TP53 and in several genes involved in the promotion of
invasion were evidenced. Moreover, loss of PTEN was reported. Patient no. 8 achieved
a considerable long-lasting response, with a TMB of 30 mut/MB. The ICI treatment was
still ongoing, and the PFS was 33 months. In this case, no TP53 alterations were evidenced,
while dysregulation in cell-cycle control via cyclin-dependent kinase-6 and SMAD4 (a
signal transduction protein altered in response to TGF beta signaling) were reported, as
well as PI3K alteration. Moreover, alteration in SPEN (a repressor of NOTCH pathway) was
evidenced. Four out of five responder patients showed mutations in the genes involved in
PI3K/AKT/PTEN pathways, and three of them achieved a partial response to nivolumab,
as recorded at the first instrumental evaluation (cases 6 and 8–10). All patients showed
a dysregulation of the CDK-cyclin pathway associated with the loss of cell-cycle control.
The genomic analysis detected 9 mutations in patient no. 6, including SOX2. In the case
of patient no. 10, the genomic analysis detected four mutations, CDK2A/B and MTAP,
involved in proliferation of cancer cells, PBRM1, which is a tumor suppressor reported to
predict response in urothelial carcinoma, and PIK3C2G.
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Table 3. Genomic profile of patients with R/M HNSCC.

Not Mutated Case Report
Mutated # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10

TMB 8
Muts/Mb

6
Muts/Mb

6
Muts/Mb

3
Muts/Mb

4
Muts/Mb

5
Muts/Mb

3
Muts/Mb

30
Muts/Mb

15
Muts/Mb

1
Muts/Mb

Microsatellite
Status MS-Stable MS-Stable MS-Stable MS-Stable MS-Stable MS-Stable MS-Stable MS-Stable MS-Stable MS-Stable

TP53
BRCA1

ARID1A
CDKN2A/B

BCL2L1
NFE2L2

NOTCH1
CCND1
ERBB2
CDK6

PIK3CA
SOX2

EPHB4
FGF19
FGF3
FGF4

PRKCI
TERC

NOTCH2
RB1

SMAD4
TERT

FGFR1
CD22
NSD3
PRKCI
AKT2
MTAP
SPEN

KDM6A
DNMT3A

CUL3
PIK3R1

BCORL1
PTEN
FGF14
NSD3

PARK2
ZNF703

TET2
PBRM1

PIK3C2G

3.4. Statistical and Connectivity Analysis of Circulating Molecules

By performing an exploratory data analysis of the 34 molecule expression levels from
10 patients, grouped by therapy response, no clear separation, in terms of the overall
molecule expression levels across to the two classes, was detected, both at T0 (Figure 1A)
and T1 (Figure 2A). Yet, we observed a statistically significant over-expression in the
responder patients of the cytokines IL13, IL17A, and TNF alpha at T0 (Figure 1B) and
over-expression of IL4, TNF alpha, IFN alpha, and IFN gamma at T1 (Figure 2B).
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Figure 1. Statistical analysis at T0. (A) Heatmap of molecule expression levels (logarithmic scale) at
T0 across 10 patients, grouped by therapy responder (violet bars) and non-responder (water blue bars).
Colors represent different expression levels, increasing from blue to yellow. (B) Boxplot of molecule
expression levels (logarithmic scale) in 5 responder patients (violet box) and 5 non-responder ones
(water blue box) at T0. p-values (p) were obtained by performing a Mann–Whitney test for unpaired
samples. Only molecules showing a statistically significant difference between the two groups are
shown. Legend: * p ≤ 0.05, ** p ≤ 0.01.

These results are confirmed by the correlation analysis computed between the ex-
pression profiles of the under-study circulating molecules available from 10 patients and
the distribution of their corresponding therapy response values, which unveiled a strong
positive and statistically significant (p-value ≤ 0.05) correlation between the group of above-
mentioned cytokines and the therapy response both at T0 (Figure 3A) and at T1 (Figure 3B).
Conversely, no clear separation, in terms of overall molecule expression levels across the
two classes, alive vs dead, was detected, both at T0 (Supplementary Figure S1A) and T1
(Supplementary Figure S1B). The correlation analysis computed between the expression
profiles of the under-study circulating molecules and the distribution of their corresponding
patient status at T1 unveiled that the only molecule with a strong negative and statistically
significant (p-value ≤ 0.05) correlation with alive status was sE-selectin (Figure 2A). This
appears to be in accordance with its down-regulation in patients who were alive at T1 with
an almost statistically significant p-value (=0.06) (Figure 2B).
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Figure 2. Statistical analysis at T1. (A) Heatmap of molecule expression levels (logarithmic scale) at T1
across 10 patients, grouped by therapy responder (violet bars) and non-responder (water blue bars).
Colors represent different expression levels, increasing from blue to yellow. (B) Boxplot of molecule
expression levels (logarithmic scale) in 5 responder patients (violet box) and 5 non-responder ones
(water blue box) at T1. p-values (p) were obtained by performing a Mann–Whitney test for unpaired
samples. Only molecules showing a statistically significant difference between the two groups are
shown. Legend: * p ≤ 0.05.

3.5. Connectivity Network Analysis between Circulating Molecules in Responder and
Nonresponder Patients

In order to further investigate the difference in the patterns of molecule connectivity, in
terms of therapy response, two connectivity maps between each pair of molecule expression
values were built, one in the responder patients and one for non-responder patients, both
at T0 (Figure 4A,B) and at T1 (Figure 5A,B), respectively. From these maps, different
connectivity patterns were observed, both at T0 and T1. At T0, moving from the non-
responder to the responder group, there was an intensification in most of the cytokine
correlations and, in some cases, an inversion of the correlation sign, from negative to
positive (e.g., IL13 in responder patients appears to be strongly positive correlated with
IL12p70, while in non-responder patients, this correlation is negative, meaning that if IL13
is high the other one is low and vice versa). In regards to T1, moving from non-responder
to responder patients, a lack of connectivity was observed in most of the cytokines (e.g., the
connections of the pro-inflammatory cytokines IL13, IL1 alpha, and IL1 beta; most of the
connections of the other groups of molecules, including sPD1 and sCD80).
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Figure 3. Connectivity map between molecules’ profiles and therapy response values at T0 (A) and at
T1 (B). Statistically significant Spearman correlations (p-value ≤0.05) are reported. In the plot, circles
are scaled and colored according to the correlation values, increasing from red (negative correlation)
to blue (positive correlation). Molecules are grouped and ordered according to the functional group
reported in the legend.

These differences were more evident when the connectivity maps for responder and non-
responder patients were rendered as two corresponding connectivity networks (Figure 6. for
T0, Figure 7 for T1), in which two nodes are connected if their expression profiles are statisti-
cally significant (p ≤ 0.05) and exceed (as an absolute value) a selected correlation threshold
(i.e., the 85th percentile of the overall distribution corresponding to 0.8). Looking at the
network of connectivity at time T0, a total of 12 statistically significant connections (correla-
tions) were identified in responder patients (Figure 6A and Supplementary Table S1, first
sheet), 21 connections in non-responder patients (Figure 6B and Supplementary Table S1,
second sheet), and only 2 common connections to both networks (Supplementary Table S1,
third sheet).

In regards to T1, we identified a total of 16 statistically significant connections in
responder patients (Figure 7A and Supplementary Table S2, first sheet), 20 connections
in non-responder patients (Figure 7B and Supplementary Table S2, second sheet), and no
common connections between them. These findings demonstrated a distinct signature,
in terms of network connectivity of the molecules characterizing responder patients, as
opposed to non-responder ones.



Biomedicines 2022, 10, 2732 12 of 25Biomedicines 2022, 10, x FOR PEER REVIEW 14 of 29 
 

 

Figure 4. Connectivity map between molecules in responder (A) and non-responder (B) patients at 

T0. Statistically significant Spearman correlations (p-value ≤ 0.05) are reported. In the plot, circles 

are scaled and colored according to the correlation values, increasing from red (negative correla-

tion) to blue (positive correlation). Molecules are grouped and ordered according to the functional 

group reported in the legend. 

Figure 4. Connectivity map between molecules in responder (A) and non-responder (B) patients at
T0. Statistically significant Spearman correlations (p-value ≤ 0.05) are reported. In the plot, circles are
scaled and colored according to the correlation values, increasing from red (negative correlation) to
blue (positive correlation). Molecules are grouped and ordered according to the functional group
reported in the legend.
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Figure 5. Connectivity map between molecules in responder (A) and non-responder (B) patients at
T1. Statistically significant Spearman correlations (p-value ≤ 0.05) are reported. In the plot, circles are
scaled and colored according to the correlation values, increasing from red (negative correlation) to
blue (positive correlation). Molecules are grouped and ordered according to the functional group
reported in the legend.
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Figure 6. Connectivity network between molecules in responder (A) and non-responder (B) patients
at T0. In each network, nodes represent molecule, and a link occurs between two nodes if the absolute
value of Spearman correlation between their expression levels is statistically significant (p-value
≤ 0.05) and greater than a selected threshold (i.e., the 85th percentile of the overall distribution
corresponding to 0.8). Nodes are colored according to the functional groups reported in the legend,
whereas edge colour indicates positive (blue) or negative (red) correlation values.

The connectivity maps between each pair of molecule expression values, one for
alive patients and one for dead patients, both at T0 (Supplementary Figure S3) and at T1
(Supplementary Figure S4), respectively, evidenced a different connectivity between alive
and dead patient groups with no common connection, both at T0 and T1. In both cases,
moving from the connectivity map of the dead patient group to the alive one, a lack of
connectivity was observed in most of the cytokines and immune checkpoints, as well as the
appearance of new negative correlation values among some soluble immune checkpoints,
such as between GM-CSF and sGITR at T0 (Supplementary Figure S3A) or between sPD1
and sCD28, sHEVM, and sCD80 at T1 (Supplementary Figure S4A).

The resulting networks from the connectivity analysis with the corresponding values of
correlation from both patient groups at T0 and at T1 were reported in Supplementary Table S3.
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Figure 7. Connectivity network between molecules in responder (A) and non-responder (B) patients
at T1. In each network, nodes represent molecule, and a link occurs between two nodes if the absolute
value of Spearman correlation between their expression levels is statistically significant (p-value
≤ 0.05) and greater than a selected threshold (i.e., the 85th percentile of the overall distribution
corresponding to 0.8). Nodes are colored according to the functional groups reported in the legend,
whereas edge colour indicates positive (blue) or negative (red) correlation values.

4. Discussion

Considering the complexity of R/M HNSCCs, a combined profile, including genomic
and immune evaluations, could be a promising approach to evaluate the mechanisms
driving resistance to immunotherapy and to tailor individual treatments. In this series, the
R/M HNSCCs analyzed had a heterogeneous immune and genomic profile. This hetero-
geneity explains how complex it is to identify new robust predictive biomarkers of both
resistance and response to immunotherapy. While it is necessary to broaden the research
on a larger number of patients, this small series still provides several important insights
that deserve further investigation. The group of patients analyzed was homogeneous, in
terms of prognosis and previous treatments administered, and survival data are mature.
Platinum-refractory HPV-negative HNSCC is confirmed as a poor prognosis disease, bur-
dened by multiple mechanisms of resistance, although they are not fully understood and
poorly predictable in each individual patient, for which the treatment options are still
limited. Overall, a low response rate to ICI treatment was reported, and a high percentage
of cases was burdened by early progression and a poor mPFS and OS. Nevertheless, the
duration of the response was variable, and two patients achieved a prolonged response
to treatment with ICI, while another patient was still on treatment after 33 months. This
variability in outcomes confirms the assumption that similar prognostic groups from a
histological and clinical point of view underly relevant biological differences, which signifi-
cantly affect prognosis and response to treatment. The biological differences may be related
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to several factors, including the inter-individual variability in the immune system, the
genomic driver primary resistance, and the relation to acquired mechanisms of resistance to
immunotherapy. Inter-individual variability and fitness of the immunological framework
could influence the individual response to immunotherapy treatment and the onset of
autoimmune and inflammatory disorders. Host (e.g., sex and age) and environmental
factors (e.g., smoking and medical history including asymptomatic cytomegalovirus in-
fection, past infections, vaccinations, colonization by intestinal and nasal bacteria) shape
the immune system, making individuals more or less prone to diseases and equipped to
deal with pathogens and neoplastic cells, thus affecting the course of diseases and their
outcomes [45,46]. In addition, genetic factors also play a key role in regulating and in-
dividualizing the immune system by changing the expression of key immune response
molecules.

4.1. Soluble Immune Profile

In this series, the sIC profile was heterogeneous and varied widely between patients
with early progression and responders and based on clinical outcome. Heatmap analysis
of molecule expression levels evidenced, in responder patients, an increase in chemokine
and interleukin levels associated with a lower level of immune checkpoint and adhesion
molecules versus resistant ones, both at baseline and at T1. Among the large spectrum of
molecules analyzed, a strong, positive, significant correlation between basal overexpression
of IL13, IL17A, and TNF alpha and the immunotherapy response between the two groups
was shown at T0 (Table 4, Figure 3A) [47–53].

Table 4. Soluble immune molecules showing a statistically significant over-expression in responder
patients: characteristics and function.

Soluble
Molecules

Class of
Molecules Cell Source Ligands Main Function Type of Action References

IL13 Cytokyne

T CD4 Cells
CD8 cells

NK
B-cells

Monocytes
Eosinophils
Mast cells

IL13Rα1
IL13Rα2

- involved in Th2 immune
responses

- potentiate expression of
adhesion molecules on
endothelial cells

- activation of magrophages
and production of TGFb

- key regulator of extracellular
matrix

proinflammatory [47]

IL17A Cytokine Lymphocytes
TCD4 Th17 IL17Rα

- induces IL6 and chemokines
production

- promotes recruitment of
MDSCs into the tumour bed

- neutrophil recruitment,
anti-microbial molecule and
acute phase protein
production

proinflammatory [48]

TNF alpha Cytokine
Macrophages

NK
T cells

TNFR1
TNFR2

- pro-inflammatory activity
- fever
- Acute phase response
- stimulates cell proliferation

and survival

Immune-
activation/

pro-inflammatory
[49]

IL4 Cytokine T cells
Mast cells IL4-Rα

- activation of Th2 immune
response

- Cell growth/activation
- B-cell growth factors and

stimulate B-cell
differentiation.

Pro-inflammatory [50,51]
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Table 4. Cont.

Soluble
Molecules

Class of
Molecules Cell Source Ligands Main Function Type of Action References

INF alpha Cytokine

DC
Macrophages

NK cells
Macrophages

Endothelial cells
Fibroblasts

INFαR1/2

- NK activation
- Cells B proliferation
- Possible suppression of Treg

cells
- Antiviral activity
- Enhances MHC expression

Pro-inflammatory
immune-activation [52]

INF
gamma Cytokine

Lymphocytes T
(th1) CD8 and NK INFγR1/2

- activation of macrophages
- activation of Th1 responses
- potential antigen presentation

to T lymphocytes
- induces apoptosis of tumour

cells and reduces VEGF
- increases expression of IDO

immunoactivating/
possible immuno-

suppressive
activity)

[53]

DC dendritic cells, IL interleukin, IFN interferon, TNF tumor necrosis factor, NK natural killer, MDSC myeloid de-
rived suppressor cell, TGF trasforming growth factor, VEGF vascular endothelial growth factor, IDO Indoleamine
2,3-dioxygenase.

IL13 facilitates the recruitment of leukocytes, particularly neutrophil granulocytes and
monocytes, stimulating the expression during the inflammation of adhesion proteins and
chemokines on the endothelium and is involved in the process of fibrosis by stimulating
macrophages and fibroblasts to produce collagen. In macrophages, it also stimulates the
production of TGF-β [47]. IL-17A, produced mainly by T helper 17 cells, is involved in
host defense against microbial organisms and in the development of immune-mediated
inflammatory diseases and cancer [48]. Tumor necrosis factor (TNF)-alfa is involved in
the acute phase of systemic inflammation and is a key regulator of the immune system,
as well the cellular antiapoptotic response. Therefore, our data underline that an essen-
tial prerequisite for the response to immunotherapy treatment was a readily activable
immune system on both innate and adaptive immunity, “inflammable” with acute phase
protein expression [49]. Moreover, it was observed that patients who obtained disease
control had a strong, significant, positive overexpression of IL4, TNF alpha, IFN alpha,
and IFN gamma at T1 (Table 4, Figure 3B) [47–53]. The interleukin IL4, produced mainly
by T-cells, induces B-cell proliferation, expands selected B-cell subgroups, and causes
Th2 differentiation and proliferation [50,51]. In this scenario, an intriguing role could
be played by tertiary lymphoid structures (TLSs). TLSs reflect the lymphoid neogenesis
of organized cellular aggregates resembling secondary lymphoid organs (SLO), which
occur in peripheral nonlymphoid tissues, following long- lasting exposure to inflammatory
signals mediated by chemokines (i.e., CXCl13) and cytokines (i.e., Il7), generating a specific
immune reaction outside SLO at the tumor site [54]. TLSs facilitate the influx of immune
cells into the tumor site and have, therefore, elicited interest as a means of improving
anti-cancer immunity, showing a favorable treatment response in patients treated with
immunotherapy. Moreover, TLSs correlates with disease evolution and with favorable
clinical outcome, showing paramount importance as a prognostic factor [55]. Lastly, the
ability to induce TLS formation through various pharmacological approaches represents
a way to increase the sensitivity of immune cold tumors to immunotherapy [56]. Our
data show a strong and maintained immunomodulatory stimulus of humoral immunity
and adaptive T-cell response involving: (i) the growth and active proliferation of B- and
T-cells, in particular, Th2, macrophages, and natural-killer; (ii) the regulation of class II
MHC production associated with the enhancement of the expression of class I and II gly-
coproteins of the major histocompatibility complex; (iii) the expression of some adhesion
molecules on endothelial cells, in particular, VCAM-1, with the consequent increase of links
between lymphocytes, monocytes, and eosinophils representing the essential requirement
for control cancer progression by maintaining the response to immunotherapy treatment.
In agreement with the literature, statistical analysis evidenced a trend in lower levels in
sICs and adhesion molecules in responders, confirming their key role in immune system
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dysfunction. Leung et al. demonstrated a direct correlation between serum levels of soluble
CTLA-4 and outcomes in patients with metastatic melanoma under treatment with ipili-
mumab [57]. In a similar fashion, Zizzari et al. observed that low levels of sPDL-1, sPDL-2,
sTim3, sCD137, and sBTLA were correlated with a longer response to anti-PD1 treatment
in NSCLC patients [30]. Furthermore, an exploratory study showed a correlation between
sPDL-1 and sCTLA-4 and poor response to tyrosine kinase inhibitor (TKI) treatment in
metastatic renal cancer [58]. In a study involving a large population of metastatic renal
cancer, sPDL-2 was the strongest predictor of recurrence, whereas high sBTLA and sTIM3
were associated with decreased survival [32]. Moreover, the significant increase of the cell
adhesion molecule sE-selectin levels in the dead patients group makes it a candidate as a
marker of increasing metastatic potential and a worse prognosis.

The immune system is composed and regulated by numerous interconnected molecules.
Each individual molecule has multiple molecules with which it can interact, making a
bidirectional signaling possible in the network; depending on the context, a single molecule
could, therefore, be either pro-inflammatory or anti-inflammatory. So, it seems unjustified
to analyze the role of a single molecule in a network, even though the huge amount of
available data could not easily be interpreted by means of classical statistical methods. In
this scenario, a novel approach, such as network analysis, could help to understand the
multitude of interactions between the different circulating molecules, in order to define
some peculiar profile in responder and non-responder patients. Through connectivity net-
work analyses, different connectivity patterns were observed, both at T0 and T1, based on
response to immunotherapy. In responder patients, in contrast to non-responder ones, there
is an intensification of most of the cytokine correlations and, in some cases, an inversion of
the correlation sign, from negative to positive. Of considerable interest is the fact that only
two common connections (correlations) to both networks were evidenced at T0, and no
common connection emerged between the responder and non-responder patients at T1.
All of these findings pointed to a distinct signature, in terms of the network connectivity of
the circulating soluble adhesion molecules, soluble immune checkpoints, cytokines, and
chemokines in responder patients, in opposition to non-responder ones, as well in both the
alive and dead patient groups. These peculiar signatures seem to represent a promising
tool to identify responders and/or resistant patients, although these data will need to be
validated on a greater number of patients.

4.2. Genomic Profile

The relation between the genomic signature and response to immunotherapy has
already been extensively studied in several solid tumors [33,34,59]. The accumulation
of genetic and epigenetic signaling pathway alterations in genes, causing the acquisi-
tion of different cancer phenotypes, highlighted a distinct number of oncogenes targeted
by mutations, leading to the activation of tumor suppressor pathways, including p53,
Rb/INK4/ARF, and Notch in HNSCCs [60]. This small group confirmed the central role
of TMB in predicting increased sensitivity to immunotherapeutic agents. High values
of TMB (>20 muts/MB) occur in 5.8% of HNSCC patients, with no significant difference
between HPV-positive and HPV-negative disease [59,61,62]. TMB was elevated in 2/10
HPV-negative patients of this series; both of these patients showed a long-lasting response
to nivolumab. These data are in agreement with a large-scale retrospective analysis of
immune checkpoint inhibitor efficacy in HNSCCs, which reported significantly improved
OS and PFS in patients with tumors harboring TMB ≥13 Muts/Mb, compared to those
with tumors with TMB 10 Muts/Mb, who have been reported to experience significantly
longer OS, compared to those with tumors with TMB < 13 Muts/Mb15 [63]. In addition,
patients with EBV/HPV-negative tumors with TMB >10 Muts/Mb have been reported to
experience significantly longer OS, compared to those with tumors with TMB <5 Muts/Mb
(20.0 vs. 6.0 months, p = 0.01 (n = 81)) [24]. Moreover, TMB tends to be higher in smokers,
which characterizes the large prevalence in our patients, compared to non-smokers (11.5 vs.
5.6 muts/Mb, respectively) [58,64].
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The genomic profile of HNSCC patients was extremely variable. Multiple mutations
were detected as affecting the genes involved in major signaling pathways, resulting in
the alteration of multiple intracellular pathways, which could have a different weight on
tumor progression and response to ICIs (Table 5).

Table 5. Effects of pathways dysregulation in head and neck squamous cell carcinoma.

Gene Alteration Pathways Mechanism
Effect on Tumor Cells

Effect on Immune System and Response
to Immunotherapy

TP53 P53
• dysregulate the transactivation of

p53-dependent genes and is predicted
to promote tumorigenesis

• Affect the activity of myeloid and T
cell

• Immune evasion and cancer
progression

NOTCH1/2 NOTCH pathway

• proliferation
• differentiation
• MDSC accumulation
• Treatment-resistance
• Related to EMT
• Depending on cellular context,

NOTCH2 can act as either a tumor
suppressor or an oncogene

Resistance
Immune escape

CDKN2A/B Rb/INK4/ARF

• dysregulation of the
CDK4/6-cyclin-Rb pathway and loss
of cell cycle control

• Growth suppressive activity of the Rb
tumor suppressor

Conflicting evidence regarding the
association between CDKN2A genomic
alterations and response to ICIs

PIK3CA PI3K

• Associated with lymph nodes
metastasis and tumor stage

• Involved in cell growth, proliferation,
differentiation, motility, and survival

- uncontrolled activation of the
PI3K/AKT pathway induces an
immune-tolerant tumor
microenvironment

- Favorable predictive factor for efficacy
of immunotherapy

BRCA1/2 DDR pathway
• Key role in DNA repair process
• Genomic instability

- DNA damage triggers immune
responses through cell death signals

- DDR deficiencies improve tumor
recognition of adaptive immune
system

ARID1A

Encodes for switch/sucrose
nonfermenting (SWI/SNF)

chromatin remodeling
complexes

• loss of ARID1A may activate the
PI3K-AKT pathway

• ARID1 is considered a tumor
suppression

Immune evasion

SOX2 PI3K-AKT pathway

• SOX2 amplification or overexpression
leads to activation of the PI3K-AKT
pathway

• Promote tumor growth through
suppression of stimulation of INF
genes (STING)-dependent signaling

• Involved in growth, viability,
migration, tumorigenicity, and drug
resistance of cancer cells

Immune evasion

TP53 tumor protein 53, NOTCH1 Neurogenic locus Notch homolog protein 1, NOTCH 2 Neurogenic locus
Notch homolog protein 2, MDSC myeloid derived suppressor cell, EMT epithelial to mesenchymal transition,
CDKN2A/B cycline-dependent kinase inhibitor 2A/B, Rb retinoblastoma protein, PI3KCA phosphatidylinositol-
4,5-bisphosphate 3-kinase, catalytic subunit alpha, PI3K Phosphoinositide 3-kinase, CDK cyclin-dependent kinase,
IC immune checkpoint, PD-L1 programmed death- lingand 1, CDK cycline-dependent kinase, BRCA breast
related cancer an-tigens, DDR DNA damage response, ARID1 AT-rich interacting domain-containing protein 1A
gene, SOX2 SRY (sex determining region Y)-box 2, AKT protein kinase B.

From the TCGA data, the two most predominant gene alterations and mutations
reported were TP53 and CDKN2A, which were largely absent in HPV positive tumors.
However, both HPV-positive and HPV-negative HNSCC tumors shared similar amplifica-
tions in PIK3CA and SOX2. In agreement with this, the most frequent genomic alteration
occurred in TP53 (8/10). About 40–50% of human cancers carry deleterious mutations in
p53 [65]. TP53 mutations have been reported in 38–58% of HNSCCs [66,67]. An association
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between TP53 mutations and shorter recurrence-free survival in patients with HNSCC
has been reported, while another study found that truncating TP53 mutations, but not
missense mutations, were associated with worse OS and PFS, when compared to wild-type
TP53 [66–68]. On the other hand, TP53 mutations were associated with worse outcomes in
patients treated with immunotherapy [69]. Loss or mutation of p53 can affect the recruit-
ment and activity of myeloid and T-cells, allowing for immune evasion and promoting
cancer progression. p53 can also have an altered function in immune cells, resulting in
various outcomes that could either impede or support tumor development. Perturbations
in p53 contribute to the ability of tumor cells to escape from immune surveillance, thus pro-
moting an immunosuppressive environment [70]. The vital role of Rb pathway is evidenced
by the inactivation of CDKN2A, encoding the cell-cycle modulators p14/Arf/INK4B and
p16/INK4A in a large proportion of head and neck malignancies. CDKN2B encodes for
the tumor suppressor p15INK4b. Both p15INK4b and p16INK4a bind to and inhibit CDK4
and CDK6, maintaining the growth-suppressive activity of the Rb tumor suppressor; loss
or inactivation of either p15INK4b or p16INK4a contributes to the dysregulation of the
CDK4/6-cyclin-Rb pathway and to the loss of cell-cycle control [71,72]. CDKN2A/B alter-
ations occur in 17–57% of human HPV-negative HNSCCs [62,64,73,74]. Cyclin-dependent
kinase (CDK) pathway dysregulation was frequent in this study population (8/10). Three
out of the five early progressing patients showed a mutation/loss/amplification of the
genes involved in CDK signaling. Concurrent deletion of CDKN2A and CDKN2B has been
reported in 30% of HPV-negative cases in HNSCC [62]. In contrast, CDKN2A genomic
alterations have not been observed in HNSCCs with positive HPV status [62,64,73,74].

This study showed that alterations in the NOTCH1 and NOTCH2 genes occurred
in 3/10 patients with primary resistance to treatment. Other studies reported NOTCH1
mutations in 15–26% of HNSCCs, suggesting that NOTCH1 acts as a tumor suppressor
in HNSCC [75,76]. Thus, the NOTCH pathway could play an important role in HNSCC
development. NOTCH1 likely plays a bimodal role in HNSCCs, with inactivating mu-
tations indicating a tumor suppressor role and activating mutations and upregulation
consistent with an oncogenic role. The NOTCH receptor, which is expressed on tumor
cells, binds to the NOTCH ligand on myeloid-derived suppressor cells (MDSCs), resulting
in the improvement of the cancer stem cell capacity and the immune-escape mechanism.
Moreover, NOTCH signaling is involved in T-cell-mediated anti-tumor immunity [77].
Tumor cells are often able to suppress NOTCH signaling, in order to evade T-cell-mediated
killing. In contrast to our observations, NOTCH mutation has recently been evaluated as a
possible predictive biomarker of the clinical benefit of immunotherapy in NSCLC [78]. So-
matic frame shift mutations of common tumor suppressor genes (NOTCH1 and SMARC4)
were also observed in HPV-negative patients responsive to anti-PD-1/PD-L1 agents [79].
NOTCH is also related to EMT, which has been linked to therapeutic resistance, invasion,
and metastasis [80–83].

Alterations in PI3K pathway were quite frequent in this series (5/10 patients), with
a high frequency observed in responders. In one study, PIK3CA alteration was associ-
ated with lymph node metastasis, and PIK3CA mRNA was associated with the tumor
stage [84,85]. PIK3CA amplification was found to be linked with cancer relapse in pa-
tients with HNSCC, without nodal involvement [85]. Moreover, in a recent study, PI3KCA
alterations were correlated to good OS, representing a favorable predictive factor of im-
munotherapy efficacy in HNSCC patients, in agreement with our observations [69].

Notably, one case was characterized by early progression harboring BRCA1 mutation.
BRCA1 and BRCA2 are tumor suppressor genes with a key role in DNA repair processes
and cell-cycle checkpoints, in response to DNA damage, whose mutations may induce
genomic instability, cell-cycle dysregulation, and accumulation of other mutations, thus
increasing the risk of cancer development [86–89]. In the same patient, ARID1A muta-
tions occurred. In human cancers, ARID1A drives cancer development and defines IFN
responsiveness and immune evasion, resulting in poor immunotherapy responses [90].
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SOX2 alteration was reported in 2/10 patients, regardless of response to treatment.
SOX2 was recently reported to play a key role in HNSCC immune evasion. In an “in vivo
study”, SOX2 expression in HNSCC tumor cells led to a decrease in CD8+ T-lymphocyte
infiltration and promoted tumor growth through the suppression of stimulation of inter-
feron genes (STING)-dependent interferon-I-mediated signaling. These findings suggest
that SOX2 compromises the immune response in HNSCCs [91,92].

5. Conclusions

HNSCCs can be characterized by several genomic alterations, involving various
pathways. These can widely alter different cellular processes and change the tumor mi-
croenvironment, which, in turn, affects cancer progression and immune response. Our data
confirm that an increased TMB may be associated with a greater sensitivity to immunother-
apeutic agents. Moreover, a distinct signature, in terms of genomic alterations and network
connectivity of the circulating soluble adhesion molecules, soluble immuno-checkpoints,
cytokines, and chemokines, characterized responder patients, in contrast to non-responder
ones and on the basis of clinical outcome. In the future, information from circulating soluble
immune checkpoints, along with the complete molecular genomic profile, will need to be
interpreted in combination with other factors, including patient clinical features, as well as
lifestyle and diet, immunological profile of the tumor microenvironment, metabolic and
pharmaco-genomic profile, gut microbiome, and instrumental imaging. This innovative
approach to cancer care will allow for patient-specific treatments and new combination
strategies, in order to avoid rapid and life-threatening disease progression.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines10112732/s1, Table S1: This table is composed of three
sheets reporting all the connectivity networks at T0 as edge-lists, along with the correlation values
and corresponding p-values. In particular, the first sheet lists the molecule network connections for
responder patients (depicted in Figure 6A); the second sheet lists the molecule network connections for
non-responder patients (depicted in Figure 6B); the third sheet lists the molecule network connections
shared between responder and non-responder patients. Table S2. This table is composed of two
sheets reporting all the connectivity networks at T1 as edge-lists, along with the correlation values
and corresponding p-values. In particular, the first sheet lists the molecule network connections for
responder patients (depicted in Figure 7A); the second sheet lists the molecule network connections
for non-responder patients (depicted in Figure 7B). Table S3. This table is composed of four sheets
reporting all the connectivity networks at T0 and at T1 as edge-lists, along with the correlation values
and corresponding p-values. In particular, the first sheet lists the molecule network connections for
dead patients at T0; the second sheet lists the molecule network connections for alive patients at T0;
the third sheet lists the molecule network connections for dead patients at T1; the fourth sheet lists the
molecule network connections for alive patients at T1. Figure S1. Heatmap of molecule expression
levels (logarithmic scale) at T0 (A) and T1 (B) across 10 patients, grouped by patients’ status, alive
(violet bars) or dead (water blue bars). Colors represent different expression levels, increasing from
blue to yellow. Figure S2. (A) Correlation between molecules’ profiles and patient alive status at
T1. Statistically significant Spearman correlations (p-value ≤0.05) are reported. In the plot, circles
are scaled and colored according to the correlation values, increasing from red (negative correlation
with the alive status) to blue (positive correlation with the alive status). Molecules are grouped
and ordered according to the functional group reported in the legend. (B) Boxplot of sE-selectin
molecule expression level (logarithmic scale) in three alive patients (violet box) and seven dead ones
(water blue box) at T1. p-value (p) was obtained by performing a Mann–Whitney test for unpaired
samples and was equal to 0.06. Figure S3. Connectivity map between molecules in alive (A) and
dead (B) patients at T0. Statistically significant Spearman correlations (p-value ≤ 0.05) are reported.
In the plot, circles are scaled and colored according to the correlation values, increasing from red
(negative correlation) to blue (positive correlation). Molecules are grouped and ordered according to
the functional group reported in the legend. Figure S4. Connectivity map between molecules in alive
(A) and dead (B) patients at T1. Statistically significant Spearman correlations (p-value ≤ 0.05) are
reported. In the plot, circles are scaled and colored according to the correlation values, increasing
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from red (negative correlation) to blue (positive correlation). Molecules are grouped and ordered
according to the functional group reported in the legend.
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