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Abstract

Gestational alcohol exposure causes fetal alcohol spectrum disorder (FASD) and is a promi-

nent cause of neurodevelopmental disability. Whole transcriptome sequencing (RNA-Seq)

offer insights into mechanisms underlying FASD, but gene-level analysis provides limited

information regarding complex transcriptional processes such as alternative splicing and

non-coding RNAs. Moreover, traditional analytical approaches that use multiple hypothesis

testing with a false discovery rate adjustment prioritize genes based on an adjusted p-value,

which is not always biologically relevant. We address these limitations with a novel approach

and implemented an unsupervised machine learning model, which we applied to an exon-

level analysis to reduce data complexity to the most likely functionally relevant exons, with-

out loss of novel information. This was performed on an RNA-Seq paired-end dataset

derived from alcohol-exposed neural fold-stage chick crania, wherein alcohol causes facial

deficits recapitulating those of FASD. A principal component analysis along with k-means

clustering was utilized to extract exons that deviated from baseline expression. This identi-

fied 6857 differentially expressed exons representing 1251 geneIDs; 391 of these genes

were identified in a prior gene-level analysis of this dataset. It also identified exons encoding

23 microRNAs (miRNAs) having significantly differential expression profiles in response to

alcohol. We developed an RDAVID pipeline to identify KEGG pathways represented by

these exons, and separately identified predicted KEGG pathways targeted by these miR-

NAs. Several of these (ribosome biogenesis, oxidative phosphorylation) were identified in

our prior gene-level analysis. Other pathways are crucial to facial morphogenesis and repre-

sent both novel (focal adhesion, FoxO signaling, insulin signaling) and known (Wnt signal-

ing) alcohol targets. Importantly, there was substantial overlap between the exomes

themselves and the predicted miRNA targets, suggesting these miRNAs contribute to the

gene-level expression changes. Our novel application of unsupervised machine learning in

conjunction with statistical analyses facilitated the discovery of signaling pathways and miR-

NAs that inform mechanisms underlying FASD.
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Author summary

Genomic research often yields an overwhelming amount of information. Accurate models

for predicting and validating multivariate big data in genomics distill complex relation-

ships and interactions. A prime example is fetal alcohol spectrum disorders, the largest

known cause of neurodevelopmental disability affecting nearly 5% of children in the

United States. Alcohol exposure during pregnancy leads to complex epigenetic and tran-

scriptomic modifications, subsequently impairing signaling pathways in neural and mor-

phologic development. Identifying transcriptomic mechanisms regulating alcohol’s

teratogenicity during embryonic development is crucial for understanding variable phe-

notypic outcomes. This allows for the advancement of future therapeutic interventions

that may mediate alcohol’s effects. Most genomic studies do not incorporate various levels

of transcriptomic analysis, spanning gene, exon, and splicing variants, because it is diffi-

cult to meaningfully consolidate all those analyses. Therefore, enhancing machine learn-

ing approaches that corroborate traditional statistical methods can yield novel

relationships, and is important for robust functional experiments that proceed from such

genomic studies.

Introduction

Transcriptome-level approaches such as RNA-Seq capture an expression-level snapshot of an

experimental system. RNA-Seq is an important discovery platform that generates insights for

targeted hypothesis development and testing. However, gene-level analysis provides limited

insight into transcriptomic regulation, in part because analytical tools often exclude transcripts

represented by splicing variants and altered exon representation [1]. Gene-level analyses can

also misrepresent fold-changes. For example, a gene may have two upregulated and two down-

regulated exons, and thus yield in a net result of no fold-change difference in abundance

between the treatment and control. Understanding these exon-level differences offers novel

insights into regulatory mechanisms that are otherwise lost during gene-level analysis [1].

Additionally, statistical methods that emphasize transcript-level significance create a loss of

information when prioritizing transcripts by their p-values.

When analyzing the big data sets that emerge from RNA-Seq, it is a cumbersome task to

narrow down tens of thousands of exon targets to those having the greatest biological rele-

vance. Although statistical models provide a system for condensing such information to the

most statistically significant genes or exons, there often remains several thousand genes or

exons having a false discovery rate (FDR) below 0.1 or even 0.05. Statistical cutoffs alone

weakly inform how to prioritize or further narrow a still-extensive data set for follow-up analy-

sis, and the biological importance of a gene or exon does not always correlate with the strength

of the p-value. Thus, a more comprehensive approach is necessary to corroborate the statistical

findings and thereby reduce, e.g., an RNA-Seq dataset of 80,000 exons to 5–10 candidate

genes/exons for functional analysis. One approach is to employ the combination of statistical

and machine learning methods to optimize a solution to the most likely biologically relevant

information. By utilizing statistical inference approaches in conjunction with the mathematical

models provided in unsupervised machine learning algorithms, the rigor of the two models

introduces less bias when selecting the few genes/exons of interest. When applying an unsu-

pervised machine learning model to a highly dimensional dataset, such as that from RNA-Seq,

mathematically hidden patterns are learned by the algorithm that are otherwise not identifiable
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by the researcher [2]. Developing such methodologies is essential for analyzing and interpret-

ing transcriptomic responses to an intervention or stressor.

One such stressor is alcohol. Prenatal alcohol exposure (PAE) is a leading source of neuro-

developmental disability that affects 3% to 5% of U.S. first-graders [3]. Its clinical manifesta-

tion, fetal alcohol spectrum disorder (FASD), is typified by growth reduction, deficits in

learning and executive function, and a distinct facial appearance [4]; the latter is due to alco-

hol’s disruption of the neural crest progenitors that form the facial elements [5]. Alcohol alters

cellular activity through its direct binding of hydrophilic pockets in select proteins that regu-

late intracellular signaling; the downstream transcriptional changes enable alcohol to redirect

cellular function and fate [6]. Some of these transcription-level changes are mediated by tradi-

tional signaling effectors including β-catenin and sonic hedgehog [5]. Other transcriptional

changes result from changes in DNA methylation and the altered abundance of both long

non-coding RNAs and non-coding micro-RNAs, or miRNAs [7–9]; these latter may have

diagnostic utility as biomarkers for alcohol-exposed infants. Using an embryonic avian model

that recapitulates the facial deficits that occur in FASD, we utilized RNA-Seq to identify gene

expression patterns that potentially inform how alcohol disrupts the development of these neu-

ral crest facial progenitors [10,11]. Our gene-level analyses of alcohol-exposed early neural

folds, which are enriched in neural crest, identified 3422 transcripts having differential expres-

sion in response to alcohol, and these mapped to KEGG pathways with enriched representa-

tion including ribosomal biogenesis, oxidative phosphorylation, and mTOR, among others

[10]. To gain additional insight into these transcriptional changes and their underlying mecha-

nisms, here we apply principal component analysis (PCA) and k-means in conjunction with

statistical approaches to optimize the discovery of functional exon transcripts. Unsupervised

machine learning reduced the biological noise and dimensions of our multivariate RNA-Seq

data to a subset of orthogonal variables that best defined the variance among the exon tran-

scripts. This approach identified candidate splicing variants and regulatory motifs that shape

cellular responses to alcohol.

Methods

Dataset

The RNA-seq dataset was originally described in Berres et al. [10]. To summarize, it was

derived from neural fold-stage (4–7 somites) chicken (Gallus gallus, strain Special Black)

embryos that were exposed to a pharmacologically-relevant alcohol concentration (52 mM for

90 min) or isotonic saline, followed by a 4.5 hr recovery period. The cranial headfolds were iso-

lated 6 hours following the initial alcohol exposure. Following RNA isolation, cDNA synthesis,

and quality assurance [10], paired-end reads (75 bp) were generated on an Illumina Genome

Analyzer IIx (University of Wisconsin Biotechnology Center, Madison, WI). The obtained

reads were freshly analyzed using the pipeline described below.

Exon mapping and quantification

A schematic of the exon analysis pipeline is shown in Fig 1A. Trimming of the RNA-Seq

sequence reads was performed as described in our previous study [10]. The quality of the fastq

files was checked in FastQC to ensure there were no overabundant sequences, adapters, or

poor sequence quality scores [12]. The fastq sequence files were then aligned to the Gallus gal-
lus 5.0 Ensembl reference genome using Bowtie2 [13], and the resulting SAM file was con-

verted to a BAM file and fed into the subread featureCounts package [14]. Parameters used in

the subread featureCounts program included a stringency parameter (-B) that ensured the

mapping of both paired ends when assigning a count to a specific exon. Additionally, the
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parameter -f was used to specify feature (exon) level counts and not metafeature (gene) level

counts. Other unique parameters include -p and -s 0, which correspond to paired end runs

and mapping reads either on the forward or reverse strand, respectively. For normalization

and statistical analysis, we used the DEXSeq package under the R software v3.4.4. DEXSeq is a

conservative approach that utilizes a negative binomial distribution with a generalized linear

model to adjust for false positive significance values that result from running statistical tests on

tens of thousands of exons [1]. The output of the featureCounts program was used as the input

for the DEXSeq package. The DEXSeq analysis generated Benjamini-Hochberg (BH) adjusted

p-values, log2 fold changes, exon base mean expression values, exon usage coefficients, nor-

malized raw counts for each exon, exon coordinates, full and reduced linear regression model

statistics, exon transcripts, and exon dispersion estimates, as detailed in the DEXSeq manual

[1]. All subsequent statistical and machine learning analyses only utilized BH adjusted p-values

below 0.1, or a false discovery rate (FDR) of 10%. Due to the DEXSeq analysis pipeline, it is

important to note that negative fold changes correspond to genes upregulated by alcohol, and

positive fold changes are genes downregulated by alcohol.

Principal component analysis and HCPC clustering

We isolated upregulated exons and downregulated exons based on the log2 fold change and

mapped each exon to its corresponding KEGG pathway(s) using the DAVID Functional

Annotation Tool v6.8. We applied a principle component analysis with the exon IDs as the

observations (~7,000 exons), and all the normalized raw counts and exon usage coefficients as

the variables. All exons used in the PCA analysis had a BH adjusted p-value below 0.1 from the

DEXSeq analysis. The KEGG pathways were used as the supplementary qualitative variable for

identification of exon-pathway clusters. We scaled the data using the FactoMineR PCA pack-

age to standardize expression values that were measured in different scales (i.e. exon usage

Fig 1. Exon Quantification and RDAVID Workflows. (A) The pipeline portrays the steps and tools used to map the raw sequence

reads and quantify exon expression counts. (B) The creation process for the RDAVID program.

https://doi.org/10.1371/journal.pcbi.1006937.g001
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coefficients and read counts). A scree plot, a squared cosine quality of representation, and a

correlation circle were generated using the factoextra R package. The contribution of an obser-

vation to the principal components was calculated using the FactoMineR package, where the

squared factor score of the observation was divided by the eigenvalue of the component, re-

sulting in the ratio used for the contribution of an exon [15]. To identify clusters of interest

within the dataset, we utilized the Hierarchal Clustering on Principal Components (HCPC)

algorithm adapted from [16]. The HCPC algorithm under the FactoMineR package combines

hierarchal and k-means clustering to partition the observations into the most likely clusters

representative of a large multivariate dataset. The HCPC algorithm first uses the Ward crite-

rion for hierarchal clustering on the principal components; the Ward criterion is based on

multidimensional variance, making it appropriate for post-PCA clustering [17]. The number

of clusters was then determined with initial partitioning of the hierarchal tree, followed by

k-means clustering to optimize the final result [17].

In parallel, we performed a separate cluster analysis of the exon dataset using a self-organiz-

ing map (SOM) / artificial neural network (ANN) approach. The optimal number of clusters

to partition the dataset was calculated with the wss metric, gap statistic, and silhouette meth-

ods. We utilized the Kohonen R package and built our SOM with a 0.01 learning rate, 15x10

map, and 15,000 epochs. The number of epochs was calculated at the threshold in which the

mean distance between an observation and the closest unit neuron decreased and remained

stable. The dimensions of the SOM grid were calculated at the point in which the node counts

map had a minimized number of empty nodes in the ANN. We then applied hierarchal clus-

tering to view the partitioned clusters.

miRNA PCA and k-means clustering

To identify the most likely functionally-relevant miRNAs, we conducted a PCA and k-means

clustering analysis on those miRNA-encoding exons having BH adjusted p-values below 0.1.

The exon-miRNA loci were identified using the UCSC Gallus gallus 5.0 genome browser and

included miRNAs that were encoded within a single exon, across two exons, or were within an

intron for which the flanking exons were significantly altered. We used miRbase (release 22) to

confirm that all these miRNAs were previously validated in vivo [18–20]. The principal com-

ponent analysis was conducted in the same manner as described above. For the k-means clus-

tering analysis, we utilized the factoextra R package. The optimal number of clusters was

determined using the elbow method, in which the within-sum of squares (wss) measure was

plotted for each value of k clusters (1–10). The cutoff of k = 3 was based on the location of the

bend in the plot (S1 Fig) where the wss measure leveled off and did not add substantial value

to the variance explained by the clustering [17]. Calculating the optimal number of clusters

using the average silhouette and gap statistic methods yielded an optimal number of k = 2 and

k = 4 clusters, respectively, and taking the average between all three methods replicated the

k = 3 clusters found with the wss metric. When generating the k-means graph, we ran the algo-

rithm with 50 different random starting points, and the result with the lowest within-cluster

variation was selected [17]. The ellipsis drawn around each miRNA cluster was calculated with

Euclidean distance. To further validate the miRNAs found in the k-means clusters, we also

applied a fuzzy c-means clustering to the dataset. Each miRNA was assigned a probability of

belonging to each cluster (membership coefficient). To test for spatial randomness in the data,

we assessed the cluster tendency of the miRNA dataset versus a randomly generated dataset

using the Hopkins statistic, with a null hypothesis that the dataset was uniformly distributed,

and the clustering was due to random chance [21]. A Hopkins statistic (H) of 0.5 means the

data are uniformly distributed because the summations of the mean nearest neighbor distances
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in the real
Pn

i¼1
xi and randomly generated

Pn
i¼1
yi datasets are close to each other [21].

H ¼
Pn

i¼1
yiPn

i¼1
xi þ

Pn
i¼1
yi

ð1Þ

Each randomly generated dataset contained the same number of n observations and similar

numeric ranges as the exon variables in the miRNA dataset. We also performed a visual assess-

ment of cluster tendency (VAT) using the factoextra R package by computing an ordered dis-

similarity matrix with a Euclidean distance measure between miRNAs in the dataset. A VAT

heatmap was also generated from the random dataset. The SOM neural network analysis

could not be applied to the miRNA dataset because it contained too few predictors (N = 6) and

observations (N = 22) for it to build a SOM map that contained enough observations per node.

This prevented the SOM from properly learning the dataset as it could not reduce the mean

distance errors between the observations and the ANN nodes.

miRNA RDAVID pathway analysis

We identified each miRNA’s gene targets from the TargetScan 7.1 Gallus gallus database, and

mapped each gene target name to its Ensembl ID using Ensembl’s biomart tool. We ran the

resulting Ensembl ID gene list for each miRNA through DAVID’s Functional Annotation

Tool v6.8 to identify the KEGG pathway clusters shared among the gene targets. In addition,

we downloaded the TargetScan 7.1 UTR Sequences database and parsed the gene names

belonging to the chicken species ID (9031). We placed the parsed gene names into biomart

and mapped all gene names to their Ensembl gene IDs. This Ensembl gene IDs list (10,915

genes) was used as the background genome list in the RDAVID program. Using an approach

similar to [20], we developed the RDAVID program, a custom-built R program (github.com/

abrar-alshaer/RNA-Seq) that we used to evaluate the likelihood of the miRNA gene targets’

KEGG clusters resulting from random chance. We used the RDAVIDWebService library to

programmatically access the DAVID API. In the program, we generated random gene lists of

size n (n = same length of miRNA gene targets list) by sampling from the background genome

list. This process was repeated 1000 times to create 1000 random gene lists of size n. Next, we

concatenated all 1000 random lists and mapped the genes to DAVID’s Functional Annotation

Tool to identify the KEGG pathway clusters and their corresponding p-values. The p-values

were obtained using Fisher’s exact test implemented by the DAVID software [22] and plotted

by histogram. A schematic of the RDAVID pipeline is shown in Fig 1B.

Results

Dimension reduction identifies differentially expressed exons and

pathways

Using the pipeline depicted in Fig 1A, we identified 6,857 exons that had significant differen-

tial expression in the comparison of control and alcohol-exposed cranial neural folds. Of these,

4,586 were increased and 2,271 were decreased in response to alcohol challenge (GEO acces-

sion: GSE115383). These 6,857 exons represented 1,251 genes, as compared with the 3422

genes we identified as alcohol-responsive when analyzed at the gene level [10]. Of these, 391

genes overlapped between the exon-derived and gene-derived lists (S1 Table). Our initial prin-

cipal component analysis (PCA) attempted to identify pathway-gene interactions at the exon

level. However, DAVID’s functional annotation tool does not specifically annotate exons with

KEGG classifications; thus, when providing DAVID with an exon list that contains repeated

gene IDs, it mapped the repeated genes (i.e. exons of one gene) as KEGG classifications with
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higher fold-enrichments. This led to a hyper-annotation of each exon in which multiple

KEGG pathways mapped to incorrect fold-enrichments, further increasing the dataset’s

dimensionality and variance such that exon-pathway clusters could not be identified. To

resolve this, and because many of the KEGG pathways are subsets of larger biological pro-

cesses, we instead assigned the DAVID-defined KEGG classifications to one of twenty meta-

KEGG clusters based upon biological function, as described in S2 Table, and then repeated the

PCA from the DEXSeq output. Analysis of the data using a scree plot, squared cosine quality

of representation, and correlation circle affirmed the quality of the algorithm and confirmed

that the PCA captured almost all the variance in the dataset within the first and second princi-

pal components.

The top 50 unique exons IDs contributing to the variance of the principal components

(PC), regardless of fold-change, are plotted in Fig 2A and presented in Table 1, which also

includes the contribution of each exon to the variance in dimensions one and two of the PCA.

Of these top contributing 50 exons, 40 were downregulated in response to alcohol and only

one exon (within SFRP1) was upregulated with a log2 fold change greater than one. Expansion

of this analysis to the top 100 or even top 200 exons did not provide additional information to

the PCA above that of the top 50, and again, only 2 of the 100 were upregulated with notable

log2 fold changes (at least greater than 1). These 50 exons represented 42 genes, and of these

13 genes overlapped with the 3,422 genes previously identified in our gene-level analysis of

this transcriptome set [10], two of which were the ribosomal proteins RPL39 and RPS20

(Table 2). Several genes contributed multiple exons to these top 50 and included β-actin

(ACTB, 4 exons), cytoplasmic-2-like actin (ACTG1, 3 exons), glyceraldehyde-3-phosphate

dehydrogenase (GAPDH, 2 exons), and claudin-1 (CLDN1, 2 exons). A separate PCA on the

top 50 down-regulated exons (Fig 2B) and 50 up-regulated exons (Fig 2C) similarly revealed

that the up-regulated exons had a weaker impact on the PCA, as reflected in their lower contri-

bution values to the first two dimensions. Thus, the exon-level analysis identified additional

exon targets that were not discovered at the gene-level. Moreover, although only 33.1% of the

differentially-expressed exons were down-regulated, the PCA results suggest that down-regu-

lation was the most significant transcriptional response to alcohol.

When we instead used a self-organizing map (SOM) approach to cluster our exon-level

data, the results replicated our PCA analyses findings and again partitioned the miRNA-

encoding exon in ACTB farthest from all other exons (S2 Fig). SOM of the down-regulated

and up-regulated exons also generated clusters that were similar to those from the PCA. When

we then partitioned the SOM into various clusters using hierarchal clustering, we again repli-

cated the HCPC results (hierarchal clustering on principal components). However, this

approach did not add additional information above that obtained from the k-means and

HCPC approaches.

To place the differentially-expressed exons into a cellular context, and to gain insight into

how exonal choice might have emerged, we then asked which KEGG pathways were repre-

sented by these top 50 up-regulated and down-regulated exons. We again used the meta-clus-

ter KEGG approach as above, due to the exon annotation limitations of DAVID. In both sets,

the most frequently represented KEGG meta-cluster controlled cellular metabolism and

encompassed KEGG pathways including mTOR signaling, autophagy, and nitrogen metabo-

lism (32 exons up; 26 exons down; Table 3). Other enriched clusters included stress response

(18 up, 22 down), cell adhesion molecules (14 up, 23 down), ribosomal biogenesis (15 up, 10

down), and TCA/oxidative phosphorylation (10 up, 8 down). The ribosome and oxidative

phosphorylation KEGG clusters were identified in our previous gene-level analysis [10],

whereas mTOR signaling (p = 0.41; 17 genes) and focal adhesion (p = 0.078) did not achieve

significance in that analysis. Within a cluster, the gene lists for both the up-regulated and
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down-regulated top exons frequently overlapped, and some genes harbored exons that alter-

nately increased and decreased in response to alcohol. For example, seven genes overlapped

within the mTOR/autophagy/nitrogen metabolism cluster (ACTC2L, ACTG1, EEF1A1,

EIF4G2, ITGB1, TUBB4A, TUBB4B), six genes overlapped for cell adhesion (ACTC2L,

ACTG1, CLDN1, ITGB1, TUBB4A, TUBB4B), and four genes overlapped for ribosome bio-

genesis (EEF1A1, EIF4G2, RPL39, SRSF1). Other genes were uniquely represented in the up-

regulated (ACTB, BRCA1, HSPA8) and down-regulated (HSPA5, RAN, RAC1) exon sets.

Thus, alcohol had complex effects upon exon choice within a given gene. Importantly, the

PCA approach implicated novel pathways potentially influenced by alcohol, and indepen-

dently validated those identified in our previous gene-level analysis.

Cluster analysis identifies candidate miRNAs in response to alcohol

Hierarchical clustering of principal components (HCPC) of all 6,857 exons for both the upre-

gulated (N = 4,586; Fig 3A) and downregulated (N = 2,271; Fig 3B) sets identified several clus-

ters and a single distinctive outlier within the downregulated exon set. That downregulated

outlier was exon 4 of the β-Actin (ACTB) gene and is adjacent the microRNA gga-miR-3533

in exon 5. Further inspection of the PCA and HCPC results uncovered 30 unique exons with a

BH p-value below 0.1 that encoded known or predicted miRNAs. Of these, 23 were mapped to

the UCSC genome browser, and these represented 19 unique miRNAs. The abundance and

annotation for these 23 exons is presented in Table 4. Most of these miRNA-encoding exons

(70%) had a fold-change distinct from the gene-level change, suggesting these exons were dif-

ferentially regulated. We used the 23 mapped exons to generate a PCA and k-means clustering

analysis of the exon transcripts that contain miRNAs in the dataset, to identify which miRNAs

explained the most variance among the PCs. Because some of the miRNAs were encoded

across spliced exons, or were encoded within an intron, we included any exons that spanned

the miRNA locus on the gene. In the first iteration, gga-miR-3064 exon 1 skewed all the other

exons to one cluster due to its high normalized transcript abundance; thus, it was excluded

from subsequent PCA and k-means clustering analysis. In the reanalysis (Fig 4A), several

miRNA-containing exons had high log2-fold changes and a farther distance from the origin,

suggesting they may represent functionally relevant miRNAs because they explained more var-

iance among the principal components.

Under k-means clustering, the 23 miRNA-containing exons formed three distinct cluster

groups (Fig 4B) that were primarily defined by shared transcript abundance. The five most

abundant miRNA exons grouped into cluster 2, the three miRNA exons in cluster 3 were the

next most abundant, and the fourteen miRNA exons in cluster 1 were the least abundant. We

also applied a fuzzy c-means clustering and replicated the same results, except gga-miR-6667

(exon 15) belonged to cluster 3 instead of cluster 1, and gga-miR-3064 (exon 13) shared a

membership coefficient near 50% between clusters 1 and 3. To test that the miRNA k-means

clusters were not due to random chance, we performed a visual assessment of cluster tendency

(VAT) for a random dataset and for our miRNA exons dataset (Fig 4C). As expected, miRNAs

within a PCA-defined cluster also clustered together in the VAT. The VAT revealed additional

cluster subgroups, such that gga.mir.3064 (exon 11), gga.mir.6667, and gga.mir.6604 were

Fig 2. Exon-level principal component analyses. Exons farthest from the origin are the most differentially expressed

transcripts. Note that positive fold-changes are down-regulated exons, and negative fold-changes are up-regulated

exons. The common identifier (“ENSGALG0000”) for all the exon Ensembl IDs in the PCA plots was removed for

legibility. (A) PCA of the top 50 exons contributing to the variance of the dataset, irrespective of fold-change direction.

(B) PCA of the top 50 exons contributing to the variance of the dataset that were down-regulated by alcohol. (C) PCA

of the top 50 exons contributing to the variance of the dataset that were up-regulated by alcohol.

https://doi.org/10.1371/journal.pcbi.1006937.g002
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Table 1. Top 50 contributing exon annotations from PCA.

Ensembl IDs Gene Name ALC 1 ALC 2 CONT 1 CONT 2 Log2 Fold-change Dim.1 Dim.2

ENSGALG00000009621+ENSGALG00000027736.E004 gga-mir-3533 60206 57042 107686 108095 0.383 34.77 7.86

ENSGALG00000014442+ENSGALG00000028638.E026 Predicted miRNA 21886 22914 40694 40610 0.126 4.99 0.91

ENSGALG00000026862.E004 CLDN1 29340 26847 31613 31224 0.476 4.74 1.38

ENSGALG00000027399+ENSGALG00000028749.E023 Predicted miRNA 19249 20566 33739 34107 0.087 3.60 0.83

ENSGALG00000002377.E003 ENO1 19212 17021 30925 30494 0.292 3.44 0.02

ENSGALG00000005525.E008 SRSF1 15783 14124 21303 20834 0.150 1.91 0.01

ENSGALG00000005587.E025 EIF4G2 18157 15096 18473 17863 0.282 1.56 0.51

ENSGALG00000002661.E011 YWHAE 14938 13492 21699 21302 0.117 1.58 0.38

ENSGALG00000009250.E002 HNRNPA3 14923 12503 18989 18961 0.265 1.67 0.01

ENSGALG00000026383.E001 TMSB4X 13396 12162 20079 20036 0.287 1.64 0.01

ENSGALG00000001000.E001 HSPA5 14983 13591 17537 17514 0.486 1.63 0.01

ENSGALG00000004143.E001 YWHAB 13909 12048 16449 16297 0.394 1.39 0.01

ENSGALG00000003578.E001 FN1 11976 10427 17875 17976 1.016 1.30 0.02

ENSGALG00000001992.E003 PKM 10124 11979 18758 19086 0.369 1.17 0.08

ENSGALG00000016231.E001 DDX3X 13452 11169 14252 13950 0.333 1.16 0.02

ENSGALG00000001381+ENSGALG00000028375.E009 gga-mir-6703-201 9703 9424 15503 15508 0.199 0.89 0.00

ENSGALG00000014432.E001 RPS20 7785 6851 14378 14257 0.151 0.71 0.05

ENSGALG00000009621+ENSGALG00000027736.E011 ACTB 9356 9268 12715 12592 -0.055 0.69 0.01

ENSGALG00000009621+ENSGALG00000027736.E012 ACTB 8584 8876 10578 10579 -0.220 0.64 0.06

ENSGALG00000010243.E003 PRDX1 7882 6544 11483 11615 0.384 0.57 0.06

ENSGALG00000001183.E002 MYH10 7826 7216 10228 9881 0.189 0.52 0.06

ENSGALG00000007145.E018 ITGB1 8665 7280 11728 11337 0.488 0.41 0.25

ENSGALG00000010026.E001 PPP1CB 8086 6783 9412 9199 0.149 0.48 0.07

ENSGALG00000015480.E001 POGLUT1 8178 7690 8372 8437 0.147 0.48 0.07

ENSGALG00000000059.E006 F1NMU4 6156 7567 9951 10048 0.086 0.47 0.07

ENSGALG00000012784.E012 TXNDC5 9117 7759 10336 10044 0.230 0.39 0.22

ENSGALG00000008620.E003 RPL39 7507 6445 12364 12464 0.192 0.45 0.05

ENSGALG00000015917.E049 EEF1A1 5881 5842 14080 14018 0.684 0.40 0.18

ENSGALG00000016433.E001 YWHAQ 6672 5826 8844 8719 0.068 0.38 0.07

ENSGALG00000005525.E007 SRSF1 6304 5409 6898 6941 -0.103 0.33 0.19

ENSGALG00000010175.E003 HSP90AB1 6000 5500 9377 9444 0.400 0.38 0.07

ENSGALG00000008586.E003 TUBB4B 5872 5545 9139 9418 0.303 0.37 0.07

ENSGALG00000027399+ENSGALG00000028749.E022 Predicted miRNA 6400 6739 9856 9926 -0.092 0.39 0.00

ENSGALG00000023510.E001 ERP29 6484 6158 7445 7575 0.093 0.34 0.08

ENSGALG00000009621+ENSGALG00000027736.E005 gga-mir-3533 1446 1349 2016 1972 0.018 0.07 0.70

ENSGALG00000016314.E010 ELOVL5 7934 6799 9228 9054 0.158 0.31 0.13

ENSGALG00000020322+ENSGALG00000005425.E015 OGT 6575 5831 10038 9909 0.386 0.34 0.00

ENSGALG00000010053.E041 PTPRF 6856 6633 9136 8881 0.868 0.27 0.14

ENSGALG00000000433.E006 TUBA4A 5630 7173 9327 9456 -0.065 0.30 0.05

ENSGALG00000016447.E001 PDIA6 5609 5007 7429 7250 0.206 0.28 0.08

ENSGALG00000002569.E003 RAN 4947 4427 8100 8332 0.141 0.27 0.08

ENSGALG00000004796.E003 CDC42 5763 5145 6269 6601 0.084 0.26 0.09

ENSGALG00000000533.E008 SRSF3 6019 5564 8675 8633 0.130 0.22 0.11

ENSGALG00000003473.E002 SFRP1 6248 5826 4652 4601 -0.249 0.23 0.09

ENSGALG00000004889.E001 SLC2A1 4731 4558 6590 6542 0.237 0.22 0.09

ENSGALG00000014442+ENSGALG00000028638.E012 Predicted miRNA 587 554 310 329 -1.567 0.02 0.54

ENSGALG00000008094.E001 HSPD1 4748 4159 6670 6485 0.261 0.21 0.09

(Continued)
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more interrelated, as were gga.mir.1665, gga.mir.6706 (exon 1), gga.mir.6619, gga.mir.6542,

and gga.mir.6604 (exon 28). Certain miRNAs also maintained consistent relationships with

miRNAs in another cluster; for example, in the VAT heatmap gga.mir.3533 shared an opposite

relationship with all 14 miRNAs in cluster 1. This is consistent with the finding of gga-miR-

3533 exon 4 as a distinct outlier from all other exons. These groupings suggest relationships

within and between miRNAs that may inform their means of regulation or their functional rel-

evance in response to alcohol exposure. We also evaluated the dataset’s spatial randomness

using the Hopkins statistic (H). For a randomly generated dataset, H = 0.499 and was consis-

tent with a uniformly distributed dataset that was clustered due to random chance. For the

miRNA exons dataset, H = 0.15 and we rejected the null hypothesis and concluded that the

clusters were not due to random chance.

Table 1. (Continued)

Ensembl IDs Gene Name ALC 1 ALC 2 CONT 1 CONT 2 Log2 Fold-change Dim.1 Dim.2

ENSGALG00000026862.E001 CLDN1 849 1101 673 672 -0.222 0.03 0.51

ENSGALG00000027399+ENSGALG00000028749.E006 Predicted miRNA 1357 1608 1766 1911 -0.372 0.05 0.45

ENSGALG00000002932.E019 NME2 4809 4473 9393 9326 0.421 0.22 0.03

The Ensembl gene IDs, gene names, normalized exon counts for both pooled samples in alcohol-treated (ALC) and control (CONT) groups, log2 fold-changes, and

contribution calculations of the first two dimensions for each exon in the PCA.

https://doi.org/10.1371/journal.pcbi.1006937.t001

Table 2. Shared gene targets between exon-level (Top 50) and gene-level analysis.

Gene ID Exon Gene Wikigene name Gene-level Log2 Fold-change

(Alc/Cont)

Gene-level P

adjusted

Exon Level Log2 Fold-change

(Cont/Alc)

Exon Level P

adjusted

ENSGALG00000001381 E009 ACTB ACTG1 0.78447 1.60E-02 0.19924 4.11E-17

ENSGALG00000002932 E019 NME2 NME2 0.60924 2.45E-08 0.42073 0.00933

ENSGALG00000003473 E002 SFRP1 SFRP1 1.46779 4.76E-05 -0.24910 2.99E-06

ENSGALG00000005587 E025 EIF4G2 EIF4G2 1.24812 2.68E-02 0.28156 0.00235

ENSGALG00000007145 E018 ITGB1 ACTG1 0.78447 1.60E-02 0.48766 1.94E-16

ENSGALG00000008620 E003 RPL39 RPL39 0.63949 5.18E-02 0.19245 5.63E-06

ENSGALG00000009250 E002 HNRNPA3 LOC100859627 0.74848 2.08E-02 0.26493 0.01029

ENSGALG00000009621 E004 gga-mir-

3533

ACTB 0.73941 1.17E-03 0.38293 8.64E-19

E005 0.01755 0.00119

E011 -0.05466 4.42E-13

E012 -0.22022 7.80E-11

ENSGALG00000010026 E001 PPP1CB PPP1CB 1.35157 4.21E-03 0.14897 7.45E-09

ENSGALG00000014432 E001 RPS20 RPS20 0.61603 1.71E-03 0.15055 4.36E-10

ENSGALG00000014442 E012 GAPDH GAPDH 0.65804 2.58E-06 -1.56687 1.56E-45

E026 0.12600 1.44E-09

ENSGALG00000026862 E001 CLDN1 CLDN1 1.31928 2.32E-02 -0.22246 0.03191

E004 0.47578 0.00590

ENSGALG00000028749 E006 ACTG1 LOC776816 0.75370 8.21E-03 -0.37219 0.00150

E022 -0.09153 0.00682

E023 0.08719 6.87E-05

Top 50 exon identities that overlap with gene-level targets from [7], including Ensembl gene ID, exon locus, Ensembl gene name, Wikigene name, gene-level log2 fold-

change, gene-level Benjamini-Hochberg (BH) adjusted p-value, exon level log2 fold-change, and the exon level BH adjusted p-value.

https://doi.org/10.1371/journal.pcbi.1006937.t002

Machine learning reveals miRNA targets in FASD

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006937 April 11, 2019 11 / 25

https://doi.org/10.1371/journal.pcbi.1006937.t001
https://doi.org/10.1371/journal.pcbi.1006937.t002
https://doi.org/10.1371/journal.pcbi.1006937


RDAVID miRNA pathway analysis

To gain insights into the potential biological significance of these differentially represented

exon-containing miRNAs, we used TargetScan7.1 to extract candidate gene targets for each

individual miRNA and mapped these candidate genes into DAVID to identify the KEGG path-

ways most likely to interact with each miRNA. However, the TargetScan results are predicted

targets and most have not been experimentally validated. To eliminate those KEGG pathways

that arose from random chance due to false positive gene targets, and thereby identify path-

ways that were truly enriched, we first ran our RDAVID pipeline (Fig 1B) using a randomly

generated gene target list of the same size (n = 1000) as the miRNA candidate gene targets list

[20]. We repeated this 1000 times and mapped all random gene lists to their KEGG pathways;

Table 3. KEGG pathways of top 50 Up-regulated and down-regulated contributing exons.

Pathways Upregulated by ETOH

Meta-KEGG Pathway
Group

Number of
Exons

Number of
Genes

Gene Symbols

mTOR-autophagy-N

metabolism

32 23 ACTB, TUBA4A, SRSF1, HSPA8, ACTG1, APOA1, SRSF10, ACTC2L, U2AF1, UBE2D3, EEF1A1,

TUBB4B, RHOA, RPS6, EIF4G2, BRCA1, gga-mir-3064, RPL39, ITGB1, ENOPH1, UBE2G1, UBB,

PDPK1

Stress response 18 13 ACTB, TUBA4A, ACTG1, UBE2G1, ENO1, AP1M1, HSPA8, ITGB1, TUBB4B, HSP90AB1, UBE2D3,

TXNDC5, ACTC2L

Ribosomal Biogenesis 15 10 SRSF1, HSPA8, SRSF10, U2AF1, DDX5, EEF1A1, RPS6, EIF4G2, RPL39, PDPK1

Cell Adhesion Molecules 14 10 ACTB, ACTC2L, TUBA4A, ACTG1, PDPK1, VCAN, TUBB4B, RHOA, ITGB1, CLDN1

TCA/OxPhos 10 9 PKM, APOA1, ALG12, PDPK1, UBB, GAPDH, ENO1, TPI1, PAFAH1B2

FoxO 8 7 PKM, PDPK1, GAPDH, ENO1, YWHAE, RHOA, TPI1

Endocytosis 6 5 RHOA, ARF1, HSPA8, EHD3, TPM4

NC development 4 3 SFRP1, TPI1, SLC25A6

MAPK Signaling 2 1 HSPA8

1-Carbon metabolism 1 1 PKM

Pathways Downregulated by ETOH

Meta-KEGG Pathway
Group

Number of
Exons

Number of
Genes

Gene Symbols

mTOR-autophagy-N

metabolism

26 23 gga-mir-3533, gga-mir-3064, HSPA5, RAN, PPP1CC, SLC2A1, SRSF1, EIF4G2, RAC1, ITGB1, TUBB4B,

RPL39, HNRNPA3, PPP1CB, PTPRF, RPS20, EEF1A1, SRPRB, TUBA4A, F1NMU4, ACTG1, OGT,

ACTC2L

Stress response 22 20 gga-mir-3533, ACTC2L, ACTG1, TUBB4B, F1NMU4, HSPA5, ENO1, PPP1CC, CDC42, NCBP2, RAC1,

ITGB1, HSPD1, TUBA4A, PPP1CB, HSP90AB1, TXNDC5, DDX3X, PDIA6, ERP29

Cell Adhesion Molecules 23 20 gga-mir-3533, ACTC2L, ACTG1, OGT, F1NMU4, TUBA4A, TMSB4X, CLDN1, FGFR3, POGLUT1,

PTPRF, PPP1CB, TUBB4B, ITGB1, RAC1, SLC2A1, CDC42, PPP1CC, FN1, MYH10

FoxO 13 11 OGT, GAPDH, PKM, ENO1, YWHAE, YWHAB, PPP1CC, SLC2A1, PPP1CB, PTPRF, YWHAQ

Ribosomal Biogenesis 10 10 gga-mir-3064, HSPA5, RAN, SRSF1, EIF4G2, RPL39, HNRNPA3, RPS20, EEF1A1, SRPRB

TCA/OxPhos 8 7 GAPDH, PKM, ENO1, CDC42, RAC1, PRDX1, ELOVL5

Cell cycle 5 4 PKM, YWHAE, YWHAB, YWHAQ

MAPK Signaling 3 3 CDC42, RAC1, FGFR3

Endocytosis 3 3 RAB11B, CDC42, FGFR3

Cardiomyocyte Signaling 2 2 PPP1CC

PPP1CB

1-Carbon metabolism 2 1 PKM

NC development 2 2 CDC42, RAC1

The KEGG pathway groups, number of exons/genes in each pathway, and gene symbols for the top 50 contributing exons contained in that pathway that were

upregulated/downregulated by alcohol. The composition of pathways within each meta-KEGG is presented in S2 Table.

https://doi.org/10.1371/journal.pcbi.1006937.t003
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this did not require the meta-cluster approach because each miRNA represented a single gene.

Histograms of p-values for two statistically significant KEGG pathways among the miRNA

exons, cell adhesions (includes focal adhesion and cell adhesion molecules KEGG pathways)

and hedgehog signaling, are presented in Fig 5. For cell adhesion, p-values for the randomly

generated gene-pathways were uniformly distributed (Fig 5A), whereas those for the miRNA

dataset were mostly below 0.01 (Fig 5B), suggesting the cell adhesion pathway enrichment was

not due to false enrichment from the predicted targets. Parallel analysis of the next-most abun-

dant pathways, insulin signaling and endocytosis, yielded similar results and suggested their

emergence also did not represent false enrichment. In contrast, for the hedgehog signaling

pathway, p-values for the randomly generated gene targets were not uniformly distributed and

were similar to the distribution of p-values in our dataset (Fig 5C). This indicated that their

presence in the miRNA data set (Fig 5D) likely represented a false discovery. The low abun-

dance of these targets likely contributed to this type-1 error.

Following this RDAVID analysis, the most significantly enriched KEGG pathways that

emerged from the candidate gene target list for each miRNA are presented in S3 Table. Several

pathways emerged repeatedly, and the most commonly represented pathways included focal

adhesion (15 miRNAs), regulation of actin cytoskeleton (12), insulin signaling (10), insulin

resistance (9), MAPK signaling (9), and ErbB signaling (8). Although these pathways also were

present within all three miRNA clusters identified using k-means, the three clusters differed in

the specifics of their pathway enrichment. For the high-abundance miRNAs in cluster 2 (Fig

6A), the most enriched pathway targeted insulin signaling (128 genes) and several pathways

crucial to neural crest development including MAPK signaling (128 genes), focal adhesion

(117 genes), actin cytoskeleton (116 genes) and melanogenesis (23 genes). Other predicted

pathways included known alcohol targets in this model including calcium signaling (55 genes)

and Wnt signaling (53 genes) [5, 10]. The pathways in miRNA cluster 3 (Fig 6B) paralleled

those of cluster 2 and similarly emphasized insulin signaling (90 genes), cell migration (focal

adhesion, 88 genes; actin cytoskeleton, 64 genes), and MAPK signaling (37 genes), as well as

Wnt signaling (35 genes) and TGF-β signaling (34 genes). MiRNAs in cluster 1 (Fig 6C) had

the lowest abundance and a different target profile that emphasized endocytosis (44 genes),

focal adhesion (41 genes), Wnt signaling (38 genes), MAPK signaling (36 genes), and

Fig 3. 3D hierarchal representation of HCPC clustering. (A) Visualization of the HCPC clustering results for exons up-regulated by alcohol.

(B) Visualization of the HCPC clustering results for exons down-regulated by alcohol.

https://doi.org/10.1371/journal.pcbi.1006937.g003
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Table 4. miRNA exons annotations.

Ensembl ID miRBase

ID

Gene

Symbol

Gene Name ALC

1

ALC

2

CONT

1

CONT

2

BH P-

value�
Exon

Log2 FC

Gene Log2

FC

ENSGALG00000025382

+ENSGALG00000001043:E020

gga-mir-

1647

REXO1 RNA exonuclease 1

homolog

611 713 893 949 0.004 0.449 -0.043

ENSGALG00000003532

+ENSGALG00000027517:E001

gga-mir-

3064

DDX5 DEAD-box helicase 5 3896 3546 6352 6185 1.08E-12 0.337 0.178

ENSGALG00000009621

+ENSGALG00000027736:E005

gga-mir-

3533

ACTB Beta Actin 1446 1349 2016 1972 0.001 0.018 0.439

ENSGALG00000027916

+ENSGALG00000008553:E001

gga-mir-

6544

INO80 INO80 complex subunit 464 395 495 518 0.065 0.106 -0.194

ENSGALG00000042088

+ENSGALG00000028980:E001

gga-mir-

6590

ATG2B autophagy related 2B 77 71 88 66 0.060 0.322 -0.681

ENSGALG00000030446

+ENSGALG00000041520:E001

gga-mir-

6593

CCDC94 coiled-coil domain

containing 94

52 58 110 112 0.043 0.470 0.438

ENSGALG00000028549

+ENSGALG00000000721:E001

gga-mir-

6602

SLC41A1 solute carrier family 41

member 1

77 84 100 83 0.002 0.578 -0.655

ENSGALG00000026724

+ENSGALG00000041331:E001

gga-mir-

6604

RRP12 RRP12-like protein 93 116 252 270 0.0003 0.605 0.248

ENSGALG00000005516

+ENSGALG00000028228:E001

gga-mir-

6639

HEATR6 HEAT repeat containing

6

479 473 742 717 0.020 0.230 0.186

ENSGALG00000006144

+ENSGALG00000026170:E015

gga-mir-

6667

CDK10 cyclin dependent kinase

10

179 199 341 350 0.044 0.173 0.567

ENSGALG00000025785

+ENSGALG00000008380:E001

gga-mir-

6706

DGKZ diacylglycerol kinase zeta 1190 1350 1598 1662 0.025 0.104 0.087

ENSGALG00000039830

+ENSGALG00000034961:E001

gga-mir-

6710

DHX30 DExH-box helicase 30 903 1088 1398 1385 4.65E-06 0.294 -0.0013

ENSGALG00000009476

+ENSGALG00000025191:E001

gga-mir-

1650

CDK6 cyclin dependent kinase 6 1464 1393 1336 1377 0.006 -0.141 -0.204

ENSGALG00000025345

+ENSGALG00000028561:E027

gga-mir-

1665

SZT2 SZT2, KICSTOR complex

subunit

6 7 2 3 0.093 -1.776 0.282

ENSGALG00000003532

+ENSGALG00000027517:E011

gga-mir-

3064

DDX5 DEAD-box helicase 5 51 46 48 35 0.041 -0.632 0.178

ENSGALG00000003532

+ENSGALG00000027517:E013

gga-mir-

3064

DDX5 DEAD-box helicase 5 258 247 230 254 0.0002 -0.479 0.178

ENSGALG00000038017

+ENSGALG00000032029:E001

gga-mir-

6542

SRF serum response factor 15 15 5 13 0.090 -1.221 0.241

ENSGALG00000025769

+ENSGALG00000015451:E003

gga-mir-

6565

ZNF462 zinc finger protein 462 1605 1486 776 757 1.90E-38 -0.729 -0.496

ENSGALG00000028549

+ENSGALG00000000721:E012

gga-mir-

6602

SLC41A1 solute carrier family 41

member 1

206 193 129 100 0.0007 -0.413 -0.655

ENSGALG00000026724

+ENSGALG00000041331:E028

gga-mir-

6604

RRP12 RRP12-like protein 13 11 6 10 0.072 -1.271 0.248

ENSGALG00000026724

+ENSGALG00000041331:E027

gga-mir-

6604

RRP12 RRP12-like protein 27 41 28 39 0.073 -0.742 0.248

ENSGALG00000030904

+ENSGALG00000038881:E064

gga-mir-

6619

LRP1 LDL receptor-related

protein 1 precursor

26 19 11 9 0.074 -1.200 -0.024

ENSGALG00000025785

+ENSGALG00000008380:E009

gga-mir-

6706

DGKZ diacylglycerol kinase zeta 8 9 5 1 0.081 -1.686 0.087

The Ensembl gene ID, miRBase ID, gene symbol containing the miRNA, gene name, normalized exon counts for both pooled samples in alcohol-treated (ALC) and

control (CONT) groups, log2 fold-changes (FC), and BH adjusted p-value for miRNA-containing exons that mapped to the UCSC genome browser. Repeated miRNA

IDs are due to a miRNA spanning more than one exon. Only exons with BH p-values below 0.1 were analyzed.

https://doi.org/10.1371/journal.pcbi.1006937.t004
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Fig 4. PCA, K-means, and VAT of miRNAs. The common identifier (“gga-miR”) for all the miRNA-exon Ensembl

IDs was removed for legibility. All miRbase IDs in the plots are followed by a hyphen and the correspond exon
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regulation of actin cytoskeleton (36 genes). Overall, the differentially enriched miRNAs consis-

tently targeted a limited set of pathways crucial for neural crest development. They also tar-

geted pathways known to be dysregulated by alcohol in this cell population, implicating these

miRNAs as candidate contributors to those mechanisms.

Discussion

Machine learning as a discovery tool for exome analysis

The most important finding from our study is that the use of exon level analysis in conjunction

with unsupervised machine learning generates novel insights that were otherwise lost in gene-

level analyses with statistics alone. Reliance on rankings of p-values can lead to prioritizing

exons by significance, and this may not directly correlate with functional relevance. Such

approaches in analysis of RNA-Seq data make it difficult to select exons of interest with the

most likely biological relevance. While statistical tests are often effective at drawing inferences

from a dataset, these inferences are based on assumptions from a given model that are likely to

best fit the dataset in question [2]. Unlike statistical methods based on a conical model of infer-

ence, unsupervised machine learning assumes little to no information about the dataset in

number. (A) A PCA of the UCSC-verified miRNA-containing exons in our dataset (excluding gga-miR-3064 exon 1).

Repeated miRNA IDs are due to a miRNA spanning more than one exon. Note that positive fold-changes are down-

regulated exons, and negative fold-changes are up-regulated exons. (B) K-means clustering (k = 3 clusters) of all

UCSC-verified miRNA exons, ellipses are drawn using Euclidean distance (excluding gga-miR-3064 exon 1). (C) A

heatmap representation of the visual assessment of cluster tendency for all miRNA exons. Red corresponds to high

similarity, and blue corresponds to low similarity.

https://doi.org/10.1371/journal.pcbi.1006937.g004

Fig 5. P-value distributions of RDAVID results. (A) A histogram of all p-values from the 1000 randomly generated

miRNA gene targets in the cell adhesions pathway. (B) A histogram of all p-values from our RNA-Seq dataset’s miRNA

gene targets in the cell adhesion pathways. (C) A histogram of all p-values from the 1000 randomly generated miRNA

gene targets in the hedgehog pathway. (D) A histogram of all p-values from our RNA-Seq dataset’s miRNA gene

targets in the hedgehog pathway.

https://doi.org/10.1371/journal.pcbi.1006937.g005
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question. For example, principal component analysis (PCA) reduces the biological noise in the

data set and identifies hidden patterns within and between exons to identify correlated vari-

ables. By implementing a principal component analysis (PCA), we reduced the dimensionality

of our multivariate RNA-Seq dataset into 2–3 principal components that correspond to most

of the variance in the data. To further identify relationships among the exons an unsupervised

clustering algorithm, such as k-means, provides insight as to which exons share the closest

mathematical distance, and this in turn can elucidate biologically relevant relationships.

An unexpected problem arose during the pre-processing of the exon data for implementa-

tion in the initial PCA analysis, and we discovered a limitation in the application of the

DAVID functional annotation tool to exome analysis. Specifically, DAVID’s KEGG pathway

annotations do not consider exon level mapping; hence, when assigning exons to KEGG path-

ways the annotation is collapsed to the gene ID and the KEGG becomes over-enriched. More-

over, since KEGGs are assigned by gene level information without specificity for exon

transcripts or splicing variants, each exon receives all the KEGGs for all the exons associated

with that gene. For example, if gene X had 10 exons, and gene X mapped to 45 KEGGs, each

exon will receive all 45 KEGG annotations, resulting in 450 annotations for one gene (gene X).

This creates hyper-annotation of KEGGs to each exon and significantly increases the error due

to variance introduced into the machine learning algorithm. It is imperative to note that all

machine learning approaches rely on the fine balance between the bias-variance tradeoff.

Error due to variance results in underfitting of the machine learning algorithm where the

model cannot adequately learn the dataset, therefore causing a higher probability of false pre-

diction of exon classifications in the model [17]. Conversely, error due to bias results in over-

fitting of the dataset and may cause normally random trends in the dataset to be used as

classification criteria in the model algorithm [17]. For this reason, we implemented the meta-

KEGG approach to balance the bias-variance tradeoff in our PCA and k-means algorithms.

This approach funneled the long list of KEGG annotations for each exon into 1–5 functional

classifications, and this better balanced the ratio of bias and variance introduced into the algo-

rithm with our dataset. We further enhanced the rigor of the machine learning models by uti-

lizing only those exons with an FDR adjusted p-value below 0.1. Corroborating these statistical

approaches with unsupervised machine learning enhanced the identification of novel differen-

tially expressed exons.

In support of the validity of our machine learning approach, as this paper was finalized two

new publications describe additional machine learning approaches to analyze RNA-Seq data

with respect to alternately-spliced transcripts [23] and the prediction of genetic expression

profiles [24]. However, the approach described in [24] utilizes supervised machine learning

algorithms to predict environmental exposure from genetic and epigenetic expression profiles.

Supervised methods were similarly used in [23] to predict healthy/disease phenotypes, tissue

types, and other sample features. These methods differed from our approach as we utilized

unsupervised algorithms for discovery of exome-level differential expression patterns, rather

than feature prediction; therefore, without previous training of our model we limit assump-

tions about the RNA-Seq dataset. Application of an unsupervised neural network to the exon

dataset obtained similar results; however, this approach was limited to the exome dataset due

to the high number of observations.

Fig 6. KEGG Representation for miRNA Clusters Identified through K-Means Analysis. (A) Listing of significantly

enriched KEGG pathways in miRNA cluster 2, with the number of genes in each pathway indicated. (B) Listing of

significantly enriched KEGG pathways in miRNA cluster 3, with the number of genes in each pathway indicated. (C)

Listing of significantly enriched KEGG pathways in miRNA cluster 1, with the number of genes in each pathway

indicated.

https://doi.org/10.1371/journal.pcbi.1006937.g006
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Machine learning at exome-level identifies alcohol-responsive candidate

pathways

To our knowledge, this is one of a few handful of studies that directly compare gene-level and

exon-level outcomes from RNA-Seq, and the first to study this with respect to alcohol expo-

sure. Importantly, the exon-level analysis recapitulated major findings from the gene-level

analysis and thus endorses the validity of this machine learning approach for exome discovery.

Both approaches identified KEGG pathways representing ribosome biogenesis, oxidative phos-

phorylation, and spliceosome as having significantly altered enrichment in response to alcohol;

expression in these pathways was suppressed [10,11]. However, the exon-level analysis gener-

ated a richer profile of these expression-level changes, and it captured additional pathways that

only trended toward statistical significance in the gene-level analysis, including mRNA surveil-

lance, cell cycle, and protein processing in the endoplasmic reticulum. The comparison of

KEGG pathways for up-regulated exons and genes was less concordant and this was explained

by the PCA, which found a weaker contribution of the upregulated exons to the data variance.

Overall, the exon-level approach confirmed major findings from the gene-level analysis, and it

highlighted that gene-level based interpretations do not fully capture the complexity of tran-

scriptomic regulation. Several of these pathways (cell adhesion, regulation of actin cytoskele-

ton, cell migration, ribosome biogenesis, mRNA splicing) were also enriched in two

independent microarray analyses of alcohol-exposed mouse neural folds having a parallel

developmental stage [25, 26], endorsing that these changes represent conserved responses to

alcohol across amniotes.

An unexpected finding from the exon-level PCA was the identification of a single exon,

exon 4 within ACTB, which was highly differentiated from the other top 100 exons. This exon

turned out to encode a miRNA, gga-miR-3533, and additional investigation revealed that

many of the top contributing exons that responded to alcohol also encoded miRNAs. Our

prior, gene-level analysis of this same data set identified miR-3533 but not these other sixteen

miRNAs [10], likely because the statistical weighting approach minimizes significance when

only a single exon or flanking exons is differentially expressed within that gene. Because

RNA-Seq directly quantifies exome abundance, our approach enabled the retrospective cap-

ture of miRNAs from the same cDNA pool used to quantify mRNA, without the need for spe-

cialized extractions or microarrays selective for these short sequences. Endorsing this

approach, the majority of these miRNA-encoding exons were differentially expressed relative

to their parent genes, and thus were missed when the individual exon responses were collapsed

during our prior gene-level analysis. MiRNAs are crucial regulators of gene expression. These

small, non-coding RNAs average 21–23 nucleotides in size and typically target specific

sequences within the 3’ end of mRNAs to effect translational repression or RNA destabiliza-

tion; some miRNAs instead bind 5’ mRNA sequences to enhance translation and stability [27].

Because a single miRNA can target multiple transcripts, miRNAs are a powerful mechanism to

rapidly redirect cellular activity at the translational level and at a low energetic cost. Non-cod-

ing RNAs including miRNAs are significant mediators of alcohol’s action, and they contribute

to its pathological sequelae including neurotoxicity, teratogenicity, hepatotoxicity, inflamma-

tion, and to mechanisms of addiction, tolerance, and withdrawal [7, 28, 29]. MiRNAs also

have clinical relevance to FASD, and a panel of miRNAs isolated from the maternal serum exo-

some strongly predicts the severity of birth outcomes in alcohol-exposed pregnancies [29].

The identification of alcohol-responsive miRNAs within the early cranial neural fold, which is

vulnerable to alcohol’s neurotoxicity, is consistent with that work and extends the relevance of

miRNA dysregulation to this early embryonic period.

Machine learning reveals miRNA targets in FASD

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006937 April 11, 2019 19 / 25

https://doi.org/10.1371/journal.pcbi.1006937


The seventeen miRNAs having significantly altered representation in this model were inde-

pendently validated in chick embryos including these stages [18, 20], but have not been previ-

ously identified as alcohol-responsive. While most of these miRNAs are unique to G. gallus,
miR-3533 is also described for B. taurus, and miR-3064 is orthologous in multiple vertebrate

species including human. Six of these miRNAs are located within genes linked with craniofa-

cial and/or neurodevelopmental impairment when mutated in humans: ACTB, CDK10,

CDK6, INO80, SZT2, and ZNF462 [30–35]. Three additional genes, DDX5, DHX30 and

RRP12, participate in ribosome biogenesis [36–38]. Loss-of-function in ribosome biogenesis

causes facial deficits [39] and is mechanistically linked to the alcohol-induced facial deficits

and neural crest losses studied here [10]. DHX30 (MIM: 616423), which harbors miR-6710 in

Exon 1, is an RNA helicase enriched in neural progenitors and is essential for mitochondrial

ribosome biogenesis. DHX30 loss-of-function in mouse is embryolethal by day 9.5, and mis-

sense mutations within its core helicase produce intellectual disability and facial anomalies

[37, 40]. A second RNA helicase, DDX5, also houses an alcohol-responsive miRNA, miR-

3064, that is conserved across vertebrates. The DDX5 gene product, also known as p68 RNA

helicase, mediates splicing of rRNA, mRNA, and miRNA, and it is a crucial transcriptional

regulator [41]; it was also suppressed by alcohol in mouse neural folds [25]. Interestingly, miR-

3064 has inhibitory interactions with mRNA encoding human telomerase reverse transcrip-

tase, or hTERT [42], which promotes cell invasion by upregulating Snai2. Alcohol induces

Snai2 in these cells to accelerate their epithelial-mesenchymal transformation [43], and the

reduced miR-3064 observed here suggests a mechanism that might explain this response.

Although these miRNAs have not been specifically linked to facial morphogenesis, their pres-

ence suggests an alternate means by which their domicile genes could influence cranial

development.

The KEGG enrichments identified for these miRNAs largely replicates an independent

functional mapping for these chick miRNAs [20], and many of these pathways are crucial for

normal craniofacial development [44, 45]. Several of the pathways potentially targeted by these

alcohol-responsive miRNAs mediate neural crest processes that are vulnerable to alcohol

including cell cycle inhibition, apoptotic deletion, reduced induction, and altered migratory

capacity [5, 46]. Furthermore, these enriched pathways were targeted by multiple miRNAs,

and this redundancy suggests they are especially important for cellular alcohol responses. As

one example, two frequently represented KEGG pathways were Focal Adhesion (#4510, 12

miRNAs) and Actin Regulation (#4810, 12 miRNAs). Cranial neural crest progenitors migrate

from their dorsal neuroepithelial origin to occupy the ventrally positioned facial anlage, and

alcohol reduces their migration by reducing focal adhesion formation and disrupting the actin

cytoskeleton [5, 46, 47]. MiRNA-mediated regulation of cytoskeletal assembly offers a mecha-

nism to explain how these migratory changes can persist long after the alcohol is cleared. Fur-

ther contributing to these facial deficits is the widespread elimination of neural crest

progenitors through alcohol’s activation of calcium-mediated apoptosis [5, 48, 49]. We showed

previously that the pharmacologically-relevant alcohol level used here stimulates the rapid, G-

protein-mediated release of intracellular calcium stores and activation of CaMKII within these

cells, and blockade of this calcium transient or CaMKII fully prevents their alcohol-induced

apoptosis [48, 49]; thus, enrichment for multiple miRNAs that may influence calcium signal-

ing are consistent with this mechanism. The majority of these (gga-miR-6602-5p, gga-miR-

6604-5p, gga-miR-6667-5p, gga-miR-6619-5p) target 5’ sequences in their predicted targets,

suggesting an activating translational role [27] and a means by which these calcium signals

could have a lasting impact upon these alcohol-exposed cells, and in complementation with

CaMKII activation [49]. This calcium transient acts as a non-canonical Wnt signal through the

CaMKII-mediated destabilization of nuclear β-catenin, and restoration of the latter’s
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transcriptionally activity rescues neural crest progenitors from alcohol-mediated apoptosis [5,

50]. Seven of the alcohol-responsive miRNAs target Wnt signaling (#4310), reflecting the Wnt

pathway’s central role in neural crest survival, migration, and differentiation [44, 45]. Using a

mouse neural crest model, Chen and colleagues showed that alcohol also activates p38 MAPK

and decreases expression of miR-125b to stabilize p53 [51, 52]. While gga-miR-125b did not

emerge from this analysis, nine of our miRNAs have enriched selectivity for MAPK signaling

(#4010) and offers an additional means to modulate this pathway’s activity.

These miRNAs also offer novel insights into how alcohol alters neural crest development

and survival. Signaling through ErbB governs neural crest pathfinding and migration, effected

in part through downstream phosphorylation of Akt [53, 54], and loss of ErbB or its ligand

neuroregulin disrupts neural crest migration and cranial ganglia and melanocyte development.

Multiple alcohol-responsive miRNAs had predicted sequence specificity for pathways relevant

to ErbB activity including ErbB signaling itself (#4012, 8 miRNAs), ten targeting insulin signal-

ing (#4910, 10 miRNAs), and melanogenesis (#4916, 1 miRNA). Although ErbB is not a

known alcohol target in the embryo, alcohol-ErbB interactions contribute to mammary onco-

genesis [55] and its emergence here is consistent with alcohol’s well-documented suppression

of neural crest migration [5, 47]. Also related to this is the identification of seven miRNAs

linked to FoxO (#4068), a family of transcriptional effectors that operate downstream of ErbB/

MAPK, as well as metabolic pathways including insulin and oxidative phosphorylation, to

mediate cellular responses to stress. Alcohol upregulates FoxO in models of bone fracture heal-

ing [56] and intestinal barrier dysfunction [57], and its emergence here is consistent with that

work. It may also further inform our β-catenin results, as FoxO can bind β-catenin to redirect

and limit its Wnt transcriptional activity [58]. Taken together, alcohol’s dysregulation of multi-

ple miRNAs in these neural folds is consistent with its pleiotropic actions and reflects its ability

to interact with multiple proteins to redirect cellular activities. Despite this, the pathways

enriched as potential miRNA targets represented a core set of signals crucial for normal devel-

opment of these cells and known to be alcohol-responsive, either in this model or in other cell

lineages. The internal consistency of these findings further validates machine-learning as an

unbiased approach to elucidate alcohol mechanisms.

This work has several limitations, the most notable being that the aforementioned limita-

tions in the DAVID software preclude exon-level KEGG pathway analysis, due to the multipli-

cative expansion of annotations when multiple exons per gene are represented. Although our

work-around clustered the KEGGs into functional clusters and recapitulated our gene-level

findings, it was also informed by that prior analysis. Further efforts in omics database manage-

ment and annotation are needed to address this challenge. The other major limitation is that

the predicted gene targets of these miRNAs identified in our in silico approach require func-

tional validation. However, their relevance in this model is endorsed because these predicted

pathways target known processes that are crucial to craniofacial morphogenesis and are

known targets of alcohol. In conclusion, the application of statistical and machine learning

algorithms to a complex exome dataset identified novel mechanistic candidates that were over-

looked by approaches that emphasize p-value rank. It represents a method to distill the biologi-

cal noise in a complex omic system and identify patterns that are otherwise missed, and its

serves as a powerful tool for examination of exon/gene-pathway interactions.

Supporting information

S1 Fig. Optimal K-means clusters. The optimal number of clusters at k = 3 using the wss

elbow method.

(TIF)
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S2 Fig. Artificial neural network self organizing maps on exon data. (A) A SOM was applied

to the all exons with two partitioned clusters generated by the overlaid hierarchal clustering.

(B) The training progress of the SOM model over 15,000 epochs for all exons. (C) A SOM was

applied to the down-regulated exons with two partitioned clusters generated by the overlaid

hierarchal clustering. (D) The training progress of the SOM model over 15,000 epochs for

down-regulated exons. (E) A SOM was applied to up-regulated exons with three partitioned

clusters generated by the overlaid hierarchal clustering. (F) The training progress of the SOM

model over 15,000 epochs for up-regulated exons.

(TIF)

S1 Table. GeneIDs for exon-level and gene-level analysis, and their intersection. Exon-level

geneID list from this manuscript. List of geneIDs from the gene-level analysis is taken from

Berres et al. (2017).

(XLSX)

S2 Table. KEGG Groupings. The following table contains the clustered ‘meta-KEGG’ groups

that were used to condense various KEGG pathways into clusters for the primary exon analy-

sis. Note that a KEGG pathway can appear in multiple clusters, as dictated by biological func-

tion.

(DOCX)

S3 Table. Significantly enriched KEGG clusters for each miRNA, as predicted using Tar-

getScan. The unique miRNAs in our dataset and miRNA gene targets identified by the Tar-

getScan7.1 database were placed into DAVID for KEGG enrichment analysis, from which the

p-value for each pathway was obtained. Only p-values below 0.05 are reported, except for the

focal adhesion pathway under gga-miR-3533-3p and all KEGG pathways of gga-miR-1665.

(DOCX)
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