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ABSTRACT

The mapping and alignment of transcripts (cDNA,
expressed sequence tag or amino acid sequences)
onto a genomic sequence is a fundamental step
for genome annotation, including gene finding
and analyses of transcriptional activity, alternative
splicing and nucleotide polymorphisms. As DNA
sequence data of genomes and transcripts are
accumulating at an unprecedented rate, steady
improvement in accuracy, speed and space require-
ment in the computational tools for mapping/align-
ment is desired. We devised a multi-phase heuristic
algorithm and implemented it in the development of
the stand-alone computer program Spaln (space-
efficient spliced alignment). Spaln is reasonably fast
and space efficient; it requires _1Gb of memory to
map and align `120000 Unigene sequences onto
the unmasked whole human genome with a con-
ventional computer, finishing the job in _6h. With
artificially introduced noise of various levels, Spaln
significantly outperforms other leading alignment
programs currently available with respect to the
accuracy of mapped exon–intron structures. This
performance is achieved without extensive learning
procedures to adjust parameter values to a partic-
ular organism. According to the handiness and
accuracy, Spaln may be used for studies on a wide
area of genome analyses.

INTRODUCTION

The identification of gene structure corresponding to a
transcript, i.e. cDNA, EST (expressed sequence tag) or

protein, is a fundamental step for genome annotation.
The rapid increase in the number of sequences of both
genomes and transcripts including millions of ESTs has
created an acute demand for tools that efficiently map
transcripts onto genomes and determine accurate gene
structures, because the information thus obtained is
essential for finding genes, evaluating the transcriptional
activity of the genes, analyzing alternative splicing/
transcription and finding polymorphic sites. So far, a
large number of methods have been developed for this
purpose. Although a dynamic programming (DP) algo-
rithm called ‘spliced alignment algorithm’ may be used to
solve the problem (1–8), it is too expensive to apply them
to whole genomes of most eukaryotes. Hence, a majority
of practical approaches employ a multi-phase strategy
(9,10). In the first ‘mapping’ phase, genomic segments
considered to be candidates for the target gene are sought
with a rapid similarity search program, such as Blast (11),
MegaBlast (12), Blat (13) or SSAHA (14). In the following
‘alignment’ phase, the precise locations of exon bound-
aries are identified by DP or other methods (15,16).
However, this composite approach is tedious and some-
times inefficient for general users. Only a handful of
programs, such as Blat, Exonerate (10), ESTmapper (17),
Squall (18), MGAlign (19) and Gmap (20), can perform
both mapping and alignment in a single job. However,
most of these programs require large memory; e.g. the
data structure adopted by ESTmapper, a write-only top-
down suffix tree, requires several times as large memory as
the size of the genome, �3Gb for a mammalian genome.
Other programs use a common strategy in the first phase,
in which relatively long exact matches of length 18–33 nt
are searched with a word index table. Thus, a considerably
large memory of O(4k) is necessary to store the word index
table, where k is the length of a word. Blat and Gmap
circumvent this increase in memory by finding a hit in
multiple steps with a few consecutive words of length k.
However, they still require memory equivalent to the size
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of the genome to run swiftly or to format the genomic
sequence within a reasonable period.

In this report, we show a novel algorithm that also uses
a table of words but in a considerably different way from
the aforementioned algorithms; instead of finding matches
of long words, our algorithm first finds rough location(s)
in the genomic region within which the target gene may
reside by means of a statistical examination of occurrence
of shorter words. The precise exon–intron structure of
the target gene is then explored within that region by
recursively applying seed extension and DP procedures.
We implemented the algorithm to develop a computer
program named Spaln (space-efficient spliced alignment)
in C/C++ program language. Spaln requires only a small
memory, typically 5800Mb for a mammalian genome,
for the entire process. Accordingly, Spaln may run on
conventional personal computers running under the Unix/
Linux operating system. Spaln runs reasonably fast, about
two and six times faster than the latest versions of Gmap
and Blat, respectively, to map and align 4120 000
Unigene sequences onto the whole human genome under
our computational environment (a single 32-bit CPU,
4Gb memory).

Besides high speed and space efficiency, accuracy may
be the most important aspect of mapping/alignment
programs, especially when such programs are applied to
the detailed analyses of alternative splicing, which often
involves shifts of splice sites by only a few nucleotides
(21,22). In fact, our primary motivation for developing
Spaln was to facilitate automatic classification of alter-
native splicing and transcriptional initiation events
observed in various organisms (23,24). As EST sequences
are prone to sequencing errors and the opportunity for
cross-species comparison has become feasible with the
increase in the number of closely related genomic
sequences publicly available, it is desired that mapping/
alignment tools should be tolerant to noise, such as
substitutions and short indels. Therefore, we examined the
performance of Spaln and other leading programs under
various levels of artificially introduced noise. The results
indicate that Spaln significantly outperforms other pro-
grams particularly at increased noise levels. It is also
shown that a set of species-independent ‘generic’ param-
eters work fine for intra-species comparison, while a
species-adjusted parameter set is more suitable for cross-
species comparison. Hence, Spalnmay be flexibly used in a
wide area of genomic studies of various organisms. The
web server at http://www.genome.ist.i.kyoto-u.ac.jp/
�aln_user supports the facility of Spaln for several species.
The source code is available for free for academic users
from the same site.

MATERIALS AND METHODS

Outline

Like most existing algorithms for mapping and aligning
cDNA sequences onto the genomic sequence, our algo-
rithm consists of multiple phases. In the first phase,
we look for a pair of ‘blocks’ between which the gene
corresponding to the transcript may reside, where a block

is a predefined segment of the genome with a fixed length.
The second phase is a recursive procedure consisting of
search and selection. The search procedure is similar to
that used by popular homology search programs, such as
Fasta (25), Blast (11) and PatternHunter (26) to find high-
scoring segment pairs (HSPs). The selection procedure
uses a sparse DP algorithm to rearrange the found HSPs
in a co-linear order. In the third phase, the precise
locations of exon boundaries are identified with the
standard spliced alignment DP procedure (6), in which
some modifications are made to adapt it to a query of
DNA, to reduce memory requirement and to speed up
computation. The details of each phase are described in
the following subsections.

Partitioning genomic sequence into blocks and a
greedy algorithm for calculating block scores

Let g and q be the genomic sequence and the query cDNA
sequence, and N and M be their lengths, respectively. For
convenience, we regard g as a single chain in which several
chromosomes or contigs may be concatenated with a
special delimiter. A subsequence of g is denoted by
g[i, j]= gigi+1, . . . , gj, where gi is the i-th nucleotide of g.
A similar notation is used for the subsequence of q. The
mapping phase starts with the division of g into ‘blocks’ of
fixed length B (Figure 1), except that the last block of
a chromosome or contig may be shorter than B. The
genomic sequence is also covered by non-overlapping
oligomers of length k, g[1, k], g[k+1, 2k], etc. ‘Code’ c of
an oligomer is the quaternary expression of subsequence
g[i, i+ k� 1], where nucleotides A, C, G, and T are
converted into numerals 0, 1, 2 and 3, respectively.
If g[i, i+ k� 1] contains one or more ambiguous nucleo-
tides, such as N, c is assigned to the outlier, 4k, and the
word is ignored in the subsequent processes. Otherwise,
we express g[i, i+ k� 1]=w(c), where c takes a value
between 0 and 4k� 1.
We read the genomic sequence twice. At the first read,

the total number of w(c), n(c), in the genome is counted.
At the same time, the number of blocks that contain w(c),
or more precisely, that contain the first nucleotide of w(c),
is also counted. This information is used to allocate the
memory for the ‘block index table’ constructed at the
second read. This two-dimensional table stores the lists of
blocks that contain w(c). The table is similar to a widely
used look-up table, but its elements point not to the
genomic positions of w(c) but to the blocks that contain
at least one w(c). In practice, the table of n(c) (or s(c)
described subsequently) and the block index table are
constructed only once for each genome, stored in a file in
binary forms and read into memory at run time.
If we assume a uniform distribution of w(c) over g,

p(c)=B�n(c)/N indicates the probability of w(c) being
found in a block. We estimate the average value of p(c) by
p
� �

=B/Z, where Z� 4k is the number of w(c) for which
n(c)4 0. Then, we define the ‘word score’ s(c) of w(c) by

s cð Þ ¼ � log p cð Þð Þ if 05p cð Þ5a � p
� �

s cð Þ ¼ 0 otherwise:
1
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The second equation is intended to eliminate spurious
matches derived from repetitive elements dispersed over
the genome, and constant a (=10 by default) adjusts the
elimination level. Accordingly, Spaln runs comfortably
without previous masking of the genomic sequence.
A similar idea has been used in other programs, such as
SSAHA (14), Blat (13) and WindowMasker (27). The
average value for s(c), sh i, is obtained by:

sh i ¼

P
sðcÞ � nðcÞP

nðcÞ
, 2

where the summation is taken over all the k-mers for
which n(c)4 0.
When a set of words, w(c)= {w(c1), w(c2), . . . ,w(cm)},

are given, we will define the ‘block score’, S(w(c), b), for a
particular block b as

S w cð Þ,bð Þ ¼
X

1�h�m

s chð Þ � � w chð Þ,bð Þ, 3

where d(w(ch), b)=1 or 0 depending on whether w(ch) is
present in b or not. If hpi�1, exp[�S(w(c), b)] approx-
imates the probability that the observed number of words
is found in b by chance alone. If w(c) is extracted from a
subsequence of q, q[i, j], in some way, the smaller
probability [the larger value for S(w(c), b)] implies the
greater likelihood that some subsequence in b is homo-
logous to q[i, j]. To find such ‘homologous’ blocks with as
few test words as possible, we use the greedy algorithm
depicted in Figure 1. We choose test words on both
strands from both ends of q moving toward the interior.
Thus, four series of word sets are examined in parallel.
Starting with q[1, k], for example, we recurrently choose
the words in a depth-first manner as long as at least one
block contains the series of words w(c1)= q[1, k], w(c2)=
q[k+1, 2k], . . . , w(cm)= q[(m� 1)k+1, mk] simultaneo-
usly. The blocks that contain w(ch) are quickly identified
with the block index table, and the block score of these

blocks is incremented by s(ch). If a block score exceeds the
predefined threshold discussed subsequently, the block is
called ‘significant’, and the recurrence is broken. The next
recurrence starts with w(cm+1)= q[2, k+1], . . . , and the
final recurrence of this round starts with q[k, 2k� 1].
Analogous procedures are conducted on the complemen-
tary strand and in the backward direction as well.

Gene ends corresponding to a majority of full-length
cDNAs are identified by the bi-directional search
described earlier. However, this approach sometimes
fails for EST sequences with high error rates at the
30-ends, chimerical cDNAs and unfinished genomic
sequences. Hence, we also use a unidirectional approach
in which we search consecutive blocks with positive block
scores starting with a significant block. If the sum of the
first and the last block scores exceeds the threshold, the
pair of start and end blocks are passed to the second
phase.

The four series of block search recur from the points at
which the previous round of recurrence was broken, if
neither bi-directional nor unidirectional search succeeds.
This procedure is repeated until the forward search and
the backward search meet each other. After the first
significant block pair was found, the above rounds of
recurrence are repeated maximally three more times to
search for possibly additional significant block pairs. This
procedure allows us to find plural significant blocks
corresponding to paralogs in each of the four series. We
examine all combinations of significant blocks found in
the forward and backward series on the same strand.
Block pairs that are sufficiently close to each other to
accommodate a single gene in the correct direction are
selected and passed to the second phase. For a mammalian
genome, the maximal distance between the block pairs is
set to be about 3.4Mb, the size of the longest known
human gene (28). If no block pair satisfies the criteria of
block scores and mutual genomic locations, the gene
corresponding to the transcript is judged to be missing in
the genome.

Statistical consideration of block scores

By the analogy with local alignment scores in sequence
similarity search (29,30), the maximum block scores for
foreign query sequences are expected to follow an
extreme-value distribution with mean and variance of
the forms:

Mean S w cð Þ,bð Þ½ � � sh i � � ln mð Þ þ �ð Þ

Var S w cð Þ,bð Þ½ � � sh i � �2
4

as a function of the number of test words m5B, where a,
� and �2 are constants. This is actually the case as shown
in Figure 2a. The instability at the right extreme is
probably due to sparsity of samples. Thus, we set the
threshold value for a significant block with the formula:

Sthreshold mð Þ ¼ sh i � � ln mð Þ þ �þ
� �

, 5

where the values for coefficient a and bias �+ are treated
as adjustable parameters. In the present version of Spaln,
the default values for a and �+ are set to 0.4 and

TGAACGTTGAAAAGTTAACAAGTCATTTTTGTTC

0 J−1

k-mer Words
Block size B

Query Sequence (M bp)

103 12

Genomic Sequence (N bp)

Figure 1. Schematic diagram showing blocks, words and the greedy
algorithm for finding significant blocks. Arrow corresponds to a k-mer
word, and its direction indicates direct or reverse strand. Circle
indicates presence of the word shown on the left within the block
shown on top. Big circles are used to discriminate true hits from
background noise indicated by small circles. Three blocks (numbers
10–12) containing three or more hits are considered to be significant
and indicated by yellow color.
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3.0, respectively. It must be noted that the Equations (4)
and (5) are derived from empirical observations, and their
theoretical foundation remains to be established.

The condition p
� �

� 1 indicates that B�Z< 4k. On the
other hand, the smaller value of B and the larger value of k
require a large memory to store the block index table. To
balance the requirements, we choose B and k so that
B ffi

ffiffiffiffi
N

p
, and k4 ln(N)/2ln(4). For a mammalian genome

with Nffi 3	 109, Bffi 54 kb and we found k=12 to be
the most appropriate. The condition that both B and
J ¼ N=B

� �
are5216 has a practical benefit in that 2-byte

unsigned integers can be used to realize block indexes,
thereby contributing to the reduction in memory usage.

Construction of chained HSP lists

Matches of words of a fixed length (seeds) are searched for
with a classical word index table (31,32) constructed on
the genomic region sandwiched by a pair of blocks found
in the first phase. Instead of a contiguous seed pattern,
however, we use discrete seed patterns as suggested by
Ma et al. (26). The seeds are connected to form a large
matching segment if they are separated from each other by
less than a fixed distance along the same diagonal. Each
matching segment is evaluated with nucleotide match and
mismatch scores. When the sum of the scores is larger than
the given threshold, the matching segment is regarded as
an HSP.

The HSPs are then chained into a co-linear order by
the sparse DP algorithm (33). Although more efficient
algorithms have been proposed (34), we adhere to the
simple quadratic algorithm, as the number of HSPs to be
considered is usually of the order of ten or smaller.

If an inter-HSP region is wide enough to suggest the
presence of at least one additional exon, the above
procedures are recursively repeated up to the prespecified
depth (third by default) with progressively decreasing
word size. We use fixed seed patterns ‘110010110111’,

‘110011101’ and ‘11101’ by default. If the presence of an
additional exon is improbable, the algorithm moves to the
third phase.

Spliced alignment algorithm

The third phase is the standard spliced alignment with DP,
as described previously (6). However, several simplifica-
tions and extensions have been made. First, the concept
of coding frame or coding potential is no longer valid
because the query is a DNA rather than an amino acid
sequence. Second, either ‘generic’ or ‘species-specific’
splicing signals may be chosen. The generic signal depends
only on the dinucleotides at both ends of an intron. By
default, Spaln accepts only consensus tetra-nucleotides,
‘GT . . .AG’, ‘GC . . .AG’ and ‘AT . . .AC’ as intron ends,
although this limitation can be relaxed with ‘-ya’ option
(Table 1). The species-specific signal is learned from
known sequences around the intron–exon boundaries of
a specific genome by means of a first- or second-order
Markov model. Third, the distribution of intron lengths
is scored and may be involved in the alignment score.
Fourth, we also adopt the strategy of ‘attack by both
sides’ or ‘Sandwich algorithm’ used in Exonerate (10) and
Gmap (20), provided that the presence of only one intron
is expected in the relevant region. The X drop-off method
used in the algorithm can eliminate voluminous computa-
tion otherwise spent within the intron region. Fifth, in
addition to the default semi-global alignment mode, the
Smith–Waterman type local mode (35) may also be chosen
with ‘-LS’ option (Table 1). Finally, Spaln implements
a hybrid space-saving traceback algorithm in which
Hirschberg’s linear-space algorithm (36) is used to locate
the ‘midpoint’ of an alignment if the expected space
for storing the traceback information exceeds the
predefined threshold; otherwise, an ordinary traceback
algorithm (1) is applied.

0

50

100

150

200

250

0 500 1000 1500 2000

B
lo

ck
 S

co
re

Number of Test Words

0

10

20

30

40

50

100

101

102

103

104

105

106

0 1000 2000 3000 4000

B
lo

ck
 S

co
re

N
o.

 o
f S

eq
ue

ce
s

100

101

102

103

104

105

106

N
o.

 o
f S

eq
ue

ce
s

Number of Test Words

(a) (b)

Figure 2. Block score as a function of number of test words. (a) Human Unigene sequences were shuffled and used as queries against the whole
human genome. The mean (open triangle) and the SD (cross symbol) are fitted to logarithmic and constant curves, respectively. Each bin corresponds
to the number of rounds at which the recurrence has finished. The number of occasions in each bin is shown by filled circle in the logarithmic scale.
(b) Mean block score (filled square) for real Unigene sequences mapped on the human genome. SDs are shown by error bars. A part of (a) is also
shown for comparison. The number of sequences in each bin is shown by filled circle in the logarithmic scale.
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Preparation of test data

Human (Build 36) and mouse (Build 35) genomic
sequences and the human Unigene (Build #203) sequence
were downloaded from NCBI (ftp://ftp.ncbi.nih.gov/). We
used cDNA sequences and annotations provided by the
Projector web site (http://www.sanger.ac.uk/Software/
analysis/projector) as test samples. After removal of
duplications and correction for trivial errors, the data set
contains 491 homologous pairs each for human andmouse.
Comparison of the results of Spaln with the annotations
indicated 13 discrepancies in 9 human genes. Inspection of
the alignments shown in Table S1 in the Supplementary
Data indicated that all the discrepancies were due to single-
nucleotide indels at some exon–intron junctions, all of
which were located in 50 or 30 UTRs. We believe that the
results of Spaln are correct because they exactly follow
consensus splicing rules. An earlier version of Gmap
(Gmap-2006-12-18) also suggested the same exon–intron
junctions as Spaln, whereas the latest version of Gmap
produced slightly different results from the earlier one.
The results for mouse genes were somewhat more

complicated than those of human genes. In addition to
single-base indels at splicing junctions such as those found
in human genes, the Projector annotations contain several
short ‘introns’ unlikely to be real ones because of their
shortness, biased nucleotide compositions and lack of
consensus sequences at the ends. Although Spaln discards
most of these obviously false introns, it reports three
relatively long inserts as introns. Thus, we regard these
predictions as mistakes of Spaln. We also removed four
duplicated genes from our test samples, leaving 487 mouse
genes. Note that only the annotations were corrected and
cDNA sequences were unmodified, and that all the
2	 491=982 gene–cDNA pairs were tested when only
CDS regions were used for cross-species comparison.

Artificial introduction of noise

To simulate sequencing errors and cross-species compar-
isons, we introduced various levels of mutations into
the test cDNA sequences. First, a specific number of

nucleotide positions were randomly selected except for the
10 nt from both ends that were kept intact. The selected
nucleotide was randomly mutated into one of the others in
98% of the cases. In the remaining 2% of cases, insertion
or deletion was chosen at equal probability, and indel
length was decided according to the geometric distribution
with the common ratio of 0.6. The segment to be inserted
was generated by a random series of nucleotides chosen at
the equal probability of 0.25.

Tested programs

The tested programs and the options used are summarized
in Table 1. Megablast was used with repeat filtering with
RepBase12.0.7 (http://www.girinst.org/). As the psl
format of Blat does not discriminate intron from ordinary
insertion, an insertion longer than 30 bp is regarded as
an intron. The ‘-pa’ option of Spaln indicates that the
terminal polyA or polyT sequence is not trimmed; the ‘-ya’
option indicates that intron ends may not be confined to
the canonical dinucleotides; the ‘-yX’ option adjusts
parameter values suitable for cross-species comparison
and the ‘-yS’ option indicates the use of species-specific
boundary signals and intron-length distribution informa-
tion. The actual parameter values used by Spaln are listed
in Table S2 in Supplementary Data. For genome mapping,
‘-M’ option is also set to locate potentially multiple
genomic regions homologous to the query. When Unigene
sequences were used as queries, ‘-yX -LS’ option was
further set to obtain local rather than semi-global
alignments. All calculations were performed on the same
computer with 4 Gb memory and a 3.0GHz Intel�

Pentium� D CPU running under Linux.

RESULTS AND DISCUSSION

Sensitivity and specificity of block-based mapping

Most existing programs quickly locate the genomic
position(s) corresponding to the query cDNA sequence
by looking for relatively long (18–33 nt) exact matches.
In contrast, Spaln first finds the block(s) in which the

Table 1. List of programs and options used for experiment

Name Version Options for alignment Options for mapping Reference

Blat 34 -noTrimA -fine -q=rna -noTrimA -fine -q=rna -ooc=11.ooc (13)
Exalin 2005-05-06 default (15)

–showalignment n
Exonerate 1.4.0 –showtargetgff y -n 1 (10)

-S n –refine region -m e2g
Gmap 2007-09-28 default -f 2 -B 2 (20)
GmapX 2007-09-28 -X (20)
MegaBlast 2.2.14 -D 3 -F’m R;V;D’ (12)
Sim4 2003-09-21 default (40)
Spaln 1.2.1 -Q3 -pa -Q7 -M This work
SpalnA 1.2.1 -Q3 -pa -ya This work
SpalnS 1.2.1 -Q3 -pa -yS -yX This work
SpalnX 1.2.1 -Q3 -pa -yX -Q7 -yX -M This work
SpalnXL 1.2.1 -Q3 -pa -yX -LS -Q7 -yX -LS -M This work

Blank cell indicates ‘not examined’. The ‘-X’ option of Gmap indicates that canonical intron boundaries are favoured. Conversely, the ‘-ya’ option of
Spaln indicates that non-canonical intron boundaries are accepted. The ‘-LS’ (local similarity) option was used only in combination with the ‘-yX’
(cross-species) option.
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target gene may reside, where a block is a predefined
genomic region with a fixed length (see Materials and
methods section). This search relies on statistical property
of occurrence of a set of short (10–12 nt) words extracted
from the query sequence. If the test words are concen-
trated in a particular block more frequently than expected
from the random distribution, the block is likely to
contain at least a part of the target gene. To test the
hypothesis, we observed the distribution of block scores
for the entire 124 355 sequences in the ‘unique’ set of
Unigene Build #203 and that of their randomized
sequences, where a block score is the negative logarithm
of probability of observation by chance alone.

In contrast to the logarithmic distribution of block
scores as a function of the number of test words extracted
from random sequences (Figure 2a), the block scores for
real cDNA sequences scatter above those for random
sequences (Figure 2b). Based on the former distribution,
we estimate the thresholds as a function of the number
of test words (see Materials and methods section), and
discard a query with the maximum block score below the
threshold value. Thus, of the 124 355 sequences tested, 243
failed to be mapped on the genome. This observation
results in the nominal sensitivity of 99.8%. The results in
comparison with those of Blat, Gmap and Megablast are
summarized in Table 2. The genomic sequence was
formatted before the search according to the protocol
of each program. For Blat, both genomic and query
sequences were converted into the .2-bit format. The CPU
time shown in Table 2 does not include the computation
time used in the formatting processes. Note that Blat,
Gmap and Spaln involve the process for identification of
exon–intron boundaries to generate gene models
(records), while Megablast does not. Hence, the number
of records of Megablast was roughly estimated as the
number of unique combinations of the cDNA and contig
identifiers. Table 2 indicates that the sensitivities of Blat,
Gmap and Spaln are nearly identical to one another in
spite of the quite different mapping strategies, while
Megablast is slightly less sensitive than the others. In
contrast, the numbers of records reported by the four
programs vary extensively, leading to nearly 30-fold
difference in the nominal selectivity between the extremes,
Blat and Spaln. This is not surprising because Blat and
Megablast are designed for general purpose to detect as
many similarities as possible, whereas Spaln is specialized
to detect only the cognate or orthologous genes and their
close relatives on the genome.

To get some insight into the quality of the mapping
results, we asked how much fraction of records obtained
by different methods is common to one another. In this
test, each query is counted only once even if it is mapped
on more than one separate genomic region. A query is
considered to be commonly mapped if the genomic
regions mapped by different methods overlap in part.
The proportion of pair-wise, triple-wise or tetra-wise
commonality among the mapped query sequences
(Table S3 in Supplementary Data) indicates again that
the sensitivity of Splan is very similar to those of Blat and
Gmap. Meanwhile, Megablast is slightly less sensitive

despite the one order of magnitude longer computation
time than Splan.
Although the above observations indicate that the four

programs tested are more or less similar to each other in
mapping sensitivity, it is difficult to stringently assess the
quality of mapping and alignment from the gross data
because the true locations and structures of the genes
corresponding to individual Unigene sequences are not
known. For assessment purposes, we relied on a smaller,
human-curated data set as described in the following
subsections.

Evaluation of alignment

In this subsection, we examine the quality of alignment
produced by various programs listed in the Materials and
methods section. In this test, the genomic segment that
encompasses the gene corresponding to the cDNA is input
to the programs. The test data are 491 human and 487
mouse genes in the Projector data set (37) with some
modifications in the annotations (see Materials and
methods section). All cDNA sequences are virtually full-
length consisting of 50 UTR, CDS region and 30 UTR.
Even with no artificially introduced noise, only Spaln and
an earlier version of Gmap (Gmap-2006-12-18) perfectly
reproduced the reference human gene structures, and no
program succeeded in completely reproducing the mouse
gene structures; Spaln erroneously regarded three possibly
polymorphic inserts as introns in addition to another
small discrepancy, while other programs were even less
accurate in these respects. It is noteworthy that Spaln
found all the micro-exons present in the Projector data set
[listed in (38)], although Spaln does not implement such
special routine as that proposed by Volfovsky et al. (39).
Figure 3a and b show error rates at the gene level and

the exon level, respectively, under various levels of
artificially introduced noise. Each error rate is the average
of six experiments, and the numerical values for the
average and the SD are listed in Tables S4 and S5 in
Supplementary Data. An error at the gene level implies
that at least one of the exon boundaries is incorrectly
assigned, and an error at the exon level implies that either
or both exon boundaries are incorrect. Tables S6 and S7 in
Supplementary Data show the exon-level error rates
broken down into those for internal and terminal exons,
respectively. Tables S4–S7 also present the results of one

Table 2. Mapping of Unigene sequences onto human genome

Program Mappeda Recordsb Sensitivity
(%)c

Selectivity
(%)d

CPU
(h)

Blat 124 103 37 74 716 99.80 3.29 37.37
Gmap 123 373 162 700 99.21 75.83 11.00
Megablast 118 643 304 138 95.41 39.01 63.05
SpalnXL 124 112 142 316 99.80 87.21 5.58

aThe number of query sequences that were mapped on at least one
genomic locus.
bThe total number of gene models reported.
cThe percentage of mapped queries of 124 355 cDNA sequences
examined.
d100	 number of mapped queries divided by the total number of
records reported.
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more setting of Gmap and two more settings of Spaln
(Table 1) that are not shown in Figure 3. Although error
rates slightly vary with the run time options, these results
as a whole clearly indicate that Spaln is significantly more
tolerant to noise than the other programs. Even at the
highest noise level examined, Spaln correctly identified
499% of exons, whereas 43% error is commonly
observed with the other programs. An example of
variation in alignment produced by Spaln, Gmap and
Exonerate around a micro-exon is presented in Figure S1
in Supplementary Data.
Although the error rates naturally increase with

increasing noise level for most programs and settings,
the results of Spaln with ‘-yX -yS’ options are almost
invariable regardless of noise level, and are the most
accurate at the highest noise level. This result is considered
to be a consequence of the statistical power to recognize
intron boundaries that dominates information derived
from relatively weak sequence similarities. Gene structures
inferred with ‘-yX -yS’ options might actually correspond
to splicing variants. In general cases, however, the use of
these options is not recommended for the identification of
the gene structure corresponding to a given transcript.
To examine whether the above observations are

extrapolated to the distance as far as human and mouse
homologs, we conducted cross-species comparisons with
the combinations of human genomic fragments that
contain the human gene and homologous mouse tran-
scripts and vice versa. Although such applications might
be outside the scope of some tested programs, all results
are shown for references. As UTR sequences are not
necessarily well conserved between human and mouse, we
used only the CDS regions of all the 491 gene pairs
contained in the Projector data set. The results are
summarized in Table 3, in which accuracies rather
than error rates are presented. As expected, the general
tendency was the same as that of the aforementioned
observations with artificially introduced noise; Spaln,

particularly with ‘-yX -yS’ options, outperformed other
programs. Note, however, that our Aln program (6) that
used a translated amino acid sequence as query,
performed considerably better than Spaln with a CDS
query, when the parameter sets were adjusted for
mammalian genes. In fact, the results of Aln were even
better than those of Projector (37) and GeneAlign (38) that
used knowledge about the exon–intron structure of the
homologous gene. To incorporate the mapping phase into
the Aln algorithm, we are now constructing an extended
version of Spaln that accepts either nucleotide or amino
acid sequence as query. A detailed discussion of these
topics will be presented in a separate report.

Table S8 in Supplementary Data and the last row of
Table 3 present the computation times spent in the
experiments mentioned earlier. Each execution time
includes that used to read sequence files. Except for
Exalin that adopts a full-DP procedure, all programs
adopt heuristics to accelerate computation. Sim4 is the
fastest, but its speed does not seem to compensate for the
high error rates, as demonstrated in Figure 3 and Table 3.
On the other hand, the heuristics adopted by Gmap and
Spaln, in particular, is quite valuable as it speeds up
computation by more than one order of magnitude
without loss of accuracy (or contribute to produce even
better quality) compared to the full-DP procedure.

Evaluation of mapping and alignment

We used again the Projector data set and the artificial
mutants to assess the total performance of Spaln involving
both mapping and alignment phases. Only Blat and Gmap
were used as references because they are the only
programs that work with a whole genome without
having to rely on external software under our computa-
tional environment. The results summarized in Figure 4
and Table S9 in Supplementary Data reveal that Spaln is
significantly better than the others at reproducing the
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Figure 3. Comparison of performance of various spliced alignment methods. Error rates at gene level (a) or exon level (b) are shown as a function of
artificially introduced noise levels. The actual error rates of Sim4 and Blat are, respectively, twice and five times as large as those indicated by the bar
heights. Letters X and S attached to Spaln indicate that ‘-yX’ and ‘-yX –yS’ options were applied, respectively. Each error rate is the mean of six
trials, the numerical value and the SD of which are shown in Tables S4 and S5.
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correct gene structures particularly at high noise levels.
In contrast, Spaln is slightly less sensitive than Blat and
Gmap in locating genomic region(s) corresponding to
relatively dissimilar query sequences. Except for the
highest noise level, however, Spaln correctly locates
499% of genes, and hence the slightly lower sensitivity
of Spaln may not be much problematic in most practical
applications.

For some queries, several genomic regions have nearly
or perfectly identical nucleotide sequences within the
transcribed parts. In the default settings, Spaln reports
only one gene structure corresponding to each query, and
occasionally reports a paralog rather than the true
correspondents. By setting the ‘-M’ option for reporting
multiple loci, many of the missed loci are rescued.
However, the rescue is still imperfect, which accounts for
a significant portion of missed loci shown in Figure 4 and
Table S9. Finding a way to thoroughly deal with paralogs
is one of the issues to be resolved in the further
improvement of Spaln.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Figure 4. Accuracy in mapping and alignment of CDS sequences onto the human or mouse genomic sequence. Error rates at the gene level (a) and at
the exon level (b) are shown as functions of artificially introduced noise levels. The actual error rates of Blat are three times as large as those
indicated by the bar heights. SpalnXL indicates that ‘-yX –LS’ options were applied to Spaln at run time. Each error rate is the mean of six trials, the
numerical value and the SD of which are shown in Table S9 with other information.

Table 3. Accuracy in cross-species comparison between human and mouse cDNA and genomic sequences

Measure Blat Exalin Exonerate Gmap Sim4 Spaln SpalnS SpalnX

#Answer 266 981 982 937 978 982 982 982
#Gene 70 429 458 367 161 593 752 714
%Gene 7.13 43.69 46.64 37.37 16.40 60.39 76.58 72.71
%Exon 67.63 89.51 80.97 81.41 59.54 90.09 96.21 95.11
%IntExon 64.17 94.26 76.36 78.06 62.59 93.77 96.87 95.81
%TermExon 66.22 69.94 70.44 63.58 47.41 82.40 93.20 92.10
%Junction 79.50 93.97 85.97 86.03 73.54 93.27 97.91 97.26
%Nucleotide 95.30 98.20 93.22 92.60 91.18 97.77 99.38 99.31
CPU (s) 143.1 3181.3 221.2 52.5 33.9 220.8 190.3 145.5

A total of 982 human–mouse cross-species pairs of genomic segments and CDS sequences in Projector data set are examined. The numbers of
‘Answer’ and ‘Gene’ are the number of runs with any outputs and that with perfectly correct gene structures, respectively. The accuracies at the exon,
junction and nucleotide levels are respective harmonic averages of the specificity and sensitivity defined by 200C/(T+P), where C, T and P are
correctly predicted, true and predicted quantities, respectively. For internal (% IntExon) or terminal (% TermExon) exons, the sensitivity defined by
100	C/T is presented.
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