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Benign naevi are closely linked to melanoma, as risk factors, simulators, or sites of

melanoma formation. There is a heavy genetic overlap between the two lesions, a

shared environmental influence of ultraviolet radiation, and many similar cellular features,

yet naevi remain locally situated while melanomas spread from their primary site and

may progress systemically to distal organs. Untangling the overlapping contributors and

predictors of naevi and melanoma is an ongoing area of research and should eventually

lead to more personalized prevention and treatment strategies, through the development

of melanoma risk stratification tools and early detection of evolving melanomas. This

will be achieved through a range of complementary strategies: risk-adjusted primary

prevention counseling; the use of lesion imaging technologies such as sequential 3D

total body photography and consumer-performed lesion imaging; artificial intelligence

deep phenotyping and clinical assistance; a better understanding of genetic drivers

of malignancy, risk variants, clinical genetics, and polygenic effects; and the interplay

between genetics, phenotype and the environment.

Keywords: precancer, precursor lesion, genetics and genomics, artificial intelligence, risk stratification,

melanoma, naevi

INTRODUCTION

It is well-known that benign naevi and melanomas are closely linked. Many melanomas arise
in or adjacent to otherwise benign naevi (1), and naevi are the most common simulators of
melanoma. Number of naevi is the strongest phenotypic risk factor for melanoma, and high naevus
count is associated with a younger age of melanoma onset (2, 3). A high total nevus count is
also associated with a greater chance of having multiple primary melanomas, compared to single
primary melanomas (4).

Not surprisingly, there is heavy genetic overlap between nevus- andmelanoma-associated genes,
and between the phenotypic and cellular features of naevi and melanoma, including activating
mutations in oncogenes and increased proliferation rates (5). Indeed, histopathological diagnoses
ranging from moderately dysplastic naevi to early stage invasive melanoma are not reproducible
between different histopathologists, even though histopathological diagnosis remains the gold
standard (6). Yet proliferating nevus cells migrate only locally, while melanoma cells have the
capacity to spread systemically, and for any one individual nevus to transform into a melanoma
is extremely rare (7).
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This conundrum was the basis of our Center of Research
Excellence for the Study of Naevi (CRE Naevi), a 5-year
effort which aimed to advance our understanding of naevi and
melanomas. The CRE teams study genetics of naevi formation,
number and morphology, somatic mutations in naevi and
environmental factors like UV exposure. The intention was
to identify phenotypic and genetic markers that could lead
to personalized genomic medicine via risk stratification,
more appropriate surveillance practices, and improved health
outcomes. Based in Queensland, Australia, the melanoma capital
of the world (8), the CRE Naevi is in an ideal position to examine
these questions, and this article will cover the state of this field
at present.

Precancer (9) and preprocancer (10) concepts, which seek to
determine which suspicious lesions and early cancers are likely to
progress to invasive cancer, are increasing in importance. Despite
the generally high sensitivity of Australian clinicians at detecting
melanomas and the widespread use of dermoscopy, Australian
primary care clinicians currently excise ∼20 benign lesions for
each melanoma, compared to 29 in other countries (11, 12).
These currently-unavoidable excisions are perhaps unnecessary
for cancer treatment, but provide peace of mind for clinicians
and patients alike. However, being able to confidently exclude
melanoma in cases where a benign nevus presents with suspicious
features, and thus reduce excisions, would both benefit patients
and reduce strain on the healthcare system.

On the other side of the coin, the incidence of in situ
melanomas has also soared as detection methods become
ever more refined, leading to overdiagnosis—defined as the
diagnosis of lesions that are true cancers, but which would
never have caused harm in the patient’s lifetime (13, 14). As
many as 58% of melanomas in Australia may be overdiagnosed,
the majority of these being very thin in situ melanomas—
currently indistinguishable from the very thin melanomas
with invasive potential, where early excision is almost always
curative (15); these figures are on top of benign naevi that are
incorrectly diagnosed (or “overcalled”) by dermatopathologists
as melanoma. The ability to distinguish indolent cancers from
cancers with invasive potential would likewise reduce costs,
adverse effects of treatments, and patient distress. Finally,
studies of precursor lesions in other cancers have improved
our knowledge of tumorigenesis (16), and there is every reason
to suppose that nevus development can shed similar light
on melanomagenesis.

In addition, technology advances in total body photography
(TBP) (17) and artificial intelligence (18), and increasing access
to large, high-quality, annotated image databases (19) in the last
decade have opened the possibility of automated assessments
of individual lesions and overall melanoma risk. Artificial
intelligence-based support of clinical decision making is a
particularly promising area of research (20).

TECHNOLOGIES IN SURVEILLANCE AND
EARLY DETECTION

Early diagnosis of melanoma is critical. People with a melanoma
<1mm thick at diagnosis have a 98.7% 5-year survival rate, but

survival rates dive steeply with increasing thickness (21, 22).
The basic detection method—clinician-led skin examinations,
paying close attention to any suspicious lesion including naevi—
has been greatly augmented by the widespread uptake of
dermoscopy, and as reported by the Cochrane Collaboration,
“visual inspection using the naked eye alone is not good enough
and melanomas may be missed” (23). However, clinicians do
require training in dermoscopy before they can expect to
see improvements in diagnostic accuracy, and studies suggest
that improvements in accuracy are more due to increases in
specificity, rather than sensitivity; some featureless melanomas
may still be missed (24).

However, new technologies emerging over the last decade are
set to further improve both the accuracy of melanoma detection
through 3D total body photography (3D TBP) and sequential
dermoscopic imaging, and to extend the reach of specialist
examinations to rural, remote, and underserved areas through
mobile teledermatology and telehealth.

3D TBP differs from more standard 2D body photography by
having the patient stand inside a matrix of cameras that all take
photos at once, thus covering the body from all angles, which
are then stitched together with a computer program to produce
a full-body avatar on screen that can be turned around, zoomed
in on, or other manipulations to allow a close look at almost any
part of the skin surface. In contrast, 2D TBP requires the patient
to adopt a series of anatomic poses for photography by a single
camera, and these images are examined individually. While 2D
TBP hardware is much cheaper than the 3D version, it is easier for
individual lesions to be imaged twice or missed altogether due to
the overlapping nature of the images. In both 2D and 3D imaging,
there are still limitations on capturing the skin at the soles of the
feet, scalp, genitals, and other folds of the body.

Sequential, 3D TBP is particularly useful for patients with
many naevi or a personal or family history of melanoma, as
it allows clinicians to monitor a large number of naevi for
change, the number one marker of malignant transformation.
Further refinement of these methods should reduce the benign
to malignant excision ratio, by allowing clinicians to monitor
lesions with more confidence. In addition, in our experience,
study participants and patients are highly engaged by the 3D
images and their use, and this may reinforce the importance of
sun-protective behavior and skin self-examinations (25). TBP,
including 2D photography, also seems to reduce patient anxiety
about their skin in people with prior melanomas (26).

Consumer-facilitated nevus monitoring is an ongoing area of
interest. More than half of all melanomas are first noticed by
the patient themselves or a family member (27), and skin self-
examinations are currently the recommended level of monitoring
for many Australians (28). Mobile dermoscopes, partnered with
apps for telehealth, may eventually be able to integrate regular
skin self-examinations with teledermatology, especially for high-
risk patients who need frequent monitoring; our CRE team
found that such technology is feasible and acceptable to people,
with further work needed to optimize lesions selection by
consumers (29).

Earlier work shows that diagnostic accuracy for lesions
selected by patients is similar between mobile dermoscopy
and in-person examination, although further work is needed
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to guide people to patients reliably select concerning lesions
(30, 31). Patients themselves nominate low cost, ease of access
and convenience as the main factors inclining them to use mobile
telehealth (32), and focus groups indicate that up to 95% of
Australians would consider using an app to send images of skin
lesions to a doctor, preferably for monitoring lesions between
regular face-to-face appointments (33). Participant enthusiasm
for mobile teledermatology decreases once they actually begin
using it, but they still find it generally acceptable (34).

However, there are drawbacks to self-assessment to be
addressed. For example, when asked whether they had few, some,
or many naevi, 40% of participants misclassified themselves
compared to a dermatologist’s assessment, even with an error
buffer of ±5 naevi (35). Self-imaging with a mobile device may
also be limited by a participant’s ability to image lesions on hard-
to-reach body sites, or even to realize that those lesions might
require imaging.

GENETICS AND GENOMICS OF NAEVI,
MELANOMA AND MELANOMA SUBTYPES

Nevus count is highly heritable [heritability (h2) = 60–70%]
(36) and most nevus-associated genes are also associated with
melanoma risk, including IRF4,MITF,MTAP, and PLA2G6 (37).
However, not all melanoma genes affect nevus count (38). In
addition, there is an overlap between somatic mutations found
in naevi and melanomas, suggesting a procession of mutations
necessary but not sufficient for malignant transformation that
may in the future help diagnose lesions as needing monitoring
but not yet excision.

Risk Variants, Mutation Signatures, and
Polygenic Effects
Genome-wide association studies (GWAS), whole genome, and
whole exome sequencing have identified many melanoma risk
alleles, which have a low to moderate effect individually (39).
However, their effects appear to be cumulative and may add up
to a significant risk (40). A nevus GWAS meta-analysis shows
that variants in MTAP, PLA2G6, IRF4, KITLG and the 9q32
region affect nevus count (38); combining this with a meta-
analysis (41) of melanoma GWAS studies showed that GPRC5A,
CYP1B1, PPARGC1B, HDAC4, FAM208B, DOCK8, and SYNE2
were associated with nevus count as well as melanoma risk.
Recently, the number of genes identified by GWASmeta-analysis
for melanoma susceptibility has expanded to 54 independent loci
(42), reinforcing the importance of naevogenesis, pigmentation,
telomere maintenance, and other potential pathways in the
pathogenesis of melanoma (Table 1).

The effect of nevus-related genes on melanoma risk can
be multiplied by polygenic effects for genes controlling other
phenotypic risk factors. For example, MC1R “R” variants are
best known for causing the red hair phenotype and have only
a small effect on nevus count (43). However, R alleles and high
nevus counts synergistically increase melanoma risk (45–47).
People withMC1R wildtype (WT) genotype and 20+ naevi have
a similar melanoma odds ratio (OR) to people homozygous for

TABLE 1 | Genes conferring susceptibility to naevi and/or melanoma.

Gene Nevus count GWAS

p-value

Melanoma

GWAS p-value

Low to medium penetrance (38, 43)

ASIP 0.215 8.36 × 10−25

ATM 0.006 1.38 × 10−12

CASP8 0.134 8.88 × 10−09

CDKAL1 0.351 3.27 × 10−08

CYP1B1 5.70 × 10−07 2.40 × 10−05

DOCK8 1.95 × 10−08 5.52 × 10−06

FAM208B 1.95 × 10−08 5.52 × 10−06

FMN1 6.52 × 10−06 1.43 × 10−06

FTO 0.014 1.81 × 10−09

GPRC5A 5.72 × 10−06 4.08 × 10−07

HDAC4 7.59 × 10−07 2.16 × 10−04

IRF4 4.21 × 10−67 8.22 × 10−01

KITLG 8.40 × 10−09 6.61 × 10−01

MC1R 0.067 6.24 × 10−92

MITF (2) 5 × 10−4 2 × 10−18

MTAP rs869329 2.12 × 10−37 1.14 × 10−31

MTAP rs11532907 2.30 × 10−17 1.42 × 10−19

MX2 0.063 3.28 × 10−15

NFIC 2.22 × 10−04 1.02 × 10−05

OCA2 0.935 3.11 × 10−09

PARP1 0.004 3.59 × 10−13

PLA2G6 rs132985 3.06 × 10−18 4.76 × 10−12

PLA2G6 rs2005974 3.31 × 10−14 7.83 × 10−11

PPARGC1B 4.71 × 10−07 4.58 × 10−04

SETDB1 0.007 3.88 × 10−12

SLC45A2 0.755 2.30 × 10−12

SYNE2 1.95 × 10−04 1.74 × 10−05

TCONS_12_00025686 0.002 1.84 × 10−09

TERC 5.73 × 10−06 1.64 × 10−05

TERT 0.003 1.66 × 10–17

TPCN2/CCND1 0.209 1.01 × 10−10

TTC7B 0.415 4.63 × 10−14

TYR 0.605 1.01 × 10−26

9q31 region 1.35 × 10−04 2.30 × 10−08

High-penetrance familial melanoma (44)

ACD +

ACH +

BAP1 +

CDK4 +

CDKN2A + +

EBF3* +

GOLM1* +

NEK11* +

POLE* +

POT1 +

TERF2IP +

TERT + +

*Proposed high-penetrance melanoma genes; further research to confirm these

is ongoing.
+ Indicates association.
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the MC1R R allele (R/R) with 0–4 naevi (OR 4.82 vs. 4.42,
respectively.) In contrast, people with both risk factors—an R/R
genotype and 20+ naevi—have a melanoma OR of 25.09 (47).

Genetic variations also influence the risk of having more than
one primarymelanoma. For example, the E318K variant inMITF,
combined withMC1R R alleles and other haplotypes in e.g., ASIP,
were all at elevated frequencies in people with multiple primary
melanomas compared to people with a single primary melanoma
(4). Polygenic risk scores, accounting for the cumulative risk of
many low- to moderate-effect melanoma-associated alleles (40),
are higher in multiple primary melanoma than single primary
melanoma or no melanoma history participants (4, 48).

Various melanoma subtypes are also associated with particular
genetic variants. For example, amelanotic and hypomelanotic
melanomas are associated with the MTAP and PLA2G6 alleles
associated with overall melanoma risk, nevus morphology
and high nevus count; however, amelanotic/hypomelanotic
melanoma patients do not have a significantly different total
nevus count from those with the more common pigmented
melanomas (49). This observation may be due to the older age at
diagnosis of amelanotic/hypomelanotic melanoma compared to
pigmented melanoma (50–52), as nevus count declines from the
fourth decade onwards (53). Albinism-related genes such as TYR
and OCA2 have deleterious variants that are also more common
in patients with amelanotic/hypomelanotic melanoma (54).

Several melanoma/nevus genes have multiple associations
to phenotypes. An example is the IRF4 intronic variant
rs12203592∗T, which is associated with increased melanoma risk,
increased risk of nodular melanoma (55), increased Breslow
thickness at diagnosis (56), high nevus count in childhood and
low nevus count in adulthood (57), and globular dermoscopic
subtype of naevi (43, 58). This SNP is associated with pigmentary
phenotype of darker hair color, lighter eyes, and skin with a lower
tanning response to sunlight (37). The different alleles exhibit
differential expression levels that also influence a range of key
immunomodulatory molecules and cytokines, and melanocyte
growth and survival after UV exposure (59). Research continues
on untangling which of these many effects contribute to nevus
and/or melanoma formation and behavior (43, 60).

Clinical Genetics and Familial Melanoma
Approximately 5–10% of melanomas arise in a familial
melanoma context. While there are a handful of well-established,
rare, high penetrance mutations, such as deleterious variants of
CDKN2A, CDK4, BAP1, TERT, POT1, TERF2IP, ACD, POLE,
EBF3, GOLM1, and NEK11 associated with familial melanoma,
these mutations account for only 30% of familial melanoma
cases (44). Research is increasingly focusing on the 60% of
familial melanoma that is not explained by these high penetrance
mutations, and recent work shows that familial cluster without a
high penetrance mutation are enriched for polygenic risk (48).

In the absence of an identifiable mendelian mutation,
assessment of candidate risk genes and improvements in
genotype-phenotype correlations, together with polygenic risk
scores (4) will help identify people who are nevertheless at
high risk. By assessing the cumulative risk of 21 gene regions
associated with a low or moderate melanoma risk, Cust et al.

(40) showed that, in a group of melanoma patients and control
participants who all had a low phenotypic risk profile, 9–21% had
a high polygenic risk.

Mechanisms/Drivers of Benign
Neoplasms, Malignancy, and Metastasis
The activation of the MAPK pathway is the first, essential step
for melanocytic proliferation, but it is not sufficient for full
malignant transformation (61). Either BRAF or NRAS, but rarely
both, are mutated in almost all acquired melanocytic naevi
(62, 63). In contrast, blue naevi and Spitz naevi often have
GNAQ andHRASmutations. GNAQ is also associated with uveal
melanomas (64). This may indicate that GNAQ/HRAS are not
key players in melanomagenesis, unlike BRAF and NRAS (64).
BRAF mutations are also associated more strongly with the
globular dermoscopic subtype than reticular naevi (92 vs. 67%)
(63). Dermoscopic subtypes refer to the distribution of pigment
visible in a dermoscopic image of a lesion, and correlated closely
to histopathological structures, allowing a visual assessment of
potentially pathological processes (64).

Most cutaneous melanomas fall into one of four categories
based on their initial driver mutation: BRAF, NRAS, NF1 and
triple wild-type, which lacks any of the three other drivers
(65, 66). BRAF V600 mutations are found in 35–50% of
melanomas, and V600 variants are also found in 67–100% of
benign naevi (63).

TERT promotor mutations, found in 86% of cutaneous
melanomas and also detected in intermediate melanocytic
lesions, are an early secondary alteration necessary for
malignant transformation leading to melanoma development
and proliferation (64, 67). The aberrant TERT gene leads
to lengthening of the telomeres, which is not recognized as
abnormal by the cell and as such apoptosis or senescence does
not occur. Now that the melanocyte has lost its ability to undergo
apoptosis, the series of events that occur next are likely to be
related to chromosomal instability and DNA copy number
aberrations. The precise order of these events has not been
determined for each aberrant melanocyte, but in a study by
Shain et al. (68), it was found that UV-induced point mutations
continued to increase, and invasive melanoma was associated
with increased copy-number aberrations, particularly loss of
CDKN2A. Further mutations and/or genomic aberrations (e.g.,
copy number gain/loss and promotor methylation) are necessary
for the transition of locally invasive melanoma to metastatic
disease and have been described in PTEN, AKT3, CDKN2A,
CCND1, CDK4, RB1, TP53, MDM2, and ARID2 (Table 2)
(65, 66, 70).

Interplay Between Genetics, Phenotype
and Environment
While excessive UV exposure is well-known to promote
melanomagenesis, a significant proportion of melanomas do
form on sun-protected body sites. In a recent study, 75% of those
diagnosed at≤40 years old had one or more melanomas in a UV-
protected site; in participants aged >40 years, only 18% of their
melanomas were in UV-protected sites (4).
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TABLE 2 | Driver mutations and the transition to invasive and metastatic disease

(65, 66, 69).

Genes Gene type Mutation type

BRAF (2) Oncogene Point mutation, translocations, copy

number alteration

NRAS (2) Oncogene Point mutation, copy number

alteration

NF1 (2) Tumor suppressor Point mutation

TERT Telomere maintenance Point mutation, copy number

alteration

GNAQ Oncogene Point mutation

HRAS Oncogene Point mutation, indel

PTEN Tumor suppressor Point mutation, epigenetic silencing,

copy number alteration

AKT3 Oncogene Structural rearrangement

CDKN2A Tumor suppressor Point mutation, methylation silencing,

copy number alteration

CCND1 Oncogene Copy number alteration

CDK4 Oncogene Copy number alteration

RB1 Tumor suppressor Point mutation

TP53 Tumor suppressor Point mutations, copy number

alteration

MDM2 Oncogene Copy number alteration

ARID2 Tumor suppressor Point mutations, copy number

alteration

To explain this, the divergent pathway model of melanoma
development posits that melanomas are caused either by a UV
damage-related pathway or are secondary to inherent traits
such as high nevus count (71). However, it appears that both
pathways are at work in many melanoma cases, with genetic
and phenotypic risk factors enhanced by a high-UV environment
(72). For example, while nevus count is largely genetically
controlled, increased UV exposure is associated with increased
nevus count in those who are genetically predisposed (71).
Usually only minimal or intermittent sun-exposure is required to
activate the growth of aberrant melanocytes. It can be theorized
that the BRAF mutation is already present in skin melanocytes
scattered across the body surface (73) and that UV exposure
contributes to the activation and increased proliferation of
melanocytes harboring the BRAF mutation, leading to a nevus.

A study of genetic variations in melanoma patients who had
all their melanomas in visibly sun-damaged sites found that these
people were more likely to have variants at MC1R rs75570604
(OR 2·5), 9q31.2 rs10816595 (OR 1·4), andMTAP rs869329 (OR
1·4), compared to people with melanomas on both sun-exposed
and sun-protected sites. Interestingly, these same variants were
more common in people first diagnosed≤40 years old than those
diagnosed later in life (4).

Melanomas on sun-protected body sites are more likely
to arise in an existing nevus (1), suggesting a link between
defects in DNA repair and both nevus and melanoma formation.
However, defects in DNA repair also appear to predispose to
higher rates of UV damage on the sun-exposed sites of the
body. A study of naevi on participants living in the high-UV

environment of Queensland, Australia, found that sun-exposed
lesions contained UV-related (signature 7) somatic mutations,
while naevi on sun-protected sites had a higher proportion
of mutation signatures associated with defective DNA repair,
particularly indels associated with defectivemismatch repair (74).
This pattern was also observed in a lower-UV environment
Spanish cohort (75). This suggests that defective DNA repair in
melanocytes provides the necessary environment for both nevus
formation and the accumulation of UV damage mutations.

Whole exome sequencing shows that benign naevi have a
lower mutational burden than melanomas, particularly a lower
level of UV-associated mutation signatures and melanoma driver
mutations (76), although C>T transitions are still the most
common SNV class (74). A WES study of 30 naevi and adjacent
non-lesional skin identified UV-associated signatures in 97% of
nevus samples, age-related signatures in 93%, and defective DNA
repair signatures in 30%. This was reversed in the adjacent non-
lesional skin, despite being exposed to the same level of UV as the
naevi, with UV-related signatures in 10%, defective DNA repair
signatures in 83% (signature 3) and 50% (signature 26), and age-
related signatures in 100% of samples. In addition, two lesions in
the study had low UV-associated and no age-related signatures,
highlighting the importance of defective DNA mismatch repair
in the development of at least some naevi (74).

Different dermoscopic patterns of naevi are also associated
with different genomic signature; globular naevi have a higher
proportion of C>T transitions, while reticular naevi have a
higher proportion of copy number aberrations and indels.
However, without longitudinal monitoring, it is difficult to know
whether these differences reflect the patient’s age at nevus onset,
or reflect specific mutation types driving the development of
specific dermoscopic patterns (74).

Even melanocytes in seemingly normal skin have numerous
pathogenic somatic mutations, although the mutation load is
even higher in melanocytes from skin adjacent to a skin cancer,
where it is comparable to the mutational burden in melanoma
cells. As might be expected, melanocytes from sun-protected sites
have fewer somatic mutations than those from chronically sun-
exposed sites, but melanocytes from intermittently sun-exposed
sites, such as the thigh, have even more somatic mutations than
either. Recent work has found that the majority of mutations are
predicted to affect the MAPK pathway, including BRAF, NRAS,
MAP2K1, NF1, CBL, and RASA2 (77). Other mutated genes
included CDKN2A, ARID2, PTEN, and DDX3X.

CONCLUSIONS AND PERSPECTIVES

Although recent advances have shed much light on the
mechanisms linking naevi and melanoma, many questions
remain. In particular, imaging, genetics and genomics, and
cognitive computing have enormous potential to stratify risk
categories and personalize skin cancer prevention and early
detection, but protocols for integrating them into regular clinical
care are still in the developmental stage.

TBP with sequential digital dermoscopy or pseudo-
dermoscopy, supported by self-imaging with mobile devices
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during skin self-examinations, will likely become the new
standard to facilitate early detection and prevent advanced
and metastatic disease. Research will focus on designing and
validating appropriate protocols and monitoring intervals,
including tailored protocols for patients at different risk levels.
This work will continue to investigate the natural history of
naevi across the lifetime of individuals, an area still poorly
understood, since most studies of naevi are cross-sectional rather
than longitudinal (78).

TBP will be further augmented with cognitive computing
(20), as artificial intelligence algorithms are developed to provide
triaging, clinical decision support and risk assessment based
not only on nevus imaging, but also deep phenotyping. Deep
phenotyping is the process of assessing the whole skin surface for
phenotypic signs of genetic susceptibility, namely freckling and
nevus number, type and distribution, and signs of environmental
risk, by assessing the amount of UV damage over large areas of
skin. These should improve our overall assessment of melanoma
risk by improving the objective assessment of accumulated sun
damage and the visible effects of genetic risk factors.

Genomics remains a fruitful area of research, with polygenic
risk scores (40) and the identification and characterization of
rare candidate risk genes (38) a particularly promising avenue
of research. A combination of further discoveries of nevus-
and melanoma-associated genes and regulatory regions with
polygenic scores incorporating many small-to-moderate effect
risk variants, as well as the well-known larger-effect variants,
will eventually allow for risk stratification that directs more
appropriate surveillance protocols for people with different levels
of melanoma risk.

Finally, it will be critical to develop algorithms able to
capture all the relevant phenotypic and genotypic factors
and synthesize them into a complete risk-stratification
tool to allow risk-adjusted surveillance that detects
melanoma early while minimizing unintended harms
of surveillance.
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