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A Korean synthetic pig breed, Woori-Heukdon (WRH; F3), was developed by crossing
parental breeds (Korean native pig [KNP] and Korean Duroc [DUC]) with their crossbred
populations (F1 and F2). This study in genome-wide assessed a total of 2,074 pigs which
include the crossbred and the parental populations using the Illumina PorcineSNP60
BeadChip. After quality control of the initial datasets, we performed population structure,
genetic diversity, and runs of homozygosity (ROH) analyses. Population structure analyses
showed that crossbred populations were genetically influenced by the parental breeds
according to their generation stage in the crossbreeding scheme. Moreover, principal
component analysis showed the dispersed cluster ofWRH, whichmight reflect introducing
a new breeding group into the previous one. Expected heterozygosity values, which were
used to assess genetic diversity, were .365, .349, .336, .330, and .211 for WRH, F2, F1,
DUC, and KNP, respectively. The inbreeding coefficient based on ROH was the highest in
KNP (.409), followed by WRH (.186), DUC (.178), F2 (.107), and F1 (.035). Moreover, the
frequency of short ROH decreased according to the crossing stage (from F1 to WRH).
Alternatively, the frequency of medium and long ROH increased, which indicated recent
inbreeding in F2 and WRH. Furthermore, gene annotation of the ROH islands in WRH that
might be inherited from their parental breeds revealed several interesting candidate genes
that may be associated with adaptation, meat quality, production, and reproduction traits
in pigs.

Keywords: Woori-Heukdon, Korean native pig, genetic diversity, runs of homozygosity, selection signature,
synthetic breed

INTRODUCTION

In the swine industry, crossbreeding has been widely used to exploit the phenomenon of heterosis, or
hybrid vigor. The main benefit of the heterosis is increased performance of the resulting crossbred
offspring over the average performance of its purebred parent pigs in traits of interest (Johnson, 1981;
Falconer and Mackay, 1996). Although not all pig traits that were targeted for hybrid vigor show the
same degree of heterosis, there has been significant success in harnessing heterosis to improve
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productivity of several economically important traits (Baas et al.,
1992; Cassady et al., 2002a; Cassady et al., 2002b). Since 1970,
most commercial pig producers have been using a classical
terminal crossbreeding system with three breeds (Landrace ×
Yorkshire dam × Duroc sire, or LYD) to produce market pork in
South Korea. The LYD system resulted in higher productivities,
including increased growth rate, by taking advantage of
crossbreeding (Jin et al., 2006; Choi et al., 2016).

In recent years, the South Korea swine industry has been partly
changing from emphasis on efficiently producing more pork,
mostly by focusing on growth and reproduction, to addressing
taste-oriented consumption. There has been consistent consumer
demand in Korea for diversified and great-tasting pork, despite its
higher price than the typical market pork that is mostly derived
from the LYD system (Kim S. G. et al., 2020). In response to such
demand, the National Institute of Animal Science in Korea
developed Woori-Heukdon (WRH), which is a synthetic breed
derived from crossbreeding Duroc (DUC) and the Korean native
pig breed (KNP) (Kim Y.-M. et al., 2020). KNP is known to have
great meat qualities, such as high glucose content and a high
unsaturated/saturated fatty acid ratio. However, because it also
has economically unfavorable characteristics, such as slow growth
rate, late maturity, and light carcass weight, it has low
productivity compared with the commercial breeds; therefore,
the population has decreased (Park et al., 2007; Hur et al., 2013).
To take advantage of genetic merits of both the Duroc and KNP
populations, WRH were generated by the crossing scheme shown
in Figure 1. F2 was shown to have a slightly better growth rate
compared withWRH; however, meat qualities, such as meat color
and shear force, were clearly better in WRH than F2. Therefore,
WRH preserved the characteristics of KNP, including superior
meat quality, and had an improved growth rate compared with
KNP (Kim et al., 2016).

Runs of homozygosity (ROH) are contiguous homozygous
stretches that are inherited from each parent. Although ROHs are
known to arise from several genetic factors, including genetic drift
and population bottlenecks, it has been used as an indicator of
selection signatures throughout the genome. In fact, ROHs have
been widely used to quantify autozygosity in pigs (Schachler et al.,
2020; Wu et al., 2020); because ROH are widely but not randomly
distributed across the genome, some ROH overlap with genomic
regions associated with economically important traits in pigs.
Furthermore, ROH can be used to distinguish between recent and
ancient inbreeding (Keller et al., 2011). In particular, shared ROH
within a population can be used to identify genomic regions
potentially under selection, which could be associated with the
environment or production systems. Several studies have assessed
autozygosity in livestock species using ROH approaches
(Peripolli et al., 2018; Xu Z. et al., 2019; Dzomba et al., 2021).
Offspring inherit chromosomal segments from the same ancestor
by descent (Broman and Weber, 1999). Consequently, the extent
of ROH can be used to estimate the inbreeding coefficient (Bosse
et al., 2012; Marras et al., 2015).

Currently, there is still a lack of studies to elucidate genomic
characteristics of the composite breeds that were generated by
using the indigenous pigs. The main objective of this study were:
1) to estimate various parameters to clarify genomic population

structure of the crossbreds with DUC and KNP populations; and
2) to detect and investigate ROH that could be an indicative of
selection signature in WRH population.

MATERIALS AND METHODS

Animals and Genotyping
A total of 2,074 pigs (male and female) were used in this study,
including DUC, KNP, and their crossbred F1 (DUC × KNP), F2
(F1 × DUC), and F3 (WRH; F1 × F2) populations. The dataset
includes previously published genotype data (Kim Y.-M. et al.,
2020) that contained 61,565 SNPs for DUC (N = 50), KNP (N =
50), and the composite breed WRH (F3; N = 100). We also
generated whole blood samples from 1,874 individuals of DUC
(N = 1,029), KNP (N = 158), F1 (N = 11), F2 (N = 144), andWRH
(F3; N = 532) at the National Institute of Animal Science, Rural
Development Administration, Korea. The genomic DNA was
extracted from the blood samples using the phenol–chloroform
method and genotyped using the Illumina PorcineSNP60
BeadChip v2 (Illumina, Inc., San Diego, CA, United States),
which contains 61,565 SNPs. Genotype data were called using
the genotype module in GenomeStudio v2.0 (Illumina, Inc.). The
SNP coordinates were updated from the genome assembly of Sus
scrofa (Sscrofa10.2 to Sscrofa11.1) according to manifest file of
Illumina PorcineSNP60 v2 using PLINK v1.9 (Chang et al., 2015).

Quality Control of Genotype Data
The quality control (QC) process for the genotype dataset was
conducted separately for SNPs and animals using PLINK v1.9.
We applied three different QC procedures for the initial raw SNP
dataset to further analyze genetic diversity, population structure,
and ROH. All three genotype subsets used the following process:
1) SNPs in sex chromosomes or unmapped in Sscrofa11.1; 2)
SNPs with a call rate less than 90%. Individuals with a call rate less
than 90% were removed. The ROH analysis was conducted using
a subset of data without additional QC process. To assess genetic
diversity, we also removed SNPs with a minor allele frequency
(MAF) less than .05. Furthermore, SNP filtering based on
pairwise linkage disequilibrium (LD) was conducted to
minimize the reduction of informativeness of the dataset
(Lopes et al., 2013) using the indep-pairwise 50 5 0.5
command for population structure analyses.

Genetic Diversity
To assess genetic diversity within populations, we calculated
observed heterozygosity (HO), expected heterozygosity (HE),
and individual inbreeding coefficient (FHOM) using PLINK
v1.9. The inbreeding coefficient was calculated based on
homozygous genotypes as follows:

FHOM � Observed homozygous loci − Expected homozygous loci
Total number of nonmissing loci − Expected homozygous loci

Population Structure
To explore the pattern of genetic differentiation of samples, we
conducted principal component analysis (PCA) using PLINK
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v1.9, and the first two principal components (PCs) were
visualized using R v4.1.0 (www.r-project.org, accessed July 4,
2021). The PCA plot was also considered a QC process because it
reveals potential misclassification.

To better understand the relationship among parental breeds
and their crossbred populations, an admixture analysis for K = 2
that is based on the number of ancestral populations was
performed using ADMIXTURE v1.3 (Alexander and Lange,
2011).

ROH Detection
To detect ROH, we used a dataset of 56,498 SNPs for 2,040
individuals that resulted from QC without filtering based on
MAF and LD because of problematic factors in ROH discovery
(Marras et al., 2015; Meyermans et al., 2020). To avoid short
and common ROH caused by LD, we set the minimum length
of ROH to 1 Mb for ROH discovery, as described by several
studies (Purfield et al., 2012; Ferencakovic et al., 2013; Marras
et al., 2015; Meyermans et al., 2020). ROHs were identified
using a sliding window method with the homozyg command in
PLINK v1.9. The parameters used in ROH detection were
applied as follows: 1) the minimum length of ROH was 1 Mb
(--homozyg-kb); 2) an ROH had at least one SNP per 50 kb on
average (--homozyg-density); 3) the distance of consecutive
SNPs in the same ROH was less than 1,000 kb (--homozyg-
gap); 4) no heterozygous SNP (--homozyg-window-het and--
homozyg-het) and one SNP with a missing genotype were
allowed (--homozyg-window-missing). In addition, the
thresholds for the minimal SNP numbers per window
(--homozyg-window-snp) and in the ROH (--homozyg-snp)

were calculated by the L-parameter for the populations (Lencz
et al., 2007; Purfield et al., 2012; Meyermans et al., 2020). In
this study, we classified ROH into three categories based on
their physical length: short (1 to <3 Mb), medium (3 to <5 Mb)
and long (>10 Mb).

ROH islands, which were defined as regions where SNPs in
ROHs had p-values higher than a specific threshold for each
population, were marked as a potential selection signature, and
ROH islands were determined using R-script at the Open Science
Framework (https://doi.org/10.17605/OSF.IO/XJTKV) provided
by Gorssen et al. (2021). The population-specific threshold was
determined based on z-scores obtained from the distribution of
ROH incidences. Additionally, the top 0.1% of SNPs (p-value
>.999) were used to form ROH islands (Purfield et al., 2017;
Gorssen et al., 2020). Furthermore, a threshold that a ROH
should be included in at least 30% of individuals within
each population was set for ROH islands. For highly
inbred populations such as KNP (FROH = 41%), the
threshold was set to 80% because SNPs with p-values
higher than .999 were not found in this population, as
described by Gorssen et al. (2021).

Using discovered ROHs, we calculated the inbreeding
coefficient based on ROH using the following calculation
proposed by McQuillan et al. (2008):

FROH � L.ROH
L.Autosomes

Where L. ROH is the sum of all ROH of an individual and L.
Autosomes is the total length of autosomal genome covered by
SNPs (in this study, 2,262.6 Mb). Furthermore, we investigated

FIGURE 1 |Crossbreeding scheme ofWRH using parental breeds (DUC and KNP) and their crossbred populations (F1 and F2). DUC, Korean Duroc; KNP, Korean
native pig; F1, DUC × KNP; F2, F1 × DUC; WRH, Woori-Heukdon (F1 × F2).
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patterns of inbreeding estimates based on homozygosity and
ROH by calculating Pearson’s correlations.

Annotation of Genes and Quantitative Trait
Loci
Gene annotation for ROH islands was conducted according to
NCBI Sus scrofa Release 106 (https://ftp.ncbi.nlm.nih.gov/
genomes/all/GCF/000/003/025/GCF_000003025.6_Sscrofa11.1/
GCF_000003025.6_Sscrofa11.1_genomic.gff.gz, accessed on 15
June 2021). Furthermore, we also used pig quantitative trait
locus information for ROH islands to annotate potential traits
associated with selected regions (https://www.animalgenome.org/,
accessed on 20 July 2021).

RESULTS

SNP Characteristics
The SNP coordinates for each chromosome (SSC) were updated
from Sscrofa10.2 to Sscrofa11.1 according to manifest file provided
from Illumina (Supplementary Table 1). After initial QC steps,
three additional individuals (DUC = 3) were removed because of
breed misclassification according to PCA (Supplementary
Figure 1). As a result of the QC procedure, we retrieved three
SNP subsets for population structure (12,801 SNPs for 2,040
individuals), genetic diversity (43,809 SNPs for 2,040 individuals),
and ROH analyses (56,498 SNPs for 2,040 individuals).

Population Structure
The top three PCs (PC1, PC2, and PC3) explained
approximately 39.3, 15.8, and 5.7% of total variation,

respectively. As shown in Figure 2A, DUC and KNP were
clearly separated, and the cluster of F1 was located in the
middle of DUC and KNP populations based on PC1. F2 and
WRH were also located between DUC and KNP; however, both
populations were closer to DUC. Furthermore, WRH showed a
dispersed cluster based on PC2. Clustering patterns for (F1, F2,
and WRH) were clear based on PC1 and PC3, which explained
approximately 39.3 and 5.7% of the total variation, respectively
(Figure 2B). A similar clustering pattern was observed in
ADMIXTURE analysis, showing distinct ancestries of 99.3
and 100.0% in DUC and KNP, respectively (Figure 3;
Supplementary Table 2). For their crossbreds, F1, F2, and
WRH had 51.1, 25.9, and 34.1% KNP ancestry, respectively, at
K = 2.

Genetic Diversity and Inbreeding
Genetic diversity estimates using a subset of 43,809 SNPs for 2,040
individuals are summarized in Table 1. All crossbred populations
(F1, F2, and WRH) had higher heterozygosity rates than the initial
parental breeds (DUC and KNP). F1 had the highest average HO

value (.477 ± .297), followed byWRH (.407 ± .164), F2 (.380 ± .163),
DUC (.331 ± .160), andKNP (.223 ± .216). The averageHE valuewas
highest in WRH (.365 ± .133) and lowest in KNP (.211 ± .202). The
inbreeding coefficient values (FHOM) were shown to have negative
values in all five populations, exhibiting the highest value in DUC
(−.002 ± .053), followed by WRH (−.024 ± .083), KNP (−.055 ±
.104), F2 (−.115 ± .048), and F1 (−.417 ± .019).

ROH Patterns
The mean number and size of discovered ROH per pig within
each population are described in Table 2. Among the five pig
populations, the largest mean size of ROH was observed in KNP

FIGURE 2 | Principal component analysis illustrating stratification of the five pig populations. (A) Visualization of PC1 vs PC2, which explains 55.1% of total variation
together; (B) visualization of PC1 vsPC3,which explains 45%.DUC, KoreanDuroc; KNP,Korean native pig; F1, DUC×KNP; F2, F1 ×DUC;WRH,Woori-Heukdon (F1 × F2).
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(14,205.2 ± 17,912.2 kb; N = 65.1), and followed by WRH
(7,169.8 ± 8,695.3 kb; N = 58.7), DUC (6,117.5 ± 6,418.3 kb;
65.9), F2 (3,973.9 ± 3,836.9 kb; N = 61.2) and F1 (2,003.5 ±
1,014.0 kb; N = 39.8). Both parental breeds (DUC and KNP)
showed to have larger mean size and number of ROH than F1 and
F2 crossbred populations, whereas mean length and ROH
number were higher in WRH than that of DUC. The ROH
length for parental breeds ranged from 1,266 kb (SSC12) to
186,522 kb (SSC1) in DUC and from 2,060 kb (SSC2) to
262,078 kb (SSC1) in KNP. For crossbred populations, the
ROH length ranged from 1,014 kb (SSC1) to 9,527 kb (SSC6)
in F1, 1,041 kb (SSC12) to 58,419 kb (SSC1) in F2, and 1,247 kb
(SSC2) to 152,760 kb (SSC1) in WRH. As shown in Figure 4 and
Supplementary Table 3, the proportion of short ROH (1–3 Mb)
within each population was the highest in F1 (90.2%; N = 395),
followed by F2 (54.9%; N = 4,839), WRH (26.5%; N = 9,691),
DUC (24.4%; N = 17,075), and KNP (1.6%; N = 203). The
proportion of medium ROH (3–10 Mb) was highest in DUC
(62.9%; N = 44,038) and lowest in F1 (9.8%; N = 43), long ROH
(>10 Mb) were most frequently observed in KNP (41.9%; N =
5,436), and no long ROH were observed in F1. We also observed
parental ROH regions in crossbred populations using the
coordinates of concatenated ROH regions that were generated
by joining overlapped (at least 1bp) ROH segments within each of
the populations (DUC, KNP, F1, F2, andWRH) (Supplementary
Table 4). Most of ROH regions (>98.9%) in crossbreds were
derived from the shared ROH region (approximately 2,218 Mb)
between DUC and KNP.

The inbreeding coefficient among all populations was further
calculated based on ROH (FROH), which was defined by
McQuillan et al. (2008) (Table 2). This result showed that the
highest FROH value was observed in KNP (0.409) followed by

WRH (0.186), DUC (0.178), F2 (0.107), and F1 (0.035), which is
the same order as mean ROH length. The correlation between
FHOM and FROH for each population was high in most
populations, including DUC (0.84), KNP (0.83), F2 (0.86), and
WRH (0.88); however, F1 had a correlation of 0.10
(Supplementary Figure 2). Because FHOM is influenced by
allele frequency and sampling (Zhang et al., 2015) but the
level of homozygosity in FROH is independent of allele
frequencies, the low correlation between FHOM and FROH in F1
might be caused by sampling bias derived from the low sample
size of F1 (N = 11) (Dixit et al., 2020). Therefore, we focused on
FROH to assess the degree of inbreeding, which is also better for
detecting both common and rare variants than FHOM (Wang
et al., 2019).

ROH Islands and Gene Annotation
As shown in Figure 5 and Supplementary Table 5, the ROH
islands, which were defined as regions where SNPs in ROH had
p-values higher than a threshold for each population, were
observed for parental (DUC and KNP) and crossbred (F1, F2,
and WRH) populations. We identified a total of 365 ROH islands
of 1-Mb bins throughout the autosomal regions (Supplementary
Table 6). DUC had ROH islands on SSC1–3, SSC7, and SSC14,
whereas KNP had ROH islands on 11 autosomes, excluding SSC2,
SSC3, SSC4, SSC6, SSC14, SSC15, and SSC18. Crossbred
populations, especially F1 and F2, had similar occurrence
patterns of ROH islands, with ROH islands on SSC1, SSC9,
and SSC14–17 in both populations. Additional islands only in
F1 were on SSC4, SSC5, SSC13, and SSC18, and those only in F2
were on SSC2 and SSC7. For WRH, SSC1, SSC3, SSC7, SSC9, and
SSC14 had ROH islands. For all 1-Mb bin of ROH islands, we
annotated 2,165 genes and 11 QTL information and are listed in
Supplementary Table 6.

DISCUSSION

To investigate the population structure of DUC, KNP, and their
crossbred populations (F1, F2, and WRH), we conducted PCA
and ADMIXTURE analyses (Figure 2 and Figure 3). The most
distant genetic relationship was observed between DUC and KNP
based on PCA (Figure 2). In addition, KNP separated from DUC
at K = 2 and had 100% distinct ancestry (Figure 3;
Supplementary Table 2). The results are consistent with those
of previous reports that showed clear genetic difference based
on population structure and FST analyses (Edea et al., 2014;

FIGURE 3 | Population structure analysis based on ADMIXTURE at K = 2. Each column represents an individual. DUC, Korean Duroc; KNP, Korean native pig; F1,
DUC × KNP; F2, F1 × DUC; WRH, Woori-Heukdon (F1 × F2).

TABLE 1 | Estimates of genetic diversity and inbreeding for five pig populations.

Pop No. before QCa HO ± SD HE ± SD FHOM ± SD

DUC 1,079 0.331±0.160 0.330±0.159 −0.002±0.053
KNP 208 0.223±0.216 0.211±0.202 −0.055±0.104
F1 11 0.477±0.297 0.336±0.163 −0.417±0.019
F2 144 0.380±0.163 0.349±0.138 −0.115±0.048
WRH 632 0.407±0.164 0.365±0.133 −0.024±0.083

aNumber of samples before quality control (missing genotype rate <90%). Pop,
population; HO, observed heterozygosity; HE, expected heterozygosity; FHOM, inbreeding
coefficient based on excess of homozygosity; SD, standard deviation; DUC, Korean
Duroc; KNP, Korean native pig; F1, DUC × KNP; F2, F1 × DUC; WRH, Woori-Heukdon
(F1 × F2).
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Kim Y.-M. et al., 2020; Lee et al., 2020). For the crossbred
populations (F1, F2, and WRH) used in this study, all three
populations were located between KNP and DUC in the PCA
(Figure 2). In particular, F1 was located in the middle of KNP and
DUC, which was also shown in other F1 populations generated
from purebred parental pig breeds (Grossi et al., 2017) and cattle
(Gobena et al., 2018). The ADMIXTURE analysis of K = 2 also
revealed that F1 had 48.9% DUC and 51.1% KNP ancestry
(Supplementary Table 2). The genetic distance of F2 and
WRH crossbred populations was closer to DUC than that to
KNP, which can be explained by the higher genetic composition
of DUC than that of KNP in the crossing scheme of F2 andWRH
(Figure 1). At K = 2 in the ADMIXTURE analysis, F2 had
approximately 74.1% DUC and 25.9% of KNP ancestry. In
addition, WRH had approximately 65.9% DUC and 34.1%
KNP ancestry. This better fits the theoretical genomic
composition of DUC (62.5%) and KNP (37.5%) than a
previous study that reported the genomic composition of
DUC (74.8%) and KNP (25.2%) in WRH (Kim Y.-M. et al.,
2020). This study only used parental breeds (DUC and KNP)
and crossbred populations (F1 and F2) that were used to
develop WRH, even though the previous study used
additional Chinese and commercial breeds. Therefore, we

inferred that a better estimation of ancestry for WRH was
obtained in this study.

However, WRH was shown to have a somewhat dispersed
cluster in PCA (Figure 2A). This could be explained by newly
generated breeding group of WRH using parental breeds (DUC
and KNP) and crossbred populations (F1 and F2). The first
national project to develop a Korean composite pig breed
(WRH) started in 2008 by generating F1 and F2 populations.
Subsequently, the first founder population of WRH was
developed in 2010. Since then, the initial founder stock of
WRH was used for breeding projects as a closed population
until 2018. Because of difficulties maintaining a sufficiently large
effective population size with a limited population size, they
were subject to inbreeding (Dickerson, 1973). To decrease the
level of inbreeding of this population, a recent project was
initiated to construct new breeding group of WRH
population since 2018. Therefore, recent introduction of new
breeding group to the previous one might cause the somewhat
widely distributed cluster shown in population structure
analyses.

The effect of heterosis is difficult to quantify; however,
heterozygosity can be used as an indicator of heterosis
(Iversen et al., 2019). Genetic diversity levels were assessed by
mean expected heterozygosity rate of five pig populations. The
expected heterozygosity gradually increased according to crossing
stages used in this study (F1, F2, and WRH) (Table 1), and those
values were higher than in the parental breeds. Similar to this
result, a previous study reported that crossbred pigs generated
between Dutch Landrace and Dutch Large White had higher
heterozygosity levels compared with their parental breeds
(Iversen et al., 2019). Among the five pig populations, the
lowest degree of genetic diversity was observed in KNP, and
this result is concordant with those of previous studies that
reported the genetic diversity of KNP relative to most of
studied other indigenous and commercial pig breeds using
genomic datasets (Kim Y.-M. et al., 2020; Lee et al., 2020).
Other studies that assessed genetic diversity of indigenous pigs
from other countries also revealed loss of genetic diversity in
indigenous pig breeds due to conservation status (Diao et al.,
2019; Munoz et al., 2019). Although KNP has not undergone
systematic artificial selection during conservation breeding, such
loss of genetic diversity could be explained by a small effective

TABLE 2 | Summary of discovered ROH in five pig populations.

Pop ROH length (kb) No. of ROH per individual FROH ± SD

Mean Mina Maxb Mean Minc Maxd

DUC 6,117.5 ± 6,418.3 1,266.3 (SSC12) 186,521.5 (SSC1) 65.9±8.0 4 90 0.178±0.035
KNP 14,205.2 ± 17,912.2 2,060.1 (SSC2) 262,078.0 (SSC1) 65.1±5.5 47 80 0.409±0.046
F1 2,003.5 ± 969.0 1,014.0 (SSC1) 9,527.0 (SSC6) 39.8±3.3 35 44 0.035±0.003
F2 3,973.9 ± 3,836.9 1,040.8 (SSC12) 58,419.8 (SSC1) 61.2±9.9 31 87 0.107±0.025
WRH 7,169.8 ± 8,695.3 1,247.0 (SSC2) 152,760.6 (SSC1) 58.7±9.3 7 89 0.186±0.055

aMinimum length (kb) of ROH, within each population.
bMaximum length (kb) of ROH, within each population.
cMinimum number of ROHs, per individual.
dMaximumnumber of ROHs, per individual. Pop, population; No., number; FROH, inbreeding coefficient based on runs of homozygosity; SD, standard deviation; DUC, Korean Duroc; KNP,
Korean native pig; F1, DUC × KNP; F2, F1 × DUC; WRH, Woori-Heukdon (F1 × F2).

FIGURE 4 | ROH distribution according to size classification (1–3 Mb,
3–10 Mb, or >10 Mb). DUC, Korean Duroc; KNP, Korean native pig; F1, DUC
× KNP; F2, F1 × DUC; WRH, Woori-Heukdon (F1 × F2).
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population size and the founder effect or a population bottleneck
(Munoz et al., 2019). In terms of breeding history, the KNP
restoration project started in 1988 using only nine individuals
(four males and five females) as a founder population (Kim et al.,
2016); simultaneously, the preservation program was conducted
as a closed population (Kim Y.-M. et al., 2020). We suggest that
those characteristics of the breeding system might have caused a
high level of inbreeding, as KNP had the greatest FROH value
(.409) (Table 2).

In ROH analyses, we found a clear difference in ROH patterns
between parental breeds and their crossbred populations (F1 and
F2). Among parental breeds, DUC had 24.4% short and 12.7%
long ROH segments (Figure 4). Additionally, KNP had abundant
medium (56.5%) and long (41.9%) ROH segments. The short
ROH segments may indicate evolutionary events from old
inbreeding or selection, whereas long ROH may reflect recent
inbreeding (Keller et al., 2011; Mastrangelo et al., 2017; Xu L.
et al., 2019). DUC was shown to have more old inbreeding than

FIGURE 5 | Manhattan plot of SNP frequency in ROH islands. The horizontal line (red) indicates the threshold for ROH islands for each population. DUC, Korean
Duroc; KNP, Korean native pig; F1, DUC × KNP; F2, F1 × DUC; WRH, Woori-Heukdon (F1 × F2).
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recent inbreeding or selection pressure due to intensive selection
programs (Bovo et al., 2020), whereas KNP underwent recent
inbreeding of small populations (Valluzzi et al., 2021); this was
also confirmed by the genetic diversity and inbreeding results in
this study. Of the crossbred populations, F1 has the lowest
number of total ROH segments (N = 438) among populations
used in this study (Supplementary Table 3), and most of them
are short ROHs (90.2%) and no long ROHs. These ROH
patterns in F1 also caused the short length of concatenated
ROH regions compared to F2 and WRH (Supplementary
Table 4), which might be caused by the increase of
heterozygous SNPs in the genome due to the hybridization of
parental breeds. This is also supported by the highest value of
observed heterozygosity in F1 (Table 1). However, a caution is
required to interpret the ROH results derived from F1, because
there was highly likely to be an underestimation in ROH
numbers and size due to a low sample size (N = 11).
Furthermore, we identified a total of 8,810 and 36,635 ROHs
for F2 and WRH, respectively (Supplementary Table 3). In
both populations, short ROH segments gradually decreased,
whereas medium and long ROH segments increased; these
changes also increased the inbreeding coefficient based on
ROH (Table 2) and the length of concatenated ROH region
(Supplementary Table 4) in those populations. A previous
study also revealed that, in a 3-way crossbred population
[(Pietrain × Large White) × Duroc)], G0 had smaller
homozygous segments than their parental populations, and
ROH size was increased in the G1 population, which were
the offspring of G0 (Ganteil et al., 2020). Consequently,
WRH showed a similar proportion of size-classified ROH to
DUC, but WRH had a higher proportion of long ROH than
DUC; this indicated recent inbreeding events, as discussed
earlier in the population structure analyses. We also observed
parental ROHs in crossbred populations using coordinates of
concatenated ROH regions for each of the populations
(Supplementary Table 4). Most ROH regions in crossbreds
(>98.8%) were considered to be from the ROH regions shared
between parental breeds (DUC and KNP). In particular, the
proportions of the ROH regions over the initial total length of
ROH region overlapped between parental breeds were 91.55 and
99.55% for F2 and WRH, respectively (data not shown). We
suggest that such increased ROH regions in F2 and WRHmight
be in part due to the inbreeding.

The discovery of ROH islands revealed numerous
homozygous regions over five pig populations used in this
study (Figure 5; Supplementary Table 6). Furthermore, we
found ROH islands in the parental breeds that were shared
with their crossbred populations on SSC1–3, SSC7, SSC9,
SSC13, SSC14, and SSC16, which indicated inheritance of
homozygous regions (Supplementary Table 5). Most of those
regions in crossbred populations were shorter than those in
parental populations, which might be explained by ROH
degeneration due to an increase of heterozygous SNPs or
recombination (Bosse et al., 2012). The breakage of the ROHs
is supported by the proportion of parental ROH regions in
crossbred populations (Supplementary Table 4), which
indicated that most of ROH regions from the crossbreds (F1,

F2 and WRH) belongs to shared ROH regions between parental
breeds. Previous studies also revealed ROH persistence in several
crossbred pigs: Landrace × Large White (Landrace × Large
White) × Duroc, and (Pietrain × Large White) × Duroc
(Howard et al., 2016; Gomez-Raya et al., 2019; Ganteil et al.,
2020).

In this study, we annotated genes to ROH islands to identify
inheritance of homozygous regions that might be potential
selection signatures from parental breeds to WRH, which is
the last stage of the crossbreeding scheme. First, we found
some candidate genes in ROH islands that overlapped between
KNP and WRH. We found an ROH island on SSC9 (49–50 Mb)
harboring the Cytotoxic And Regulatory T Cell Molecule
(CRTAM) gene. This gene was reported to have an association
with adaptive immune response in cattle (Ben-Jemaa et al., 2021).
As KNP is an indigenous pig breed that has been adapted to the
local environment of South Korea for a long period, we suggest
that CRTAM might be a candidate gene that is associated with
local adaptation of KNP and WRH populations. At the same
location (SSC9; 49–50 Mb) of a ROH island, we found the Heat
Shock Protein Family A Member 8 (HSPA8) gene, which is also
known as Hsp70. HSPA8 is known to be associated with pork
tenderness because this gene was down-regulated in tender
samples (Hamill et al., 2012).

We also retrieved ROH islands that were shared between
DUC and WRH. We found the ADAMTS Like 3 (ADAMTSL3)
gene at 52–53 Mb on SSC7. ADAMTSL3 is a member of the
ADAMTS superfamily of proteins, and this gene was previously
reported as a candidate gene for body length in Large White
pigs (Li et al., 2017) and height in humans (Weedon et al.,
2008). In addition, we located the Cytoplasmic Polyadenylation
Element Binding Protein 1 (CPEB1) gene at 52–53 Mb on SSC7.
The CPEB1 is an RNA-binding protein that regulates mRNA
translation by controlling the poly(A) tail length (Nagaoka
et al., 2016). CPEB1 was reported to increase the rate of meiotic
resumption and expression of cyclin B when mRNA was
injected into immature oocytes (Nishimura et al., 2010). The
purpose of using DUC in the crossing scheme includes
complementing the body size and reproductive traits of
KNP; thus, we suggest that ADAMTSL3 and CPEB1, which
are located in ROH islands of DUC and WRH, might be
associated with production and reproductive traits in both
populations.

CONCLUSION

This study has shown genomic characteristics of crossbred pig
populations derived from Korean Duroc and Korean native pigs
as founder breeds. Population structure analysis showed genetic
influence of founder breeds to crossbred populations. We also
observed that WRH had two distinct subgroups due to newly
introduced breeding group. For crossbred populations, the
genetic diversity was gradually increased according to their
crossbreeding stage (F1, F2 and WRH). In ROH analyses,
short ROHs were decreased, while medium and long ROHs
were increased from F1 to WRH, suggesting that recent
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inbreeding is ongoing in WRH. In this study, there is a partial
limitation to conclude on F1 due to its small samples size (N =
11). Furthermore, we identified shared ROH islands which
contain candidate genes (CRTAM, HSPA8, ADAMTSL3 and
CPEB1 genes) between WRH and founder breeds, suggesting
inheritance of homozygous region that might be potential
signatures of selection.
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