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Abstract: The current coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute
respiratory syndrome coronavirus (SARS-CoV)-2, is affecting every aspect of global society, including
public healthcare systems, medical care access, and the economy. Although the respiratory tract is
primarily affected by SARS-CoV-2, emerging evidence suggests that the virus may also reach the
central nervous system (CNS), leading to several neurological issues. In particular, people with a
diagnosis of Alzheimer’s disease (AD) are a vulnerable group at high risk of contracting COVID-19,
and develop more severe forms and worse outcomes, including death. Therefore, understanding
shared links between COVID-19 and AD could aid the development of therapeutic strategies against
both. Herein, we reviewed common risk factors and potential pathogenetic mechanisms that might
contribute to the acceleration of neurodegenerative processes in AD patients infected by SARS-CoV-2.

Keywords: COVID-19; SARS-CoV-2; Alzheimer’s disease

1. Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2), continues to spread rapidly across the globe, becoming a
devastating pandemic infection with growing mortality rates [1]. Although SARS-CoV-2
predominantly affects the respiratory system, increasing evidence reports a close relation-
ship between COVID-19 and central nervous system (CNS) disorders, with more than
30% of hospitalized COVID-19 patients exhibiting neurological manifestations [2]. In line
with this observation, magnetic resonance imaging (MRI) showed brain structural changes
associated with COVID-19 in both surviving patients and non-survivors [3,4], confirm-
ing SARS-CoV-2’s involvement within the CNS [5]. However, whether the neurological
symptoms represent a direct consequence of SARS-CoV-2 infection of brain cells or a result
of systemic illness remains to be clarified [6]. A viral infection of human neurons has
been suggested by the presence of viral RNA and/or protein in the brains of COVID-19
patients with neurological manifestations [7–9]. A neurochemical study reported that
patients with severe SARS-CoV-2 infections exhibit high plasma levels of neurofilament
light chain protein (NfL) and glial fibrillary acidic protein (GFAP), known as biochemical
indicators of neuronal injury and glial activation [10], further supporting a direct link
between SARS-CoV-2 brain infection and neurological disturbances. Additionally, both
human and animal models demonstrated that the virus can directly invade the olfactory
bulb [11] without a primary lung involvement, by the interaction between the virus S1
spike protein and angiotensin-converting enzyme 2 (ACE2), which is widely expressed
in the glial cells and neurons [12]. However, the distribution of ACE2 in the human brain
regions and cell types is quite heterogeneous. It is highly expressed in the choroid plexus
of the lateral ventricle and central glial substance, while low expression was detected in the
hippocampus. Regarding the cell-type distribution, ACE2 was found both in excitatory
and inhibitory neurons, as well as in non-neuronal cells such as the oligodendrocytes,
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astrocytes, and endothelial cells. This evidence supports the hypothesis that brain infection
by SARS-CoV-2 may promote CNS symptoms in patients with COVID-19, and suggests
new potential routes for viral entry and propagation into the cerebral tissue [13]. SARS-
CoV-2 may also infect the brain through a disrupted blood-brain barrier (BBB) that is often
compromised in the aging brain, and neurodegenerative disorders, mainly in Alzheimer’s
disease (AD) [14].

AD represents the most common form of dementia in the elderly population world-
wide, and it is clinically characterized by neuronal loss in the hippocampus and cortical
areas, leading to memory deterioration, behavioral changes, and cognitive decline. Neu-
ropathological hallmarks include the presence of intracellular neurofibrillary tangles (NFTs),
as well as parenchymal and vascular amyloid β (Aβ) deposits [15]. In the progression
of the neuropathological changes observed in AD pathogenesis, a central role is played
by neuroinflammation, attributed to activated microglia cells and the release of several
cytokines [16]. Intriguingly, severe outcomes after SARS-CoV-2 infection in elderly indi-
viduals are often associated with a cytokine storm producing an excessive inflammatory
and immune response, which may in turn accelerate brain inflammatory neurodegener-
ation [17]. Moreover, some COVID-19 patients could develop cognitive deficits after the
primary infection [18], which can be partially explained by the virus-related exacerbation
of the underlying brain pathology in elderly people [14]. One important issue is whether
or not COVID-19 actually infects neurons, enters into neurons, or replicates within them,
leading to a lytic cycle. Some data reviewed in [19] point to neuronal infection. Moreover,
a recent study reported that SARS-CoV-2 spike S1 protein could facilitate the spreading
of aggregated tau via the secretion of extracellular vesicles (EV) or direct cell-to-cell con-
tact [20]. As SARS-CoV-2 is able to infect human neurons and use the neuronal machinery
to replicate [21], the virus could lend its glycoproteins to neurons and EV, thus perpet-
uating the pathology. In addition to neuronal cells, astrocytes can also be infected by
SARS-CoV-2, causing metabolic alterations that impair neuronal viability, contributing to
neurodegeneration [22].

Given the high prevalence of AD individuals affected by COVID-19, this review
aimed to elucidate common underlying etiological and risk factors that may contribute
to the exacerbation of the neurodegenerative processes in AD patients infected by SARS-
CoV-2. Understanding the relationship between COVID-19 and AD could aid in the
detection of potential biomarkers for the early identification of COVID-19 in patients with
a high risk of developing AD, as well as the management and development of novel
therapeutic approaches for both diseases. Figure 1 shows the possible association between
AD and SARS-CoV-2 infection by summarizing shared risk factors and potential underlying
mechanisms, which are described in the following paragraphs (Figure 1).
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Figure 1. Schematic representation of possible pathogenetic mechanisms leading to neurodegener-
ation. Pathways activated by COVID-19 and AD are represented by red and blue arrows, respec-
tively. 

Figure 1. Schematic representation of possible pathogenetic mechanisms leading to neurodegenera-
tion. Pathways activated by COVID-19 and AD are represented by red and blue arrows, respectively.
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2. Risk Factors and Potential Pathogenetic Mechanisms Shared by AD and COVID-19
2.1. Aging

Aging represents the primary risk factor for AD, with prevalence of the disease
doubling every five years after age 65 [23]. Aging itself is also a well-known risk factor for
severe disease and death in individuals affected by COVID-19 [24,25]. Epidemiological
data from China showed that the case fatality ratio (CFR) of COVID-19 increases with
age [24]; patients aged 59 years or older were at least 5 times more prone to die after the
development of symptoms than younger ones [25]. Similarly, the CFR of COVID-19 in
patients over 80 years was about 2-fold higher than the overall in Italy, the first country
affected by the pandemic after China [26]. It has been postulated that aging may induce
the generation of reactive oxygen species (ROS), exacerbate Aβ production, and increase
neuroinflammation that contributes to the pathogenesis of both COVID-19 and AD [27,28].
Moreover, as aging is characterized by a gradual loss of the BBB integrity, elderly people
could be more vulnerable to neuroinvasion during infection by SARS-CoV-2 [29].

It is well known that macrophages are affected by senescence, and thus older people
respond weaker to SARS-CoV-2 infection due to the observation that macrophages have
protective effects on the lungs during viral infection [30]. SARS-CoV-2 enters macrophages
through the virus spike protein and induces them to produce high levels of senescence-
associated secreted phenotype (SASP) factors, which contribute to Aβ accumulation, tau
hyperphosphorylation, and the deposition of NFTs [31]. Therefore, aged macrophages and
microglia may cause a different efficiency in response to pathology and infections.

2.2. Aβ Cerebral Deposition

Aβ is believed to be the key mediator of AD pathology and is one of the earliest
brain AD-related molecular changes, starting several years before the onset of clinical
symptoms [32]. Some evidence suggests that the potential increase of developing AD in
COVID-19 patients may be related to Aβ. Intriguingly, a recent in vivo study provided data
supporting the action for Aβ as an antimicrobial peptide [33]. The authors demonstrated
that Aβ exerts a higher antimicrobial activity against the most common and clinically
relevant microorganisms [34]. Therefore, it can be speculated that SARS-CoV-2 infection
may stimulate or accelerate the Aβ accumulation in the brain, as part of an innate immune
response, leading to AD. Another study demonstrated that the receptor-binding domain
(RBD) of SARS-CoV-2 spike S1 protein can bind to several proteins, such as Aβ and tau,
promoting their aggregation and further perpetuating the neurodegeneration process [34].

On the other hand, Aβ itself can facilitate the spread of SARS-CoV-2 infection through
calcium (Ca2+) dysregulation. Integrating into the plasma membrane, the Aβ oligomers
form pores, increasing the intracellular Ca2+ concentration [35] and thus contributing to
neurodegeneration [36]. Interestingly, SARS-CoV-2 can disrupt Ca2+ pumps and channels,
benefiting from an altered Ca2+ homeostasis in the AD brain for viral infection and its life
cycle [37].

2.3. Angiotensin-Converting Enzymes

Angiotensin-converting enzymes (ACE), comprising ACE1 and ACE2, are key com-
ponents of renin-angiotensin system (RAS), which antagonistically act by regulating the
levels of angiotensin II (Ang II) and Ang-(1–7). In particular, ACE1 converts Ang I to Ang
II and inactivates the vasodilator peptide bradykinin, whereas ACE2 is responsible for the
cleavage of Ang II into smaller proteins such as Ang-(1–7), playing a role in vasodilation
and antiproliferative effects [38]. Intriguingly, some inhibitors of ACE, by reducing Ang II
levels, have been well documented to halt neurodegenerative disorders, including AD, by
anti-inflammatory and antioxidant effects [39,40]. Ang-(1–7) proteins bind to Mas receptor
(MASR) forming ACE2/Ang-(1–7)Mas axis, which is known to have a protective role in
neurodegeneration in contrast to ACE1 and Ang II [38]. Through the activation of MASR,
Ang-(1–7) regulated the activation of the PI3K/Akt/CREB/BDNF/TrKB pathway, thus
inhibiting the inflammatory and oxidative stress events [41]. It is well known that the brain-
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derived neurotrophic factor (BDNF) plays an important role not only in neurogenesis and
neurodevelopment, but also in normal mood behavior. As BDNF is released by the ACE2
enzyme, these findings raise the hypothesis of its involvement in the regulation of mental
and neurological outcomes occurring during SARS-CoV-2 infection [42]. In ACE2 knock-
out mice, the deficiency of this enzyme resulted in an impairment of cognitive functions,
probably in part due to a decreased BNDF and enhanced oxidative stress [43]. Conversely,
the enhancement or overexpression of ACE2 lowered Aβ-related hippocampal pathology,
ameliorated cognitive performance in the Tg2576 mouse model of AD-like brain amyloido-
sis [44–46] and improved Aβ-induced inflammatory responses [47]. Moreover, significantly
diminished ACE2 activity and Ang-(1–7) levels were found in post-mortem AD brains and
inversely correlated with Aβ and hyperphosphorylated tau levels [48]. In accordance, the
plasma levels of Ang-(1–7) in AD patients were significantly decreased compared to the
age-matched controls, suggesting their role as potential peripheral biomarkers for the dis-
ease diagnosis [49]. Similar evidence has also been reported in the senescence-accelerated
mouse prone 8 (SAMP8), a naturally derived animal model of sporadic AD [50].

As already mentioned, ACE2 also serves as a receptor for SARS-CoV-2, thus allowing
its entry to cells [29]. Hence, the binding of SARS-CoV-2 to ACE2 can result in the depletion
of this enzyme, shifting the equilibrium towards ACE1/AngII and causing a further
injury due to the above-described protective role of ACE2/Ang-(1–7)Mas axis against
neurodegeneration [39,51]. This evidence supported the hypothesis that SARS-CoV-2
may inhibit the expression or activity of ACE2, leading to an exacerbation of cognitive
impairment in patients with AD, and an augmentation of neurodegenerative processes.
Consistent with this consideration, it has been found that advanced age is also associated
with reduced ACE2 expression [52].

2.4. ApoE ε4 Allele

Apolipoprotein E (ApoE) is the main carrier of cholesterol in the CNS, where it is
primarily expressed in both astrocytes and neurons [53]. This protein exerts neuroprotective
effects in several brain functions, including neuronal plasticity and neurite outgrowth [54],
as well as the regulation of Aβ neurotoxicity and clearance [55]. Microglia can also syn-
thesize and release ApoE, and its secretion is finely regulated by neurons, suggesting
microglia–neuron crosstalk [56]. While ApoE expressed in neurons and astrocytes seems to
regulate the production of tau, microglia-secreted ApoE is involved in the control of mi-
croglial activation, and its production is induced during AD pathogenesis [57,58]. Among
its three alleles (ε2, ε3 and ε4), individuals carrying the APOE ε4 allele are associated
with increased risk and accelerated onset of AD by enhancing Aβ deposition into plaques
and reducing its clearance from the brain [59]. Moreover, this allele impairs homeostastic
functions of astrocytes and microglia, intersecting with changes that occur during normal
aging to ultimately cause neurodegeneration and cognitive dysfunction [58]. APOE ε4 is
able to promote pro-inflammatory conditions in macrophages and has lower efficiency in
delivering essential fatty acids for neuronal membrane maintenance, as well as promot-
ing misfolded protein accumulations, disrupting synaptic plasticity, and dendritic spine
formation [60]. The APOE ε4 allele has also been involved in decreasing BBB integrity by
activating the matrix-metalloproteinase-9 (MMP9) and inflammatory cascade [61]. Indepen-
dent from pre-existing dementia or other comorbidities, a recent UK study reported that the
APOE ε4 allele is linked to increased risk of infection and mortality due to COVID-19, al-
though the biological mechanisms involved in this association remain to be elucidated [62].
Mechanistically, high levels of blood cholesterol by binding to the ApoE receptor are shown
to improve the endocytic entry of SARS-CoV-2 to cells via ACE-2 receptors [63]. In an
attempt to pinpoint the causal relationship between ApoE ε4 and COVID-19 susceptibility
or severity, a study performed using human-induced pluripotent stem cells (hiPSCs) pro-
vided evidence that ApoE ε4 could lead to increased SARS-CoV-2 susceptibility in both
neurons and astrocytes [64]. Compared to ApoE ε3 astrocytes, those with ApoE ε4 also
exhibited a more exacerbated cellular response, including reactive astrocytes, enlarged
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size, and increased fragmentation of the nucleus—an indication of cell death, which may
facilitate the progression and severity of COVID-19 [64].

Mainly in severe forms of COVID-19, impaired consciousness and delirium repre-
sented common clinical findings [65], and pre-existing dementia was related to high risk
of severe SARS-CoV-2 infection as well as increasing mortality [66]. Intriguingly, ApoE ε4
homozygotes have an increased risk of delirium, in addition to dementia [67].

All these considerations suggested that SARS-CoV-2 infection may represent an ag-
gravating factor for neurodegeneration in individuals with susceptible genetic variants. If
further confirmed, APOE genotyping might help guide healthcare management of patients
with comorbidities.

2.5. Neuroinflammation and Microglia Activation

Another key feature of AD pathogenesis is represented by neuroinflammation, en-
compassing a series of inflammatory events in the CNS under pathological conditions [68].
The chronic inflammatory microenvironment in AD brains is reflected by high levels of cy-
tokines, including interleukin-1β (IL-1β), IL-6 and tumor necrosis factor α (TNF-α) secreted
by the activated microglia, the brain’s major innate immune cells [69]. Similarly, increased
levels of IL-6 and TNF-α have been detected in the serum of AD patients compared to
healthy individuals [70]. Moreover, it is well documented that systemic inflammation can
affect cognitive functions and promote the progression of neurodegenerative disorders [71].
In this regard, the cognitive performance in AD individuals was found to be negatively
correlated with IL-6 levels in plasma, suggesting a compromised cellular immunity in
these patients [72]. In rodents, elevated levels of IL-1β in the brain impaired memory
consolidation processes and cognitive functions, along with increased Aβ and NFT produc-
tion [73]. The blockade of endogenous IL-1 [74] or knocking-out of IL-6 [75] resulted in an
improvement in spatial memory and cognitive performance, as demonstrated by memory
and learning behavior tests in in vivo models.

In severe cases of COVID-19, SARS-CoV-2 infection can trigger systemic inflammation
and a cytokine storm, leading to a significant increase of pro-inflammatory cytokines [76].
Indeed, significantly elevated levels of IL-1, IL-6, IL-8, IL-10, IP-10, and TNF-α have been
found in the cerebrospinal fluid (CSF) of patients affected by COVID-19 [77–79]. Among
pro-inflammatory cytokines, IL-6 is one of the most related to COVID-19, and is associated
with a high risk of developing more severe diseases or mortality [79,80]. Similarly to IL-6,
high levels of IL-1 are also predictors of a worse prognosis of SARS-CoV-2 infection [81].
These increased levels of cytokines could be partly due the SARS-CoV-2 open reading frame
3a (ORF3a) protein, which activates the innate immune signaling NOD-like receptor protein
3 (NLRP3) inflammasome with the consequent release of IL-1β, IL-6, and TNF-α [82,83].
After being activated, the NLRP3 inflammasome impaired the normal phagocytic capacity
of microglia, reducing Aβ42 clearance in the brain [84]. Additionally, an in vitro study
demonstrated that SARS-CoV-2 induces endothelial dysfunction at the BBB, impairing
its integrity and function, thus enabling neuroinvasion [85]. Intriguingly, an intense mi-
croglia activation has been observed in post-mortem brains of patients with severe fatal
COVID-19 [86]. Therefore, all this evidence might suggest that the massive inflammatory
mediators released by the virus-induced systemic inflammation can enter the CNS through
the damaged BBB in AD patients, thus amplifying the existing neuroinflammation and
accelerating the neurodegeneration process [87,88].

Several studies have reported that the synthesis and release of IL-1β, TNF-α, IL-6, and
IL-10 are mediated by acetylcholine (ACh) in a dose-dependent manner [89]. Synthesized
by the enzyme choline acetyltransferase (ChAT) from acetyl-CoA and choline, ACh is an
excitatory neurotransmitter of the CNS that plays important roles in learning and memory
functions. In AD patients, a reduction in ChAT activity in the cerebral cortex has been
found to be related to disease severity [90]. This results in a decrease of choline uptake and
ACh release, leading to a presynaptic cholinergic impairment and thus affecting major brain
processes, such as learning, memory, waking, and sleep [91,92]. Interestingly, an in silico
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study revealed that ACh is also involved in COVID-19-driven inflammatory responses.
The authors reported that the high levels of prenatal choline in the mother can preserve
the fetal brain’s development from the side effects of infection by SARS-CoV-2 [93]. On the
basis of this evidence, it can be assumed that the decreased synthesis of ACh in AD brains
may disrupt an important protective mechanism against inflammation, thus promoting a
severe cytokine storm in COVID-19-affected patients.

2.6. Oxidative Stress

Closely associated with the neuroinflammation, another critical factor involved in the
development and progression of AD is oxidative stress, resulting from an imbalance be-
tween the generation of reactive oxygen species (ROS) and antioxidant defense mechanisms,
leading to cell injury and neuronal death [94]. The combined effects of neuroinflammation
and excess ROS production promote the aberrant accumulation of Aβ, thus contributing to
AD [95]. Oxidative stress has a prominent role in innate immunity activity, and recent data
have also reported its involvement in the pathogenesis of COVID-19, by perpetuating the
cytokine storm cycle and exacerbating cell hypoxia [96,97]. After SARS-CoV-2 infection,
ROS are overproduced as initiators of the toxic innate immune response against viruses [88].
Moreover, oxidative stress seems to be an important factor in aggravating disease sever-
ity in some patients with COVID-19, mainly associated with cytokine storm, pulmonary
dysfunction, and viral sepsis caused by SARS-CoV-2 infection [98,99]. At the same time,
the majority of people affected by both AD and COVID-19 are elderly, so they are more
vulnerable to oxidative stress as it increases throughout the aging process. Given all these
considerations, it can be postulated that SARS-CoV-2 infection may induce ROS-mediated
oxidative modifications, perpetuating and amplifying oxidative stress in AD brains [88].

2.7. Mitochondrial Dysfunction

As reported above, ACE-2 is a key element for SARS-CoV-2 entry into the cell, and
it is known that this protein exerts influences on mitochondrial activity. In particular,
decreased ATP production, together with an abnormal activation of NADPH oxidase 4
in the mitochondria, are observed at low levels of ACE-2 [100]. NADPH oxidase 4 is
important for ROS production, hence infected cells could be more sensitive to pathogens
and more prone to go into apoptosis. An abnormal activity of mitochondria after the SARS-
CoV-2 infection was also reported to be linked with the transmembrane serine protease
2 (TMPRSS2) from the virus acting on the estrogen-related receptor alpha which is an
important mediator of mitochondrial biogenesis and function [100–102]. It was speculated
that TMPRSS2 could also be involved in the gender differences of COVID-19 severity due
to the fact that this protein can be induced by androgen but not estrogen, and resides on
the mitochondria.

During the immune response, ATP production is reduced in favor of ROS production
that, in turn, can damage the mitochondria in overwhelming amounts [103]. Once damaged,
mitochondria could even release their contents into the cytosol, stimulating the release
of IL-1β and IL-6 [103]. Increased levels of mitochondrial DNA (mtDNA) were normally
observed in the cytoplasm of elderly people [104], and due to its role in promoting innate
immunity and inflammation, this could contribute to the lethal outcomes seen in older
COVID-19 patients [100].

People with a severe outcome of COVID-19 show high levels of ferritin [105]. Ferritin
is produced as a storage molecule of iron when its intracellular concentration increases,
and this iron/ferritin overload could either reduce oxygen consumption by mitochondria
or disrupt glucose tolerance [106]. Interestingly, a cortical iron elevation is also observed as
a feature of AD, and may contribute to the oxidative damage observed in AD brains [107].

The observation that 5′ and 3′ untranslated regions on SARS-CoV-2 contain mitochon-
drial localization signals [108] introduced the theory that the virus uses double-membrane
vesicles budded by mitochondria to protect itself from ROS and host proteases [100].
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Considering altogether, the detrimental effects of SARS-CoV-2 on mitochondrial ac-
tivity, added to an already poorer baseline mitochondrial function in elderly individuals,
could explain the worse outcome of the infection in this population.

2.8. Gut Microbiota

A common factor observed in COVID-19 and neurodegeneration is an altered micro-
biota, known as dysbiosis. Several publications reported studies on both oral, fecal, and gut
microbiome in COVID-19 patients. Zuo et al. observed the proliferation of opportunistic
pathogens and a decrease of favorable commensal in the fecal microbiome of patients
compared to healthy people [109]. More recently, Wu and colleagues found a decreased
diversity in both the oral and gut microbiome of COVID-19 patients vs. healthy controls,
and highlighted a strong association between the microbiome complexity and the disease
severity [110]. In particular, they found elevated levels of Streptococcus, Rothia, and Actino-
myces in COVID-19 feces and a depletion of B. obeum, confirming data observed by previous
studies [109,111]. Moreover, they observed an enrichment in patients’ feces of Granulicatella
and R. mucilaginosa, which are normally detectable in the respiratory tract flora.

An association between gut microbiota composition, levels of inflammatory markers,
and cytokines was also confirmed recently by Yeoh at al. [112], who found an underrepresen-
tation of gut commensals with known immunomodulatory potential (e.g., Bifidobacterium,
Eubacterium rectale and Faecalibacterium prausnitzii) in COVID-19 patients. The authors
commenting on their results underlined that it is still unknown whether this altered com-
position, which appears to be associated with greater severity of the disease, is directly
involved in the disease or is related to clinical management of the patient (e.g., use of
antibiotics) or to the individual immune status. A gut barrier dysfunction in COVID-19
patients was also reported by studying plasma [113]. The authors observed higher levels of
gut permeability markers and the presence of microbes in the plasma of patients compared
to controls. It is well known that the translocation of fecal microbiota into systemic circula-
tion could be a key driver of immune response and inflammation [114–117], and thus may
contribute to worsening COVID-19 outcomes [118].

A similar association between microbiome alteration and different levels of inflamma-
tory proteins was previously reported for other diseases. For example, high relative levels
of E. rectale in the gut was reported to be linked to reduced inflammation in AD [119]. More-
over, microbes involved in gut inflammation, oxidative damage and mucin-degradation
are elevated in AD patients [120,121], and some bacterial species are able to directly par-
ticipant in amyloidosis [122]. Studies using the 5XFAD mouse model of Aβ deposition
expressing 5 familial AD mutations (FAD) suggested that depletion of gut bacteria results
in an increased microglial uptake of Aβ [123]. In a small-scale clinical trial, the use of a
mixture composed by Bifidobacterium, Lactobacillus, and Lactococcus lactis alleviated AD
symptoms through modifications of the tryptophane metabolic pathway [124]. However,
early probiotic treatments for AD led to contradictory results.

It was suggested that the diversity of gut microbiota could act as a common risk factor
for neurodegeneration and COVID-19 infection, and that patients healed from COVID-19
would have higher odds to develop neurodegeneration [125].

3. Conclusions and Future Directions

The ongoing COVID-19 outbreak in late 2019 has caused a global pandemic with
serious public health concerns. Apart from the well-known consequences to the respiratory
system, increasing evidence reports that SARS-CoV-2 can invade the CNS, leading to
severe neurological sequelae [126,127]. Once penetrated into the brain, the virus can cause
neurodegeneration, demyelination, and cellular senescence, thus accelerating brain aging
and potentially exacerbating the underlying neurodegenerative pathology [14].

Regarding AD, several mechanisms have been suggested to explain SARS-CoV-2-
mediated neurological damage (Table 1), though its effects at the molecular and mechanistic
levels remain only hypothetical or speculative, due to the absence of reliable post-mortem
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data on Aβ and NFTs in SARS-CoV-2-infected patients. AD and COVID-19 share many risk
factors and pathogenetic mechanisms that may also partially explain the high incidence and
mortality rate in people with AD. On the other hand, patients affected by AD could be more
susceptible to contracting COVID-19. Preventive strategies to contain the SARS-CoV-2
spread, such as isolation or quarantine, negatively affect AD patients, increasing the risk of
cognitive impairment due to a lack of social interaction [128]. Moreover, people living with
dementia may be not able to follow recommendations from government authorities, such
as sanitizing hands, covering the mouth and nose when coughing, and maintaining social
distancing, partially due to their general cognitive impairment and short-term memory
loss [129]. These patients are also more susceptible to circulating SARS-CoV-2, as they
are frequently exposed to the virus during hospital care or required institutionalization
and often suffer from pre-existing comorbidities, such as hypertension, diabetes mellitus
and cerebrovascular diseases [130]. In this regard, the majority of patients with COVID-19
display severe coagulopathies, such as thrombotic microangiopathy and disseminated
intravascular coagulation (DIC), probably due to hypoxic conditions or proinflammatory
cytokines produced by infected cells [131]. Therefore, it is possible that microembolic
events may contribute to cerebrovascular disease, which in turn can contribute to worsen
AD pathology. However, it remains to be determined whether SARS-CoV-2 infection
exacerbates cognitive decline in AD patients or triggers dementia in infected people, al-
though many elements described here support this hypothesis. Additionally, it should
be noted that some of pathogenetic mechanisms reported in this review are common to
other neurodegenerative disorders, such as Parkinson’s disease and amyotrophic lateral
sclerosis. In fact, novel research articles are continuing to report interesting results on other
aspects. Among them, an overlap has been found between genetic risk factors for AD and
severe COVID-19, such as single-nucleotide polymorphisms (SNPs) in oligoadenylate syn-
thetase 1 (OAS1) [132] and bridging integrator 1 (BIN1) genes [133]. Single cell sequencing
studies performed on brains of COVID-19 patients revealed that astrocyte and microglia
cells show some pathological features shared with those observed in neurodegenerative
disorders [134].

Although few studies addressing the relationship between COVID-19 and AD are
currently available given the recent onset of the pandemic, their numerous shared links
strengthen the necessity to assess neurological symptoms and implement preventive strate-
gies to mitigate the risk of developing AD in SARS-CoV-2-infected people. Longitudinal
follow-up studies of COVID-19 patients are needed to evaluate the long-term neurolog-
ical effects of SARS-CoV-2 infection. Furthermore, large-scale retrospective analysis, in
combination with preclinical studies, will be useful to fully understand the implications of
SARS-CoV-2 infection for the development and progression of AD. Finally, these studies
should be also implemented with cognitive impairment evaluation, blood and neuroimag-
ing biomarkers evaluating inflammation, oxidative damage, or metabolic alterations, in
order to assess the pathogenetic pathways shared by AD and COVID-19 that we reviewed.
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Table 1. Summary of shared biological links between AD and COVID-19.

Pathway Evidences for Mechanisms in AD Evidences for Mechanisms in COVID-19 References

Aging
- Primary risk factor for developing

AD
- Loss of BBB integrity facilitating

SARS-CoV-2 neuroinvasion [23–25,29]

Aβ deposition

- Key mediator of AD pathology and
one of the earliest brain AD-related
molecular changes

- Increased intracellular Ca2+

concentration through formation of
pores in cell membrane mediated by
the Aβ oligomers

- Accelerated Aβ accumulation in the
brain, as an antimicrobial peptide
activating the innate immune
response

- Promoting the aggregation of Aβ and
tau by the binding to SARS-CoV-2
spike S1 protein

- Disruption of Ca2+ pumps and
channels by SARS-CoV-2 infection

[32–35,37]

ACE axis
imbalance

- Reduced ACE2 activity and
Ang-(1–7) levels in post-mortem AD
brains inversely correlating with Aβ
and hyperphosphorylated tau levels

- Decreased plasma levels of Ang-(1–7)
in AD patients

- Ameliorated cognitive performance
by enhancing/overexpressing ACE2

- Protective role of
ACE2/Ang-(1–7)Mas axis against
neurodegeneration

- Mediating SARS-CoV-2 entry to cells
by ACE2 as receptor for spike protein,
resulting in enzyme depletion and
the consequent shift of the
equilibrium towards ACE1/AngI

[29,39,44–
46,48,49]

ApoE ε4

- Increased risk of developing AD by
enhancing Aβ deposition, promoting
neuroinflammation, as well as
disrupting synaptic plasticity and
dendritic spine formation

- Decreased BBB integrity by activating
MMP9 and inflammatory cascade

- Enhanced endocytic entry of
SARS-CoV-2 to cells via ACE-2
receptors through blood cholesterol
associated to ApoE receptor

- Increased risk of severe SARS-CoV-2
infection and mortality

[60,61,63,66]

Neuroinflammation
and microglia

activation

- Increased levels of IL-1β, IL-6 and
TNF-α in AD brains and blood

- Improved spatial memory and
cognitive performance by blocking
endogenous IL-1 or knocking-out IL-6

- Aggravating neurodegeneration by
microglial activation

- Impaired normal phagocytic capacity
of microglia by activated NLRP3
inflammasome, resulting in reduced
Aβ42 clearance in the brain

- Reduction ChAT activity in the
cerebral cortex related with disease
severity and resulting in presynaptic
cholinergic impairment

- Increased levels of IL-1, IL-6, IL-8,
IL-10, IP-10, and TNF-α in the CSF of
COVID-19 patients

- Increased levels of IL-1 and IL-6
correlating with worse prognosis

- Microglia activation in post-mortem
brains of severe COVID-19 cases

- Increased release of IL-1β, IL-6 and
TNF-α partly due to SARS-CoV-2
ORF3a protein-mediated activation of
NLRP3 inflammasome

- ACh involvement in
COVID-19-driven inflammatory
response

[69,70,74,75,77–
79,82–

84,86,90,93]

Oxidative stress
- Promoting the aberrant accumulation

of Aβ in response to excessive ROS
production

- Overproduction of ROS as initiators
of the toxic innate immune response
against SARS-CoV-2

- Aggravating disease severity if
associated with cytokine storm,
pulmonary dysfunction, and viral
sepsis caused by SARS-CoV-2
infection

[88,95,98,100]
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Table 1. Cont.

Pathway Evidences for Mechanisms in AD Evidences for Mechanisms in COVID-19 References

Mitochondrial
dysfunction

- Increased cytoplasmic mtDNA levels
promoting innate immunity and
inflammation

- Cortical iron elevation contributing to
the oxidative damage in AD brains

- Promoting abnormal mitochondrial
activity in the host cells mediated by
TMPRSS2

- SARS-CoV-2 protection against ROS
and host proteases mediated by
double-membrane budded by
mitochondria

[99–101,104,107]

Gut microbiota

- Altered gut microbiota composition
associated with inflammatory
markers

- Elevated levels of microbes involved
in gut inflammation, oxidative
damage, and mucin-degradation

- Involvement of some bacterial species
in amyloidosis

- Altered gut microbiota composition,
sometimes associated with
inflammatory markers

- Dysfunction in gut barrier related
with worsened outcomes

[109–113,119–
122]

ACE, angiotensin-converting enzyme; AD, Alzheimer’s disease; ApoE, apolipoprotein E; BBB, blood brain
barrier; ChAT, choline acetyltransferase; COVID-19, Coronavirus disease 2019; CNS, central nervous system; CSF,
cerebrospinal fluid; MMP9, matrix-metalloproteinase-9; mtDNA, mitochondrial DNA; NLRP3, NOD-like receptor
protein 3; ORF3a, open reading frame 3a; ROS, reactive oxygen species; SARS-CoV-2, severe acute respiratory
syndrome coronavirus-2; TMPRSS2, transmembrane serine protease 2.
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