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Abstract: Haemonchus contortus (Hc) is a parasite affecting small ruminants worldwide. Arthrobotrys
musiformis (Am) is a nematode-trapping fungi that captures, destroys and feeds on nematodes. This
study assessed the predatory activity (PA) and nematocidal activity (NA) of liquid culture filtrates
(LCF) of Am against Hc infective larvae (L3), and additionally, the mycochemical profile (MP) was
performed. Fungal identification was achieved by traditional and molecular procedures. The PA of
Am against HcL3 was performed in water agar plates. Means of non-predated larvae were recorded
and compared with a control group without fungi. LCF/HcL3 interaction was performed using
micro-tittering plates. Two media, Czapek–Dox broth (CDB) and sweet potato dextrose broth (SPDB)
and three concentrations, were assessed. Lectures were performed after 48 h interaction. The means of
alive and dead larvae were recorded and compared with proper negative controls. The PA assessment
revealed 71.54% larval reduction (p < 0.01). The highest NA of LCF was found in CDB: 93.42, 73.02
and 51.61%, at 100, 50 and 25 mg/mL, respectively (p < 0.05). Alkaloids and saponins were identified
in both media; meanwhile, coumarins were only identified in CDB. The NA was only found in CDB,
but not in SPDB. Coumarins could be responsible for the NA.

Keywords: nematophagous fungi; Arthrobotrys; nematodes predation; biocontrol; natural compounds

1. Introduction

Soil-born nematodes include a wide variety of parasites affecting nematodes of im-
portance in agriculture and the livestock industry [1–3]. Haemonchus contortus is one of the
most pathogenic parasites responsible for significant damage to the health and productive
potential of small ruminants [4,5]. This nematode is responsible for severe anaemia, hy-
poproteinaemia, oedema and diarrhoea, which can lead to death in young animals [6,7].
This and other genera/species of parasitic nematodes belonging to the group of gastroin-
testinal parasitic nematodes have an important economic impact in many countries. For
example, in Mexico, a study of the economic losses caused by gastrointestinal parasitic

Pathogens 2022, 11, 1068. https://doi.org/10.3390/pathogens11101068 https://www.mdpi.com/journal/pathogens

https://doi.org/10.3390/pathogens11101068
https://doi.org/10.3390/pathogens11101068
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0002-7096-0002
https://orcid.org/0000-0001-5499-7449
https://orcid.org/0000-0002-7620-7126
https://orcid.org/0000-0002-0208-3861
https://orcid.org/0000-0001-9595-3573
https://doi.org/10.3390/pathogens11101068
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens11101068?type=check_update&version=3


Pathogens 2022, 11, 1068 2 of 16

nematodes in cattle revealed an estimated loss of USD 445 million per year [8]. In India,
USD 103 million losses have been attributed to the pathogenic effect of H. contortus on
sheep and goats [9]. The most common way to control these parasites has been based on
the continuous use of chemical anthelmintic drugs synthesised in the laboratory. These
drugs help to reduce the parasitic burden on these animals in some way; however, there
are a number of disadvantages associated with their use, i.e., the presence of anthelmintic
resistance in the parasites [10,11], the potential contamination of meat or milk or derivates
for human consumption [12] and the contamination of soil and aquifers that can have
detrimental environmental effects [13]. Such negative findings have promoted a poor
reputation for their use. Nematophagous fungi (NF) are soil microorganisms living as
saprophytes, which possess a unique characteristic consisting of their ability to modify
their physiological and metabolic behaviour and the ability to transform their mycelia in
trapping devices that are particularly designed to capture and destroy nematodes, changing
from saprophytic organisms to predators or parasites of nematodes [14,15]. The predatory
activity of NF is complemented by the production of several enzymes and metabolites with
nematocidal activity [16]. Arthrobotrys musiformis is a NF species that has been evaluated in
a few studies, mainly focused on its predatory activity [17,18]. The process of degradation
of nematodes by A. musiformis has been attributed to a proteolytic enzyme mechanism [19].
Recent studies have reported that one strain isolated from Taiwan, A. musiformis, is able
to produce several small peptides with nematocidal activity that have been found in the
predatory stage of this species [20]. The production of bioactive compounds by NF could
be a promising source of potential biotechnological tools for the control of gastrointestinal
parasitic nematodes. The objectives of the present study were: (1) to assess the in vitro
predatory activity of A. musiformis against H. contortus infective larvae; (2) to assess the
nematocidal effect of fungal liquid culture filtrates (FCF) against same stage of the parasite,
and (3) to identify the mycochemical compound profile.

2. Results
2.1. Traditional Taxonomy by Morphological Identification

After 15 days of incubation, the microscopic observation of the water agar plate
surfaces sprinkled with soil samples revealed the presence of fungal aerial structures
consisting of the formation of tall and erect conidiophores with the presence of apical
conidia clusters. Conidia appeared elongate-obovoidal and slightly curved and separated
by a septum. Trapping devices consisted of a three-dimensional adhesive net. Sparse
chlamydospores were seen in old cultures (Figure 1).

The measurements of morphological structures of taxonomic importance, including
conidia length and width, conidiophore length, as well as the presence of chlamydospores
and type of trapping devices, are shown in Table 1.

The different morphological characteristics observed, as well as the measurements of
structures of taxonomic importance, suggested that the genus and species of NF isolated
corresponded to A. musiformis, according to the taxonomic keys mentioned in the Materials
and Method section.

2.2. Molecular Taxonomy

A comparison of the 18S region, internal transcript spacer 1, the 5.8S ribosomal region,
the internal transcript spacer 2 of the complete sequence, and a partial 28S ribosomal
sequence was performed by aligning the sequences on the Blast tool of NCBI, and revealed
99.83% similarity with A. musiformis (Table 2).
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Figure 1. Microphotographs showing the aspect of taxonomic characteristics (conidiophores and 
conidia), typical of the nematophagous fungus Arthrobotrys musiformis. (A) Erect conidiophore 
crowned with conidia clusters; (B) conidia present elongated–obovoidal shape and are slightly 
curved; (C) conidia are formed with two cells separated by a septum; (D) three dimensional adhe-
sive nets; (E) one developing chlamydospore. 
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Conidiophore length 240.8 166–407 
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Type of traps  Adhesive nets 
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Figure 1. Microphotographs showing the aspect of taxonomic characteristics (conidiophores and
conidia), typical of the nematophagous fungus Arthrobotrys musiformis. (A) Erect conidiophore
crowned with conidia clusters; (B) conidia present elongated–obovoidal shape and are slightly
curved; (C) conidia are formed with two cells separated by a septum; (D) three dimensional adhesive
nets; (E) one developing chlamydospore.

Table 1. Mean and range of 25 conidia and conidiophores measurements, and characteristics observed
under a light microscope.

Characteristic Mean (µm) Range (µm)

Conidia length 36.16 30.11–40.08
Conidia width 8.99 7.66–10.29

Conidiophore length 240.8 166–407
Chlamydospores Present

Type of traps Adhesive nets

Table 2. Similarity and coverage of the obtained sequence after comparison with reported sequences
by the GenBank–NCBI base, using the partial sequence ITS1, 5.8S and ITS2 regions.

Strain Query Cover % Similarity % Gen Bank Accession Number

Arthrobotrys sp. FZ-2020b 96 99.83 MT612105.1
A. musiformis CBS 110.37 96 99.83 MH855842.1
A. musiformis 3Y7A-1–1 96 99.83 OL454931.1

A. musiformis Am_11 96 99.66 MG515529.1
A. musiformis 96 99.66 KJ938572.1

The molecular analysis of fungal DNA sequences followed by aligning and the high
similarity with other isolates reported at the NCBI, led to the conclusion that our isolate
corresponded to the NF A. musiformis, confirming the results of the traditional morphologi-
cal analysis. The phenogram obtained by the UPGMA algorithm using the Jukes–Cantor
nucleotide distance measure and bootstrap analysis with 1000 replicates, is shown in
Figure 2.
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Figure 2. Phylogenetic tree of Arthrobotrys musiformis.

2.3. Predatory Activity

Photographic evidence of the predatory activity of A. musiformis against H. contortus
larvae is shown in Figure 3.

The results of the fungal predatory activity assay including the group with larvae
and the fungus (group 1), and the group with only larvae (group 2), as well as the means
of recovered H. contortus larvae after the fungus/nematode interaction and the larval
reduction percentage attributed to the predatory activity, are summarised in Table 3.

2.4. Nematocidal Activity of the Culture Filtrates from A. musiformis against H. contortus
Infective Larvae

The results of the FCF/larvae confrontation at three different concentrations including
the dead and total larvae recovered and the mortality percentages, are summarised in
Table 4.

2.5. Microscopical Findings

The main morphological changes identified in H. contortus infective larvae after ex-
posure to the fungal culture filtrate are shown in Figure 4. The major damages in larvae
after exposure to the FCF were seen in the anterior extreme of the larvae. Most larvae
appeared with a widening and malformations characterised by swelling and the rugosity
of a cuticular surface with the loss of internal organ cell architecture.

2.6. Mycochemical Group Identification Profile

The qualitative analysis of chemical myco-constituent groups in FCF, using the proper
chemical reagents, are summarised in Table 5. In Czapek–Dox broth medium (CDB), the
analysis revealed the presence of alkaloids, coumarins and saponins; meanwhile, in Sweet
Potato Dextrose Broth (SPDB), alkaloids and saponins were identified with a positive
reaction.
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Figure 3. Photograph showing a Haemonchus contortus infective larvae captured into a three-
dimensional adhesive net of Arthrobotrys musiformis after 7 days of interaction.

Table 3. Mean of Haemonchus contortus infective larvae recovered from Arthrobotrys musiformis water
agar plates after 7 days of confrontation. p < 0.01.

Group Mean of
Recovered Larvae ± SD Reduction Larvae %

Group 1 Larvae/Fungus Interaction 62 ± 41.67 71.54%
Group 2 Larvae (Control) 217 ± 28.05
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Table 4. Mean of dead and total Haemonchus contortus infective larvae recovered from the wells of
microtitre plates after 48-hour interaction with Arthrobotrys musiformis culture filtrates and mortality
percentages.

Group
100 mg/mL 50 mg/mL 25 mg/mL

Dead/Total Mortality % Dead/Total Mortality % Dead/Total Mortality %

CzDox-
A. musiformis 99/106 93.42 ± 10.49 a 75/103 73.02 ± 16.02 a 49/95 51.61 ± 19.41 a

SPDB-
A. musiformis 26/97 26.80 ± 2.76 b 18/97 18.42 ± 8.98 b 15/87 16.91 ± 2.37 b

CzDox-
No Fungus 4/98 4.45 ± 2.55 c 3/98 3.48 ± 2.88 b 5/74 6.76 ± 4.77 b

SPDB-
No Fungus 5/83 5.51 ± 3.97 c 8/96 8.77 ± 2.01 b 9/108 8.38 ± 1.07 b

PBS 6/98 6.00 ± 2.29 c 6/98 6.00 ± 2.29 b 6/98 6.00 ± 2.29 b
CzDox = Czapek–Dox broth; SPDB = sweet potato dextrose broth; PBS = phosphate buffer solution; means with
different letters show statistical significance; p < 0.05; n = 3.
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Figure 4. Comparative photographs showing: (A) an unsheathed Haemonchus contortus infective
larva from the control group; (B–D) dead unsheathed larvae after exposure to Arthrobotrys musiformis
liquid culture filtrate showing morphological malformations (marked with an arrow as a) mainly at
the anterior extreme.
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Table 5. Myco-constituent groups of A. musiformis culture filtrates.

Metabolite Group Assay Colourimetric Reaction Fungus in
Czapek–Dox Broth

Fungus in
Sweet Potato

Dextrose Broth

Alkaloids
Dragendorff Change of colour to brown + ++

Mayer Change of colour to yellow + ++
Wagner and formation of precipitate + ++

* Coumarins Bornträger Yellow fluorescence after 24 h
(see in U.V) + −

Flavonoids Mg2 + y HCL Red, orange and violet
colours − −

Tannins

Ferric chloride
Hydrolysable tannins (blue) − −
Condensed tannins (green) − −

Confirmation

White precipitate

− −
Solution of gelatin

Gelatin and saline solution
Saline solution

Triterpenes/Sterols
Reaction of Liebermann-

Buchard Blue or blue-green (sterols) − −

Reaction of Salkowski Red or purple (triterpenes) − −
Saponins Foam formation Persistent foam formation + ++

− absence; + presence; ++ positive reaction; * coumarins present only in CDB.

3. Discussion
3.1. Traditional Taxonomy

At first sight, the morphological details of the fungal taxonomical characteristics under
the microscope, i.e., the type, length and shape of conidiophores and conidia, suggested to
us the presence of A. musiformis or perhaps A. dactyloides; however, the presence of three-
dimensional adhesive nets produced by our isolate was an overwhelming feature of our
isolate that led us to discard the species A. dactyloides, which produces constricting rings [21].
After this finding, we immediately built up an idea about the genus/species of fungus we
were working with. The presence of a single, not branched, long and erect conidiophore,
bearing an apical conidia cluster arranged upwards, most of them with four to six conidia
per cluster and two-cell elongated–obovoidal conidia with the presence of a middle or
sub-middle septum, suggested that we had probably isolated an A. musiformis strain [22].
Nevertheless, it is important to remark that other genera/species of NF with similar
characteristics have recently been described. For example, Arthrobotrys eryuanensis has
similar conidia in terms of shape and size; in fact, both species share almost the same conidia
size: A. eryuanensis conidia measure from 18–44.5 × 5–11.5 µm; meanwhile the dimensions
of A. musiformis conidia range from 20–47.5 × 7–12.5 µm. Therefore, the measurements
between both species can overlap. On the other hand, with respect to conidiophores, A.
eryuanensis produces two types of conidia, macro- and microconidia, with the first having
one septum and are partly curved and partly symmetrical and also possess microconidia
that are aseptate and truncate at the base with papillate bulge. In contrast, A. musiformis
produces only one type of conidia (macroconidia). Similarly, A. eryuanensis produces
branched conidiophores, while A. musiformis produces only unbranched conidiophores, in
contrast [23].

3.2. Molecular Taxonomy

After aligning the obtained sequence of our isolate, a high similarity percentage was
found with other isolates reported at the NCBI, particularly with Arthrobotrys sp. FZ-2020b
strain ZB129 (GenBank code, MT612105.1) which has recently been reported as A. eryua-
nensis [23]. Such high similarity of A. eryuanensis with our isolate was determined after
considering some phenotypic features, mainly in the difference of unbranched conidio-
phores and the presence of only macroconidia in A. musiformis, which was in contrast to A.
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eryuanensis that produces branched conidiophores and macro- and microconidia. There
were other strains including the isolate code MH855842.1 and the isolate code KP859624.1
strain BCRC 32758, reported by Tzean et al. (2016) [24]. Both isolates were reported as A.
musiformis at GenBank. Other isolates recorded at GenBank with slightly lower similarities
were also found. However, a phylogenetic tree showed that our isolate was more closely
related to the A. musiformis isolate, reported by Liou and Shean (1997) [25], than with A.
eryuanensis (MT612105.1), which supported our findings in traditional taxonomy.

3.3. Predatory Activity

The in vitro predatory activity percentage obtained with our A. musiformis isolate
against H. contortus infective larvae was similar to other NF. In general, the predatory
activity of this kind of fungi ranges between 60 and 95%. Some results regarding the in vitro
predatory activity of A. musiformis against taxonomic different genera/species of nematodes
are summarised in Table 6. In this Table, we can observe A. musiformis has been assessed
against different kinds of nematodes, including nematodes of importance for agriculture
and the livestock industry, specifically against ruminant parasitic nematodes and against
predatory nematodes and free-living nematodes. A predatory activity higher than 70%
is a very good activity; if we consider that, using NF for the control of animal parasitic
nematodes should be considered only as a tool of control together with other control
measures, or even using a combined method with two or more fungal genera/species to
achieve a more effective control [26]. It is important to consider that the use of nematode
natural antagonists is only part of an integrated control system that can involve different
strategies of control [27]; for example, the use of a high protein and energy-based diet,
which promotes immune self-defence mechanisms [28,29], grazing management [30,31],
vaccines [32,33] and the use of plants/plant metabolites [34,35].

Table 6. Results about the in vitro predatory activity of Arthrobotrys musiformis isolates against
different blank nematodes.

Blank Nematode Host Predatory Activity % Authors

Scutellonema bradys Yam tubers 94.6% [36]
H. contortus Sheep 97% [37]
H. contortus Small ruminants 90.4% [38]

Trichostrongylidae Ruminants 60.72–99.95% [39]
Trichostrongylus colubriformis Ruminants 94.8% [17]

H. contortus Sheep 100% [40]
Panagrellus redivivus A non-parasitic free-living nematode 62.7–93.6% [41]

Meloidogyne hapla Tomatoes 97% [42]

3.4. Nematocidal Activity of Fungal Culture Filtrates

The fact that NF are able to develop trapping devices when nematodes are close
to them, has been well documented. This characteristic has been deeply studied, and
the reason why fungi are stimulated to modify their mycelia in specialised organs to
capture and destroy nematodes has been determined [17]. This change in physiology
and the nutritional behaviour of NF has been attributed to a cuticle peeling structure
of protein nature, called “nemin” [43]. Nematophagous fungi have developed a nemin-
recognising receptor system in their cellular surface; this system allows the nemin particles
to bind the fungal receptors and, as soon as this binding happens, fungus is stimulated
to initiate the morphogenesis process, which implies the transformation of mycelia in
traps [44,45]. However, this process is only one part of the mechanisms strategically
used by this group of fungi to eventually feed on prey nematodes. Other strategies
contribute to the process of attraction, adhesion and cuticular degradation, penetration,
and the invasion of nematode bodies, as well as eventually the fungal nutrition from the
nematode internal tissues [46]. These mechanisms are developed in a sequence of biological,
physiological and biochemical steps as follows: (a) production of attractants molecules
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that mimic sexual and food olfactory clues to lure nematodes [47]; (b) production of
adhesive extracellular polymers that attach to the nematode cuticular surface contributing
to the trapping process [48]; (c) nematode paralysing substances or nematotoxins [49];
(d) an enzymic system specially directed to degrade the nematode cuticle components
to traverse and penetrate the cuticular wall [50,51]; and (e) production of nematocidal
metabolites [16,52,53]. The results obtained in the present study showed differences in
the nematocidal activity of FCF of A. musiformis growing in different media. The highest
nematocidal activity of FCF was seen in the fungus growing in CDB at the three assessed
concentrations; meanwhile, FCF of A. musiformis growing in SPDB medium showed a
very low nematocidal activity at the three concentrations (16.91–26.80). A concentration-
dependent effect was observed, with the highest concentration (100 mg/mL) being the
one that produced the highest larval mortality (>93%). Nevertheless, the 50 mg/mL
concentration resulted in an important mortality (>70%) that is still a very good efficacy,
mainly if we consider that we only assessed a simple FCF. It is important to consider
that a FCF is only a crude extract and possesses a large number of myco-compounds. At
this point, we do not know which compound or compounds were responsible for such
activity. It is important to remark that the present study was part of a wider project
focused on obtaining nematocidal bio-compounds from NF with potential use against GIN
in ruminants. The authors of the present study will continue with the chromatographic
process of these filtrates through a bio-guided study to identify the molecules responsible
for the nematocidal activity.

3.5. Photographic Analysis

The analysis of changes evidenced by microscopy showed important damage caused
by FCF of A. musiformis against H. contortus infective larvae; not only at the cuticle level, but
also to cells of the internal organs. These changes were specifically severe at the anterior end
of the larvae. In a wide search of the literature, the authors of the present study only found
little information about changes observed in H. contortus infective larvae exposed to FCF of
NF. In another study, an A. musiformis strain was cultured in a modified CDB for 14 days at
room temperature; the FCF was obtained to assess its in vitro nematocidal activity against
H. contortus infective larvae. Interesting changes were recorded at the anterior end and
also at the posterior end of larvae exposed to this FCF. A photographic analysis of H.
contortus infective larvae exposed species to the FCF. This study showed a widening of
larvae at the anterior end with the rupture of the cuticle. These findings were supported
by an enzyme assay, where fungal protein was purified in a 9% polyacrylamide gel, co-
polymerised with 1% gelatine (GS-PAGE), and finally, protease activity was identified [19].
The morphological changes observed in H. contortus infective larvae in our study could be
attributed to a degrading process of cuticular tissues of perhaps to bioactive compounds,
i.e., secondary metabolites with nematocidal activity produced by A. musiformis; however,
this hypothesis should be proven through chromatographic techniques and perhaps by
nuclear magnetic resonance imaging to determine the metabolite or metabolites responsible
for the nematocidal activity.

3.6. Mycochemical Compound Group Identification

The analysis of the mycochemical profile of A. musiformis growth in two different
liquid media showed interesting results; for example, although both FCF showed the
presence of alkaloids and saponins, a positive reaction (++) was only observed in sweet
potato dextrose broth, while only the presence (+) of these compounds was observed in
CDB. These results suggest that nutritional components in the culture medium influence the
fungal production of extracellular secondary metabolites with an important nematocidal
activity [54]. Sweet potato dextrose broth is an important source of sugars, fibre, lipids,
vitamins, minerals and amino acids [55], while CDB provides only sugars and minerals
(Sigma-Aldrich, Darmstadt, Germany). In this context, the more complete nutritive diet
supplied by SPDB could influence a higher production of alkaloids and saponins than CDB.
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On the other hand, the mycochemical compound group analysis revealed the presence
of coumarins only in liquid culture filtrates of A. musiformis cultured in CDB, and not
in SPDB. Coumarins are phenolic compounds that are commonly found in some groups
of plants and have been found to have important medicinal properties, including anti-
fungal [56], antibacterial [57], and anti-tumour activities [58]. In a recent publication,
two natural products identified as coumarin derivatives obtained from the plant Ruta
chalepensis have been described for their anticancer, antidiabetic, antifertility, antimicrobial,
antiplatelet aggregation, antiprotozoal, antiviral, and calcium antagonistic properties [59].
Similarly, coumarins from plants such as Gliricidia sepium (Fabaceae) and Ruta chalepensis
(Rutaceae) have also been found to show nematocidal activity against gastrointestinal
parasitic nematodes, i.e., Cooperia punctata and H. contortus affecting ruminants [60,61]. The
phyto-chemical profile obtained in the present study suggests that coumarins produced
in CDB and not in SPDB could be responsible for the nematocidal activity of the FCF
of A. musiformis, since FCF obtained from A. musiformis growing in SPDB did not show
important nematocidal activity; in contrast, FCF of A. musiformis growth in CDB resulted
in the highest nematocidal activity of >93%. This hypothesis should be proven through
the separation of compounds by chromatographic techniques to determine the compound
responsible for this activity.

4. Materials and Methods
4.1. Allocation

This study was performed at the Laboratory of Helminthology, National Centre for
Disciplinary Research in Animal Health and Innocuity from the National Institute of
Research in Forestry, Agriculture and Livestock (INIFAP, SAGAR), at Jiutepec, Morelos
State, Mexico.

4.2. Fungal Isolation

Soil samples were collected from a home garden in the Cuautla Municipality in the
State of Morelos, Mexico. A small amount of soil (0.5 g) was sprinkled on water agar
plates and some drops of a non-quantified amount of the free-living nematodes Panagrellus
redivivus were added to the plate surface to act as “bites” to stimulate the predatory fungal
structures of capture. Following a two-week incubation at room temperature (25–28 ◦C), the
surfaces of the plates were reviewed under a light microscope, searching for the presence
of conidiophore and conidia, the formation of trapping devices and trapped nematodes,
among other characteristics. Once unique apical conidia conidiophores, similar to A.
musiformis, were identified, the monoconidial transfer to sterile water agar plates was
carried out [62]. This process was repeated several times until the fungal isolates were
contamination-free [41].

4.3. Traditional Morphological Taxonomy of Fungi

Traditional identification was carried out by observation and measurement of the
most important taxonomic fungal structures such as conidia, conidiophores, septum and
candelabrum, the presence of chlamydospores and the type of traps. For this aim, a
total of 25 conidia and conidiophores were measured using a light microscope (20× and
40× objective lenses). Specialised taxonomic keys were used to determine the genera and
species of the fungus [21,63].

4.4. Molecular Taxonomy of Fungi

DNA extraction from A. musiformis was performed using the Wizard® Genomic DNA
Purification Kit (Promega, Madison, WI, USA). The quantification was carried out us-
ing a IMPLEN spectrophotometer (NanoPhotometer NP80). Then, the DNA was am-
plified by PCR using the ITS4 (5′-GGAAGTAAAAGTCGTAACAAGG-3′) and ITS5 (5′-
TCCTCCGCTTATTGATATGC-3′) primers [64], with a C1000 Touch® Thermal Cycler (Bio-
Rad, Hercules, CA, USA). PCR conditions were as follows: initial denaturation at 94 ◦C
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for 3 min; 35 cycles of denaturation at 94 ◦C for 1 min, annealing at 42 ◦C for 90 s and
extension at 72 ◦C for 90 s; followed by a final extension stage at 72 ◦C for 5 min. Agarose
gel electrophoresis with a 1.5% gel was used to confirm the size of amplicons, with products
purified using the QIAquick gel extraction kit (QIAGEN) according to the manufacturer’s
instructions. The samples were sequenced in the Institute of Biotechnology of the National
Autonomous University of Mexico (IBT-UNAM) using an applied biosystem sequencer. The
obtained sequences were aligned in NCBI-Blast www.ncbi.nlm.nih.gov/blast/’s accessed
on 23 May 2022 (Basic Alignment Search Tool).

4.5. Nematodes
4.5.1. Panagrellus Redivivus

A strain of the free-living nematode Panagrellus redivivus was cultivated in crystal
containers (10 cm width× 20 cm height) using oat grains and water following the procedure
described by de Lara et al. (2007) [65]. Nematodes were recovered from cultures using
the Baermann funnel technique and passed through 74 µm sieves to separate oat residues;
finally, nematodes were rinsed in distilled water.

4.5.2. Haemonchus contortus Infective Larvae

A population of H. contortus infective larvae was obtained from the faeces of an egg-
donor lamb artificially infected with the parasite and maintained under confinement in
pens in the flock experimental area of INIFAP. Faeces containing eggs of the parasite were
directly collected from the rectum of the animal. Faecal material was used to elaborate
coprocultures [66] and incubated for 7 days until the third larval stage was obtained. Larvae
were recovered using a Baermann funnel system. The recovered larvae were washed by
differential centrifugation using 40% sucrose for 3–5 min. Larvae were rinsed with tap
water several times to eliminate the sucrose residues. Then, larvae were unsheathed with
0.187% sodium hypochlorite solution, where larvae remained within the range of 3–5 min
and washed again to discard sheaths [67]. Clean larvae were resuspended in sterile distilled
water and immediately used to perform the in vitro larval mortality assay.

4.6. Predatory Activity Assessment

One water agar cylinder (0.5 cm diameter × 0.3 cm height) from 15-day-old A. musi-
formis culture was transferred to 35 mm diameter water agar plates (n = 10) and incubated
at room temperature (25–28 ◦C) for 7 days. Another set of 10 plates with only water agar
medium was also included in the experiment to act as a control group. A hundred mi-
croliters of an aqueous suspension containing approximately two hundred H. contortus
infective larvae were deposited on the surface of each plate. The whole plates were incu-
bated at the same temperature for 7 days. After incubation, the agar from each plate was
recovered and put on a Baermann funnel system in order to recover the whole non-trapped
larvae [37]. The same procedure was used for the control agar plates. After 24 h on the
funnel, larvae sedimented on the base of the assay tubes were quantified according to
Olmedo-Juárez et al. (2022) [68]. The principle of larvae population reduction attributed to
the fungal predatory activity was based on the mean of recovered larvae from the control
group as 100% larvae without the fungal effect. Then, a comparison between both groups
using the Abbott formula was used to estimate the larval reduction percentage as follows:

Abbot’s formula

PA % =
RLc − RLt

RLc
∗ 100

where PA% denotes the predatory activity (percentage), RLc indicates the mean of recovered
larvae in plates with no fungi, and RLt shows the mean of recovered larvae in plates with
fungi.

www.ncbi.nlm.nih.gov/blast/
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4.7. Nematocidal Activity of A. musiformis Liquid Culture Filtrates

The A. musiformis strain was cultured on potato dextrose agar (PDA) plates at room
temperature (25–28 ◦C) for two weeks. After incubation, three agar cylinders (0.5 cm
height × 1 cm width) were taken from the FCF in PDA plates and were put into 250 mL
Erlenmeyer flasks with 100 mL of CDB or SPDB-Am (n = 3). Controls without fungi con-
taining only CDB-without fungus (WF) or SPDB-WF were included to discard any possible
contamination. After incubation, the FCF with the growing fungus was filtered using
4 different filters as follows: (1) coffee filter paper; (2) Whatman paper no. 4; (3) syringe
micro-filter 1.1µm; and (4) syringe micro-filter 0.22 µm. This procedure allows a sterile FCF
to be achieved [69]. The resulting material was concentrated using a rotatory evaporator
(45–50 ◦C, Büchi R-300, Flawil, Switzerland) and was totally dried using the lyophilisation
process (Labconco, Kansas, MO, USA). The dried FCF was finally re-constituted by adding
PBS (pH 7.2) according to the required concentration. The FCF/nematode confrontation
was carried out using 96-well microtitre plates. Fifty microlitres of FCF was placed in
each well (n = 3) and 50 µL of an aqueous suspension containing 100 H. contortus infective
larvae was also placed in each well. The negative controls (n = 3) were: (1) PBS 7.2 pH;
(2) CDB (dried) medium, re-constituted in PBS pH 7.2; and (3) SPDB dried medium, re-
constituted in PBS pH 7.2. The following three FCF concentrations were assessed: 100, 50
and 25 mg/mL (Table 7). Readings were taken at 48 h post-treatment. Motionless larvae
and larvae in movement were observed and quantified under the microscope at 5× and
10× magnification. Criterion to decide if motionless larvae were dead was achieved by
touching their cuticle with a metallic needle to see if they responded with movements
or remained motionless; larvae remaining motionless after this physical stimulus were
considered as dead larvae. The means of motionless larvae and larvae in movement were
recorded and compared between the experimental groups. The FCF that resulted in the
highest lethal activity was analysed to identify the chemical groups of myco-constituents
by myco-qualitative reagent analysis.

Table 7. Experimental design.

Group Medium Fungus

Group 1 Czapek–Dox broth A. musiformis
Group 2 Sweet potato dextrose broth A. musiformis
Group 3 Czapek–Dox broth No fungus *
Group 4 Sweet potato dextrose broth No fungus *
Group 5 PBS control No fungus *

n = 3 wells/plate; Readings: 48 h post-treatment; * = negative controls; three assessed concentrations: 25, 50 and
100 mg/mL.

4.8. Statistical Analyses
4.8.1. Predation Assay

The predatory activity was statistically analysed using the Student t-test comparing
the means of recovered larvae from the larvae/fungi confrontation plates in treated and
control plates.

4.8.2. Fungal Culture Filtrate Assay

The results of the larval mortality attributed to the FCF effect were analysed using an
ANOVA analysis, where the mean of dead and alive larvae were the response variables.
The Tukey complementary test was used to identify at least one different mean with respect
to the others.

4.9. Microscopic Analysis

A set of photographs illustrating the major taxonomic structures of the NF isolated,
as well as H. contortus infective larvae captured by A. musiformis and dead larvae after
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exposure to FCF, were taken using a Leica DM6 B compound microscope in order to have
documented proof of the fungal activity.

4.10. Myco-Qualitative Reagent Analysis

The chemical profile was carried out using standard phytochemical test procedures
with proper reagents and methods. Alkaloids were determined using the Dragendorff,
Mayer and Wagner’s reagents. The presence of coumarins was determined by the Born-
träger test, while the Mg2+ and HCl tests were used for flavonoids. The ferric chloride,
gelatine and saline solution tests were used for tannins. Triterpenes were determined using
the Lieberman–Burchard and Salkowski tests [68].

5. Conclusions

The results of the present study led us to conclude that the NF A. musiformis cultured
in Czapek–Dox broth medium produces mycochemical constituents that are verted into
medium, and its FCF exert an important in vitro nematocidal activity against H. contor-
tus infective larvae. Similarly, coumarins were the mycochemical group of compounds
identified in FCF obtained from A. musiformis growth in CDB that exhibited an important
nematocidal activity; meanwhile, this compound was not identified in the non-active FCF
obtained from A. musiformis growth in sweet potato dextrose broth medium. Liquid culture
filtrates of A. musiformis growth in CDB should be explored through chromatographic and
nuclear magnetic resonance procedures to determine the compound responsible for the
nematocidal activity.
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