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Abstract: In this paper, we study the concomitants of dual generalized order statistics (and conse-
quently generalized order statistics) when the parameters γ1, . . . , γn are assumed to be pairwise
different from Huang–Kotz Farlie–Gumble–Morgenstern bivariate distribution. Some useful re-
currence relations between single and product moments of concomitants are obtained. Moreover,
Shannon’s entropy and the Fisher information number measures are derived. Finally, these measures
are extensively studied for some well-known distributions such as exponential, Pareto and power
distributions. The main motivation of the study of the concomitants of generalized order statistics
(as an important practical kind to order the bivariate data) under this general framework is to enable
researchers in different fields of statistics to use some of the important models contained in these
generalized order statistics only under this general framework. These extended models are frequently
used in the reliability theory, such as the progressive type-II censored order statistics.

Keywords: concomitants; dual generalized order statistics; Huang–Kotz FGM family; Shannon’s
entropy; Fisher information number

1. Introduction

In testing the strength of materials, reliability analysis, lifetime studies, etc. the real-
izations of experiments arise in nondecreasing order and, therefore, we need to consider
several models of ascendingly ordered random variables (RVs). Theoretically, many of such
models, such as ordinary order statistics, order statistics with non-integral sample size,
sequential order statistics, record values, Pfeifer’s record model and progressive type-II
censored order statistics (POSs), are contained in what is known as the generalized order
statistics (GOSs). The concept of the GOSs was introduced by [1] as a unified approach to
these aforesaid models. The concept of GOSs enables a common approach to structural
similarities and analogies between several models of ascendingly ordered RVs. Well-known
results can be subsumed, generalized, and integrated within a general framework. There-
fore, the concept of GOSs provides a large class of models with many interesting, important
and useful properties for both the description and the analysis of practical problems.

The dual GOSs (DGOSs) was introduced by [2] as a parallel concept of GOSs to
enable a common approach to descendingly ordered RVs. The DGOSs contain many
important models of ordered RVs such as reversed order statistics, lower k-records and
lower Pfeifer’s records. Burkschat et al. [2] has shown that (cf. Theorem 3.3) there is a
direct link between DGOSs and GOSs. Therefore, for any result in the model of DGOSs,
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there exists a corresponding one in the GOSs model. Consequently, all the results of this
paper can be easily transformed into the GOSs model. Let F(.) be an arbitrary continuous
distribution function (DF) with probability density function (PDF) f (.). Then, the RVs
Xd(1, n, m̃, k) ≥ Xd(2, n, m̃, k) ≥ ... ≥ Xd(n, n, m̃, k) are said to be DGOSs if their joint
probability density function (JPDF) is given by (cf. [2])

f d(m̃,k)
1,...,n:n(x1, ..., xn) =

(
n

∏
j=1

γj

)(
n−1

∏
j=1

Fγj−γj+1−1(xj) f (xj)

)
Fk−1(xn) f (xn),

where F−1(1) ≥ x1 ≥ ... ≥ xn ≥ F−1(0). The parameters γ1, ..., γn are defined by γn = k >
0, γr = k + n− r + ∑n−1

j=r mj, r = 1, . . . , n− 1, and m̃ = (m1, m2, . . . , mn−1) ∈ R.
In this paper, we assume that the parameters γ1, . . . , γn are pairwise different, i.e.,

γi 6= γj, i 6= j, i, j = 1, 2, . . . , n− 1. With this assumption, we get a very wide subclass of
DGOSs, which contains the reversed m-DGOSs (m-DGOSs model is an important subclass
of DGOSs, for which m1 = m2 = . . . mn−1 = m), the reversed order statistics and the lower
Pfeifer’s records. For this general subclass of DGOSs, the PDF of rth DGOS, 1 ≤ r ≤ n, and
the JPDF of rth and sth DGOSs, 1 ≤ r < s ≤ n, respectively, are given by

f Xd(r,n,m̃,k)(x) = Cr−1

r

∑
i=1

ai(r)Fγi−1(x) f (x), x ∈ R, (1)

and

f Xd(r,n,m̃,k),Xd(s,n,m̃,k)(x, y) = Cs−1

[
∑s

i=r+1 a(r)i (s)
(

F(y)
F(x)

)γi
][

∑r
i=1 ai(r)Fγi (x)

] f (x)
F(x)

f (y)
F(y) , x > y, (2)

where Cr−1 =
r

∏
i=1

γi, ai(r) =
r

∏
j=1
j 6=i

1
γj−γi

, 1 ≤ i ≤ r ≤ n, and a(r)i (s) =
s

∏
j=r+1

j 6=i

1
γj−γi

, r + 1 ≤ i ≤

s ≤ n (cf. [2,3]), respectively. For more detail about this general subclass, see [4–6].
Morgenstern [7] introduced Farlie–Gumble–Morgenstern (FGM) bivariate distribution

for the Cauchy marginals. Later, [8] studied FGM for exponential distribution. Farlie [9]
considered this family in the general form FX,Y(x, y) = FX(x)FY(y)(1 + α(1− FX(x))(1−
FY(y))), −1 ≤ α ≤ +1, where FX(x) = P(X ≤ x) and FY(y) = P(Y ≤ y) are its arbi-
trary marginal DFs. The FGM family with general marginal DFs is a flexible family of
bivariate DFs and valuable in many applications that are connected to data that exhibits
low correlation.

In the last two decades, many authors have dealt with modifications of the FGM
family allowing high correlation between its components. For example, see [10–25]. One of
the most important and flexible generalizations of the classical FGM family was introduced
by [26] by adding an additional shape parameter. The DF and PDF of the Huang and
Kotz’s generalization (denoted by HK–FGM) are given by

FX,Y(x, y) = FX(x)FY(y)
[
1 + α(1− Fp

X(x))(1− Fp
Y(y))

]
, p > 0, (3)

and

fX,Y(x, y) = fX(x) fY(y)
[
1 + α(1− (1 + p)Fp

X(x))(1− (1 + p)Fp
Y(y))

]
, p > 0,

where fX(x) and fY(y) are the PDFs of the RVs X and Y, respectively. The HK–FGM
family (3) allows correlation higher than the FGM family (i.e., for p = 1). The admissible
range of values for the association parameter α in the family (3) is −p−2 ≤ α ≤ p−1 and
the range between the maximal and minimal values of the correlation coefficient ρ is given
by −(p + 2)−2 min(1, p2) ≤ ρ ≤ 3p(p + 2)−2.

The concept of concomitants, which are also called the induced order statistics, arises
when one sorts the members of a random sample according to corresponding values
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of another random sample. The general theory of concomitants of order statistics was
originally studied by [27]. For a comprehensive review of some applications of the concept
of concomitants of order statistics, see [28]. Let (Xi, Yi), i = 1, 2, . . . , n, be a random
sample from a bivariate DF FX,Y(x, y). If Xd(r, n, m̃, k) be the rth DGOS, then the Y value
associated with Xd(r, n, m̃, k) is called the concomitant of the rth DGOS and denoted by
Y[r,n,m̃,k], r = 1, 2, . . . , n. The PDF of the concomitants of rth DGOS is given by (cf. [29,30])

f[r,n,m̃,k:p](y) =
∫ ∞

−∞
fY|X(y|x) f Xd(r,n,m̃,k)(x)dx, (4)

where f Xd(r,n,m̃,k)(x) is the PDF of Xd(r, n, m̃, k) (defined by (1)) and fY|X(y|x) is the condi-
tional PDF of Y given X. More generally, for 1 ≤ r < s ≤ n, the JPDF of the concomitants
of rth and sth DGOSs is given by

f[r,s,n,m̃,k:p](y1, y2) =
∫ ∞

−∞

∫ x1

−∞
fY|X(y1|x1) fY|X(y2|x2) f Xd(r,n,m̃,k),Xd(s,n,m̃,k)(x1, x2)dx2dx1, (5)

where f Xd(r,n,m̃,k),Xd(s,n,m̃,k)(x1, x2) is the JPDF of Xd(r, n, m̃, k) and Xd(s, n, m̃, k) (defined
by (2)).

Shannon [31] proposed a measure of uncertainty or variability associated with a
given RV, as a generalization of Boltzman–Gibbs entropy of classical statistical mechanics.
Later, this measure was popularized in the name Shannon entropy. The Shannon entropy
measures the quantity of knowledge gained, or removed uncertainty, by disclosing the
value of a RV. In the literature, many studies about this measure can be found, e.g., [32–34].

The Fisher information (FI) number is the second moment of the “score function”,
and it is an FI for a location parameter (cf. [35]). In recent years, the FI number has been
frequently used in different aspects of science. For example, the FI number has been
used to develop a unifying theory physical law called the principle of “extreme physical
information”(cf. [36]).

In the literature, there are many authors that investigate the concomitants of GOSs
whilst considering some information measures. Tahmasebi and Jafari [37] studied the FI
number for concomitants of m-GOSs in the FGM family. Mohie El-Din et al. [30] studied
the concomitants of GOSs from the FGM family, when γi 6= γj, i 6= j, i, j = 1, 2, . . . , n− 1.
Moreover, Mohie El-Din et al. [38] studied the Shannon entropy and the FI number
for the concomitants of m-GOSs from FGM family for some special known marginals.
Recently, Abd Elgawad et al. [10] studied the FI number for concomitants of m-DGOSs in
the HK–FGM family. As a natural extension of the results obtained by [30,38], we study
the concomitants of DGOSs (in the case when γi 6= γj, i 6= j, i, j = 1, 2, . . . , n− 1) from
the HK–FGM model. Furthermore, the Shannon entropy and FI number of DGOSs from
the HK–FGM model are investigated for some marginals, such as exponential, Pareto and
power function distributions.

The distributional properties and some important information measures such as FI
number and Shannon’s entropy of the concomitants of GOSs and DGOSs from some
important extensions of the FGM model, such as the HK–FGM model, were recently
studied in [10–15]. All of these studies were carried out for the submodels m-GOSs and
m-DGOSs, which include many interesting models such as ordinary order statistics and
sequential order statistics. However, a lot of practical important models contained in the
families of GOSs and DGOSs are excluded from these submodels, e.g., the POSs. The POS
model is an important method for obtaining data in lifetime tests, where live units removed
early on can be readily used in other tests, thereby saving cost to the experimenter, and a
comprise can be achieved between time consumption and observation of some extreme
values. In this paper, we study the concomitants of GOSs and DGOSs from the HK–FGM
model under a general set up including general important censoring models such as POSs.

The remainder of this paper is organized as follows. In Section 2, we study some
important distributional characteristics, such as the marginal DF and some useful recur-
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rence relations between moments for the single and product of the concomitants of the rth
DGOS for HK–FGM model for any arbitrary marginal. Moreover, the concomitants of the
POSs are studied for this model. Section 3 is devoted to studying the Shannon entropy for
concomitants of DGOSs from the HK–FGM family. This measure is evaluated and studied
for some well-known distributions such as the exponential, Pareto and power distributions.
The study of the FI number is tackled in Section 4, where it is computed and studied for
the exponential, Pareto and power distributions.

2. Concomitants of DGOs Based on HK–FGM

In this section, the marginal DF, moment generating function (MGF), moments and
some recurrence relations between MGF and moments for single and product of concomi-
tants of DGOSs for the HK–FGM model are obtained for any arbitrary marginals. Moreover,
the concomitants of POSs are studied for the HK–FGM model.

2.1. Marginal Distribution of Concomitants

Let X ∼ FX and Y ∼ FY. Then, the PDF given in (4) can be written in the form

f[r,n,m̃,k:p](y) =
∫ ∞

−∞
fY|X(y|x) f Xd(r,n,m̃,k)(x)dx

=
∫ ∞

−∞
fY(y)

[
1+α(1− (1 + p)Fp

X(x))(1− (1 + p)Fp
Y(y))

][
Cr−1

r

∑
i=1

ai(r)Fγi−1
X (x) fX(x)

]
dx

= fY(y)
{

1 + (1− (1 + p)Fp
Y(y))Ωr,n,m̃,k:p

}
= fY(y) + Ωr,n,m̃,k:p[ fY(y)− fV(y)]

= (1 + Ωr,n,m̃,k:p) fY(y)−Ωr,n,m̃,k:p fV(y),

(6)

where fV(y) is the PDF of the RV V ∼ Fp+1
Y and Ωr,n,m̃,k:p = α

[
1− (1 + p)Cr−1

r
∑

i=1

ai(r)
γi+p

]
.

Remark 1. By considering the well-known relation between the DGOSs and GOSs (cf. Theorem 3.3
in [2]) and by putting p = 1 in (6), the marginal PDF of concomitants of GOS for FGM can be
easily deduced, which was obtained by [30].

By using (6), the MGF of Y[r,n,m̃,k] is given by

M[r,n,m̃,k:p](t) = E[exp(tY[r,n,m̃,k])] = (1 + Ωr,n,m̃,k:p) MY(t)−Ωr,n,m̃,k:p MV(t), (7)

where MY(t) and MV(t) are the MGFs of RVs Y and V, respectively. Thus, by using (6) (or
by using (7)), the `th moment of Y[r,n,m̃,k] is given by

µ
(`)
[r,n,m̃,k:p] = E[Y`

[r,n,m̃,k]] = (1 + Ωr,n,m̃,k:p) µ
(`)
Y −Ωr,n,m̃,k:p µ

(`)
V , (8)

where µ
(`)
Y = E[Y`] and µ

(`)
V = E[V`]. In general, if h(y) is a measurable function of y, then

E[h(Y[r,n,m̃,k])] = (1 + Ωr,n,m̃,k:p) E[h(Y)]−Ωr,n,m̃,k:p E[h(V)],

provided the expectations exist. The following theorem gives a useful general recurrence
relation for E[h(Y[r,n,m̃,k])].

Theorem 1. For any 2 ≤ r ≤ n, we get

E[h(Y[r,n,m̃,k])]− E[h(Y[r−1,n,m̃,k])] = αp(1 + p)Cr−2

r

∑
i=1

ai(r)
γi + p

(E[h(Y)]− E[h(V)]).
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Proof. By using the easy-to-prove relations ai(r− 1) = (γr − γi)ai(r), Cr−2 = Cr−1
γr

and
r
∑

i=1
ai(r) = 0, we can write

E[h(Y[r,n,m̃,k])] − E[h(Y[r−1,n,m̃,k])] =
(

Ωr,n,m̃,k:p −Ωr−1,n,m̃,k:p

)
(E[h(Y)]− E[h(V)])

= α(1 + p)

(
Cr−2

r−1

∑
i=1

ai(r− 1)
γi + p

− Cr−1

r

∑
i=1

ai(r)
γi + p

)
(E[h(Y)]− E[h(V)])

= −α(1 + p)Cr−2

r

∑
i=1

ai(r)γi
γi + p

(E[h(Y)]− E[h(V)])

= αp(1 + p)Cr−2

r

∑
i=1

ai(r)
γi + p

(E[h(Y)]− E[h(V)]).

Example 1. Usually, in lifetime experiments, due to the restrictions of limited time and cost,
accurate product lifetime data cannot be observed so we have censored data. One of most important
censoring schemes is progressive type-II censoring. In this example, we consider the POSs with
general censoring scheme (R1, ..., Rn). Let FX,Y be a continuous bivariate DF. Furthermore, let
XR̃

1:n, XR̃
2:n, ..., XR̃

n:n be POSs with general scheme R̃ = (R1, ..., Rn), where N = n + ∑n
i=1 Ri

identical units are placed on a lifetime test. Bairamov and Eryilmaz [39] derived the PDF of the
concomitant YR̃

[r:n] of the POS XR̃
r:n by

fYR̃
[r:n]

(y) = Cr−1

r

∑
i=1

ai(r)
γi

fY[1:γi ]
(y),

where Cr−1 =
r

∏
j=1

γj, ai(r) =
r

∏
j=1
j 6=i

1
γj−γi

, 1 ≤ i ≤ r ≤ n, the empty product ∏φ is defined

to be 1, γj = N − ∑
j−1
i=1 Ri − j + 1, 1 < j ≤ n, γ1 = N, f1:γi (x) = γi(1 − F(x))γi−1 f (x)

and fY[1:γi ]
(y) =

∫ ∞
−∞ fY|X(y|x) f1:γi (x)dx is the PDF of the concomitant of the minimum order

statistics from a sample of size γi. Now, let FX,Y be HK–FGM with uniform marginals. Then,
FX,Y(x, y) = xy[1 + α(1− xp)(1− yp)], 0 ≤ x, y ≤ 1, and fX,Y(x, y) = 1 + α(1− (1 + p)xp)
(1− (1 + p)yp). Thus,

fY[1:γi ]
(y) = 1 + α(1− (1 + p)yp)− γiα(1 + p)(1− (1 + p)yp)β(γi, p + 1).

Therefore, the PDF of YR̃
[r:n] is given by

fYR̃
[r:n]

(y) = Cr−1

r

∑
i=1

ai(r)
γi
{1 + α(1− (1 + p)yp)− γiα(1 + p)(1− (1 + p)yp)β(γi, p + 1)}.

2.2. Joint Distribution of Concomitants of DGOSs in HK–FGM Model

The following theorem gives the JPDF f[r,s,n,m̃,k:p](y1, y2) (defined by (5)) of the con-
comitants Y[r,n,m̃,k] and Y[s,n,m̃,k], r < s, in the HK–FGM model for arbitrary marginals.

Theorem 2. For any 1 ≤ r < s ≤ n, we have

f[r,s,n,m̃,k:p](y1, y2) = fY(y1) fY(y2)
[
1 + Ωr,n,m̃,k:p

(
1− (1 + p)Fp

Y(y1)
)

+Ωr,s,n,m̃,k:p ×
(

1− (1 + p)Fp
Y(y2)

)
+Ω?

r,s,n,m̃,k:p

(
1− (1 + p)Fp

Y(y1)
)(

1− (1 + p)Fp
Y(y2)

)]
,

(9)
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where Ωr,s,n,m̃,k:p = α

[
1− (1 + p)Cs−1

(
∑s

i=r+1
a(r)i (s)
γi+p

)(
∑r

i=1
ai(r)
γi+p

)]
and

Ω?
r,s,n,m̃,k:p = α

[
Ωr,n,m̃,k:p − α(1 + p)

(
s

∑
i=r+1

a(r)i (s)
γi + p

)(
r

∑
i=1

ai(r)
γi + p

− (1 + p)
r

∑
i=1

ai(r)
γi + 2p

)]
.

Proof. By using (2) and (5), and the easy-to-prove relations
s
∑

i=r+1

a(r)i (s)
γi

= Cr−1
Cs−1

and

Cr−1
r
∑

i=1

ai(r)
γi

= 1, we get

f[r,s,n,m̃,k:p](y1, y2) =
∫ ∞

−∞

∫ x1

−∞

[
fY(y1)(1 + α(1− (1 + p)Fp

X(x1))(1− (1 + p)Fp
Y(y1)))

]
×

[
fY(y2)(1 + α(1− (1 + p)Fp

X(x2))(1− (1 + p)Fp
Y(y2)))

]
× Cs−1

[
s

∑
i=r+1

a(r)i (s)
(

FX(x2)

FX(x1)

)γi
][

r

∑
i=1

ai(r)Fγi
X (x1)

]
fX(x1)

FX(x1)

fX(x2)

FX(x2)
dx2dx1

= Cs−1

∫ ∞

−∞

[
fY(y1)(1 + α(1− (1 + p)Fp

X(x1))(1− (1 + p)Fp
Y(y1)))

]
×

[
r

∑
i=1

ai(r)Fγi−1
X (x1) fX(x1)

]

×
{∫ x1

−∞

[
fY(y2)(1 + α(1− (1 + p)Fp

X(x2))(1− (1 + p)Fp
Y(y2)))

]
×

[
s

∑
i=r+1

a(r)i (s)
(

FX(x2)

FX(x1)

)γi−1 fX(x2)

FX(x1)

]
dx2

}
dx1

=

[
fY(y2)

(
s

∑
i=r+1

a(r)i (s)
γi

)
+ α fY(y2)(1− (1 + p)Fp

Y(y2))

(
s

∑
i=r+1

a(r)i (s)
γi

)]

×
[

Cs−1 fY(y1)

(
r

∑
i=1

ai(r)
γi

)
+ αCs−1 fY(y1)(1− (1 + p)Fp

Y(y1))

×
{(

r

∑
i=1

ai(r)
γi

)
− (1 + p)

(
r

∑
i=1

ai(r)
γi + p

)}]

−
[
(1 + p)α fY(y2)

(
(1− (1 + p)Fp

Y(y2))
) s

∑
i=r+1

a(r)i (s)
γi + p

][
Cs−1 fY(y1)

(
r

∑
i=1

ai(r)
γi + p

)

+ αCs−1 fY(y1)
(
(1− (1 + p)Fp

Y(y1))
){( r

∑
i=1

ai(r)
γi + p

)
− (1 + p)

(
r

∑
i=1

ai(r)
γi + 2p

)}]
.

As a direct consequence of Theorem 2, the joint MGF of concomitants Y[r,n,m̃,k] and
Y[s,n,m̃,k], r < s, in the HK–FGM model (3) is given by

M[r,s,n,m̃,k:p](t1, t2) = MY(t1)MY(t2) + Ωr,n,m̃,k:p[MY(t1)MY(t2)−MV(t1)MY(t2)]

+Ωr,s,n,m̃,k:p[MY(t1)MY(t2)−MY(t1)MV(t2)]+

Ω?
r,s,n,m̃,k:p[MV(t1)−MY(t1)][MV(t2)−MY(t2)].

(10)

The product moment E[Y(`)
[r,n,m̃,k]Y

(q)
[s,n,m̃,k]] = µ

(`,q)
[r,s,n,m̃,k:p], `, q > 0 is obtained directly

from (10) as
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µ
(`,q)
[r,s,n,m̃,k:p] = µ

(`)
Y µ

(q)
Y + Ωr,n,m̃,k:p[µ

(`)
Y µ

(q)
Y − µ

(`)
V µ

(q)
Y ] + Ωr,s,n,m̃,k:p[µ

(`)
Y µ

(q)
Y − µ

(`)
Y µ

(q)
V ]

+ Ω?
r,s,n,m̃,k:p[µ

(`)
V − µ

(`)
Y ][µ

(q)
V − µ

(q)
Y ].

(11)

Remark 2. By considering the well-known relation between the DGOSs and GOSs and by putting
p = 1 in (9), the JPDF of concomitants of GOSs for FGM can be easily deduced, which was obtained
by [30].

The following theorem gives a useful general recurrence relation for µ
(`,q)
[r,s,n,m̃,k:p].

Theorem 3. Let Lr(p) = ∑r
i=1

ai(r)
γi+p and Lr,s(p) = ∑s

i=r+1
a(r)i (s)
γi+p . For any 1 ≤ r < s− 1 ≤

n− 1, we get

µ
(`,q)
[r,s,n,m̃,k:p] − µ

(`,q)
[r,s−1,n,m̃,k:p] = αp(1 + p)Cs−2Lr(p)Lr,s(p)[µ(`)

Y µ
(q)
Y − µ

(`)
Y µ

(q)
V ]

−α2(1 + p)(1− γs − p)(Lr(p)− (1 + p)Lr(2p))Lr,s(p)[µ(`)
V − µ

(`)
Y ][µ

(q)
V − µ

(q)
Y ].

Proof. By using the easy-to-prove relations a(r)i (s− 1) = (γs−γi)a(r)i (s) and
s
∑

i=r+1
a(r)i (s) =

0, we can easily get

Ωr,s,n,m̃,k:p −Ωr,s−1,n,m̃,k:p = −α(1 + p)Lr(p)[Cs−1Lr,s(p)− Cs−2Lr,s−1(p)]

= −α(1 + p)Lr(p)
Cs−1

γs

s

∑
i=r+1

γia
(r)
i (s)

γi + p
= αp(1 + p)Cs−2Lr(p)Lr,s(p)

and

Ω?
r,s,n,m̃,k:p −Ω?

r,s−1,n,m̃,k:p = −α2(1 + p)(Lr(p)− (1 + p)Lr(2p))[Lr,s(p)− Lr,s−1(p)]

= −α2(1 + p)(Lr(p)− (1 + p)Lr(2p))
s

∑
i=r+1

(1− γs + γi)a(r)i (s)
γi + p

= −α2(1 + p)(Lr(p)− (1 + p)Lr(2p))(1− γs − p)Lr,s(p).

By combining the two last equalities with (11), we get the required result.

3. The Shannon Entropy for Concomitants of DGOSs from the HK–FGM Family

By using (6) and Theorem 2.2 in [10], we can easily get an explicit form of the Shannon
entropy for concomitants of DGOSs from the HK–FGM model (3).

Theorem 4. If Y[r,n,m̃,k] is a concomitants of rth DGOS in the HK–FGM family, then an explicit
expression of the Shannon entropy of Y[r,n,m̃,k], for 1 ≤ r ≤ n, is given by

H(Y[r,n,m̃,k])=−E[log f[r,n,m̃,k:p](Y[r,n,m̃,k])]

=Υr,n,m̃,k:p + H(Y)(1 + Ωr,n,m̃,k:p) + (1 + p)Ωr,n,m̃,k:pΦ f :p(u),
(12)

where H(Y) = −E(log fY(Y)) = −
∫ ∞
−∞ fY(y) log fY(y)dy, i.e., the Shannon entropy of Y,

Φ f :p(u) =
∫ ∞
−∞ Fp

Y(y) fY(y) log fY(y)dy =
∫ 1

0 up log fY(F−1
Y (u))du and
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Υr,n,m̃,k:p =
p2(1+Ωr,n,m̃,k:p)−pΩr,n,m̃,k:p

1+p − log(1− pΩr,n,m̃,k:p)

− p(1+Ωr,n,m̃,k:p)

1+p ∑∞
k=1

1
k+ 1

p−1

(
(1+p)Ωr,n,m̃,k:p

1+Ωr,n,m̃,k:p

)k−1
.

(13)

Remark 3. If Ωr,n,m̃,k:p ≥ 0, representation (6) enables us to write

Ωr,n,m̃,k:p ≤ min
1

1+p <Fp
Y (y)≤1

(
1

(1 + p)Fp
Y(y)− 1

)
=

1
p

.

Therefore, in order for the Shannon’s entropy defined in Theorem 4 to be finite, it is sufficient
to assume that pΩr,n,m̃,k:p 6= 1 (this guarantees that Υr,n,m̃,k:p is finite).

In the next subsections, we study the moments and Shannon entropy of concomitants
of DGOSs from the HK–FGM model (3) for some well-known DFs.

3.1. Exponential Distribution

The PDF and Df for exponential distribution are given by f (y) = e−y, 0 ≤ y < ∞, and
F(y) = 1− e−y, respectively. From (6), the PDF of the concomitant of Y[r,n,m̃,k] is given by

f[r,n,m̃,k:p](y) = e−y
[
1 + Ωr,n,m̃,k:p

(
1− (1 + p)

(
1− e−y)p

)]
.

Let µ
(`)
[r,n,m̃,k:p] be the `th moment of Y[r,n,m̃,k]. Thus, from (8), we get

µ
(`)
[r,n,m̃,k:p] = Γ(`+ 1)[1 + Ωr,n,m̃,k:p(1− (1 + p)∆(`; p))],

where ∆(`; p) =
ℵ(p)
∑

j=0

(−1)j
( p

j

)
(j+1)`+1 , ℵ(p) = ∞, if p is non-integer and ℵ(p) = p, if p is integer.

From (9), the JPDF of Y[r,n,m̃,k] and Y[s,n,m̃,k] is given by

f[r,s,n,m̃,k:p](y1, y2) = e−(y1+y2)
[

1 + Ωr,n,m̃,k:p
[
1− (1 + p)(1− e−y1)

p]
+ Ωr,s,n,m̃,k:p

×
[
1− (1 + p)

(
1− e−y2

)p
]
+ Ω?

r,s,n,m̃,k:p

[
1− (1 + p)

(
1− e−y1

)p
][

1− (1 + p)
(
1− e−y2

)p
]]

.

Let µ
(`,q)
[r,s,n,m̃,k:p] be the `th and qth joint moments of Y[r,n,m̃,k] and Y[s,n,m̃,k]. Thus, from (11)

we get

µ
(`,q)
[r,s,n,m̃,k:p] = Γ(`+ 1)Γ(q + 1)[1 + Ωr,n,m̃,k:p(1− (1 + p)∆(`; p)) + Ωr,s,n,m̃,k:p(1− (1 + p)∆(q; p))

+Ω?
r,s,n,m̃,k:p(1− (1 + p)∆(`; p))(1− (1 + p)∆(q; p))].

Theorem 5. Let Y[r,n,m̃,k] be the concomitant of rth DGOS for exponential distribution. Then, the
Shannon’s entropy of Y[r,n,m̃,k], for 1 ≤ r ≤ n, is given by

H(Y[r,n,m̃,k]) = Υr,n,m̃,k:p + (1 + Ωr,n,m̃,k:p)−Ωr,n,m̃,k:p[ν + ψ(p + 2)],

where ν = −Γ́(1) = 0.57722 is the Euler’s constant, ψ(.) is the digamma function and Υr,n,m̃,k:p
is defined by (13).

Proof. From (12), we get

H(Y[r,n,m̃,k])=Υr,n,m̃,k:p−(1 + Ωr,n,m̃,k:p)
∫ ∞

0 e−y log e−ydy

+(1 + p)Ωr,n,m̃,k:p
∫ ∞

0 (1− e−y)pe−y log e−ydy

= Υr,n,m̃,k:p + (1 + Ωr,n,m̃,k:p) + (1 + p)Ωr,n,m̃,k:p I.

(14)
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In order to find I =
∫ ∞

0 (1− e−y)pe−y log e−ydy, we note that U(t) =
∫ ∞

0 (1− e−y)p

[ f (y)]tdy =
∫ ∞

0 (1− e−y)pe−tydy =
∫ 1

0 (1− z)pzt−1dz = β(t, p + 1) (by putting z = e−y).

Therefore, we get Ú(t) = ∂U(t)
∂t = β(t, p + 1)[ψ(t)− ψ(p + 1 + t)]. Thus, we get

Ú(1) = I = β(1, p + 1)[ψ(1)− ψ(p + 2)] = 1
p+1
[
Γ́(1)− ψ(p + 2)

]
= −1

p+1 [ν + ψ(p + 2)]. (15)

By substituting (15) in (14), we get the required result.

3.2. Pareto Distribution

The PDF and DF for Pareto distribution are given by f (y) = ay−(a+1), y ≥ 1, and
F(y) = 1− y−a, a > 0, respectively. From (6), the PDF of the concomitant of Y[r,n,m̃,k] is
given by

f[r,n,m̃,k:p](y) = ay−(a+1)
[
1 + Ωr,n,m̃,k:p

(
1− (1 + p)

(
1− y−a)p

)]
.

Moreover, by using (8), the `th moment of Y[r,n,m̃,k] is given by

µ
(`)
[r,n,m̃,k:p] =

a
a− `

[
1 + Ωr,n,m̃,k:p

[
1− (a− `)(p + 1)

a
β

(
a− `

a
, p + 1

)]]
, a > `.

From (9), the JPDF of Y[r,n,m̃,k] and Y[s,n,m̃,k] is given by

f[r,s,n,m̃,k:p](y1, y2) = a1a2y−(a1+1)
1 y−(a2+1)

2

[
1 + Ωr,n,m̃,k:p

[
1− (1 + p)

(
1− y−a1

1

)p]
+Ωr,s,n,m̃,k:p ×

[
1− (1 + p)

(
1− y−a2

2

)p]
+Ω?

r,s,n,m̃,k:p

[
1− (1 + p)

(
1− y−a1

1

)p][
1− (1 + p)

(
1− y−a2

2

)p]
.

Finally, from (11), the `th and qth joint moments of Y[r,n,m̃,k] and Y[s,n,m̃,k] are given by

µ
(`,q)
[r,s,n,m̃,k:p] =

a1a2
(a1−`)(a2−q)

[
1 + Ωr,n,m̃,k:p

[
1− (a1−`)(p+1)

a1
β
(

a1−`
a1

, p + 1
)]

+Ωr,s,n,m̃,k:p

[
1− (a2−q)(p+1)

a2
β
(

a2−q
a2

, p + 1
)]

+ Ω?
r,s,n,m̃,k:p

×
[
1− (a1−`)(p+1)

a1
β
(

a1−`
a1

, p + 1
)][

1− (a2−q)(p+1)
a2

β
(

a2−q
a2

, p + 1
)]]

,
a1 > `, a2 > q.

Theorem 6. Let Y[r,n,m̃,k] be the concomitant of rth DGOS for Pareto distribution. Then, the
Shannon entropy of Y[r,n,m̃,k], for 1 ≤ r ≤ n, is given by

H(Y[r,n,m̃,k])=Υr,n,m̃,k:p+(1 + Ωr,n,m̃,k:p)

[
1 +

1
a
− log a

]
−Ωr,n,m̃,k:p[ν + ψ(p + 2)−log a],

where Υr,n,m̃,k:p is defined by (13).

Proof. From (12), we get

H(Y[r,n,m̃,k]) = Υr,n,m̃,k:p − (1 + Ωr,n,m̃,k:p)
∫ ∞

1
ay−(a+1) log(ay−(a+1))dy

+(1 + p)Ωr,n,m̃,k:p ×
∫ ∞

1
(1− y−a)pay−(a+1) log(ay−(a+1))dy

= Υr,n,m̃,k:p − (1 + Ωr,n,m̃,k:p)I1 + (1 + p)Ωr,n,m̃,k:p I2.

(16)
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To find I1 =−H(Y)=
∫ ∞

1 ay−(a+1) log(ay−(a+1))dy, we note that T(t)=
∫ ∞

1 [ f (y)]tdy

=
∫ ∞

1 aty−t(a+1)dy = at

t(a+1)−1 and ∂T(t)
∂t = T́(t) = at log a

t(a+1)−1 −
at(a+1)

(t(a+1)−1)2 . Thus,

T́(1) = I1 = log a− (a + 1)
a

. (17)

Furthermore, to find I2 =
∫ ∞

1 (1− y−a)pay−(a+1) log(ay−(a+1))dy. We note that U(t) =∫ ∞
1 (1 − y−a)p[ f (y)]tdy =

∫ ∞
1 (1 − y−a)paty−t(a+1)dy = at−1

∫ 1
0 (1 − z)pz

a+1
a (t−1)dz =

at−1β
(

t( 1+a
a )− 1

a , p + 1
)

and

Ú(t) = at−1β
(

t( 1+a
a )− 1

a , p + 1
)[

log a + ψ
(

t( 1+a
a )− 1

a

)
− ψ

(
t( 1+a

a )− 1
a + p + 1

)]
.

Therefore, we get

Ú(1) = I2 = β(1, p + 1)[log a + ψ(1)− ψ(p + 2)]

= 1
p+1
[
log a + Γ́(1)− ψ(p + 2)

]
= −1

p+1 [ν + ψ(p + 2)− log a].
(18)

By substituting (17) and (18) in (16), we get the required result.

3.3. Power Function Distribution

The PDF and DF for power distribution function are given by f (y) = aya−1, 0 ≤ y ≤ 1,
and F(y) = ya, a > 0, respectively. From (6) the PDF of the concomitant of Y[r,n,m̃,k] is
given by

f[r,n,m̃,k:p](y) = aya−1
[
1 + Ωr,n,m̃,k:p(1− (1 + p)yap)

]
.

Moreover, from (8) the `th moment of Y[r,n,m̃,k] is given by

µ
(`)
[r,n,m̃,k:p] =

a
a + `

[
1−

p`Ωr,n,m̃,k:p

a(1 + p) + `

]
.

Furthermore, from (9) the JPDF of Y[r,n,m̃,k], Y[s,n,m̃,k], is given by

f[r,s,n,m̃,k:p](y1, y2) = a1a2ya1−1
1 ya2−1

2

[
1 + Ωr,n,m̃,k:p

[
1− (1 + p)ya1 p

1

]
+Ωr,s,n,m̃,k:p

[
1− (1 + p)ya2 p

2

]
+ Ω?

r,s,n,m̃,k:p

[
1− (1 + p)ya1 p

1

][
1− (1 + p)ya2 p

2

]]
,

and from (11) the `th and qth joint moments of Y[r,n,m̃,k], Y[s,n,m̃,k], then:

µ
(`,q)
[r,s,n,m̃,k:p] =

a1a2

(a1 + `)(a2 + q)

[
1−

p`Ωr,n,m̃,k:p

a1(1 + p) + `
−

pqΩr,s,n,m̃,k:p

a2(1 + p) + q

+
p2`qΩ?

r,s,n,m̃,k:p

(a1(1 + p) + `)(a2(1 + p) + q)

]
.

Theorem 7. Let Y[r,n,m̃,k] be the concomitant of rth DGOS for power function distribution. Then,
from (12), the Shannon entropy of Y[r,n,m̃,k], for 1 ≤ r ≤ n, is given by

H(Y[r,n,m̃,k]) = Υr,n,m̃,k:p + (1 + Ωr,n,m̃,k:p)
[
1− 1

a − log a
]
−Ωr,n,m̃,k:p

[
1

1+p −
1

a(1+p) − log a
]
.

Proof. From (12), we have
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H(Y[r,n,m̃,k]) = Υr,n,m̃,k:p − (1 + Ωr,n,m̃,k:p)
∫ 1

0
aya−1 log(aya−1)dy

+ (1 + p)Ωr,n,m̃,k:p

∫ 1

0
yapaya−1 log(aya−1)dy

= Υr,n,m̃,k:p − (1 + Ωr,n,m̃,k:p)I1 + (1 + p)Ωr,n,m̃,k:p I2. (19)

To find I1 = −H(Y) =
∫ 1

0 aya−1 log(aya−1)dy, we note that T(t) =
∫ 1

0 [ f (y)]tdy =∫ 1
0 atyt(a−1)dy = at

t(a−1)+1 and ∂T(t)
∂t = T́(t) = at log a

t(a−1)+1 −
at(a−1)

(t(a−1)+1)2 . Thus, we get

T́(1) = I1 = log a− (a− 1)
a

. (20)

Furthermore, to find I2 =
∫ 1

0 yapaya−1 log(aya−1)dy, we note that U(t) =
∫ 1

0 yap[ f (y)]t

dy =
∫ 1

0 atyt(a−1)+apdy = at

t(a−1)+ap+1 and Ú(t) = at log a
t(a−1)+ap+1 −

at(a−1)
(t(a−1)+ap+1)2 . Therefore,

we get

Ú(1) = I2 =
log a
1 + p

− (a− 1)
a(1 + p)2 . (21)

By substituting (20) and (21) in (19), we get the required result.

4. The FI Number for Concomitants of DGOSs from the HK–FGM Family

The FI number of the RV X having PDF fX(x) is defined by (cf. [40,41])

I fX
(X) = E

(
∂ log fX(x)

∂x

∣∣∣∣
x=X

)2

=
∫ ∞

−∞

(
∂ fX(x)

∂x

)2 1
fX(x)

dx.

Clearly, the FI number has the following properties:

(I) I fX
(cX) = I fX

(X)/c2, where c > 0 is any scale parameter.
(II) I fX+θ

(X + θ) = I fX
(X), where θ is any location parameter.

The property (II) expresses the well-known statement that the FI number is an FI for lo-
cation parameter, or that the FI number is translation invariant. Moreover, by this property,
we can suppress the possible dependence of fX on an unknown location parameter.

By using Theorem 2.3 in [10], we get an explicit form of FI number for concomitants
of DGOSs from HK–FGM in the following theorem.

Theorem 8. Let Y[r,n,m̃,k] be the concomitants of rth DGOS in the HK–FGM family. Then, the FI
number of Y[r,n,m̃,k], for 1 ≤ r ≤ n, is given by

I fY
(Y[r,n,m̃,k]) = I fY

(Y) + Ωr,n,m̃,k:p

[
τfY

(p)− 2p(1 + p)φ fY
(p)
]
+
[
Ωr,n,m̃,k:p p(1 + p)

]2
δ fY (p), (22)

where

I fY
(Y) =

∫ ∞

−∞

[
∂ log fY(y)

∂y

]2

fY(y)dy,

τfY
(p) =

∫ ∞

−∞

[
∂ log fY(y)

∂y

]2{
(1− (1 + p)Fp

Y(y))
}

fY(y)dy,

φ fY
(p) =

∫ ∞

−∞
Fp−1

Y (y) f́Y(y) fY(y)dy,

δ fY
(p) =

∫ ∞

−∞

F2(p−1)
Y (y) f 3

Y(y)dy
1 + (1− (1 + p)Fp

Y(y))Ωr,n,m̃,k:p
.
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In the next subsections, we will study the FI number for concomitants of DGOSs
from HK–FGM for some well-known distributions such as exponential, Pareto and power
function distributions.

4.1. Exponential Distribution

Theorem 9. Let Y[r,n,m̃,k] be the concomitant of rth DGOS for exponential distribution. Fur-
thermore, let Ωr,n,m̃,k:p > 0, pΩr,n,m̃,k:p 6= 1, and p > 1

2 . Then, the FI number of Y[r,n,m̃,k], for
1 ≤ r ≤ n, is given by

I fY
(Y[r,n,m̃,k]) = 1 + 2Ωr,n,m̃,k:p +

p2(1+p)2Ω2
r,n,m̃,k:p

1+Ωr,n,m̃,k:p
∑∞

j=0

(
(1+p)Ωr,n,m̃,k:p

1+Ωr,n,m̃,k:p

)j
β(2p + jp− 1, 3). (23)

Proof. From (22), we get

I fY
(Y[r,n,m̃,k]) =

∫ ∞

0

[
∂ log fY(y)

∂y

]2{
1 + (1− (1 + p)Fp

Y(y))Ωr,n,m̃,k:p

}
fY(y)dy− 2p(1 + p)

×Ωr,n,m̃,k:p

∫ ∞

0
Fp−1

Y (y) f́Y(y) fY(y)dy +
[
Ωr,n,m̃,k:p p(1 + p)

]2

×
∫ ∞

0

F2(p−1)
Y (y) f 3

Y(y)dy
1 + (1− (1 + p)Fp

Y(y))Ωr,n,m̃,k:p
= I1 + I2 + I3,

(24)

where

I1 =
∫ ∞

0

[
∂ log fY(y)

∂y

]2{
1 + (1− (1 + p)Fp

Y(y))Ωr,n,m̃,k:p

}
fY(y)dy

=
∫ ∞

0
(1 + Ωr,n,m̃,k:p)e−ydy− (1 + p)Ωr,n,m̃,k:p

∫ ∞

0
(1− e−y)pe−ydy

= (1 + Ωr,n,m̃,k:p)− (1 + p)Ωr,n,m̃,k:p

∫ 1

0
updu = 1,

(25)

I2 = −2p(1 + p)Ωr,n,m̃,k:p

∫ ∞

0
Fp−1

Y (y) f́Y(y) fY(y)dy

= 2p(1 + p)Ωr,n,m̃,k:p

∫ ∞

0
(1− e−y)p−1e−2ydy

= 2p(1 + p)Ωr,n,m̃,k:p

∫ 1

0
up−1(1− u)du = 2Ωr,n,m̃,k:p,

(26)

I3 = [Ωr,n,m̃,k:p p(1 + p)]2
∫ ∞

0

F2(p−1)
Y (y) f 3

Y(y)dy

1 + (1− (1 + p)Fp
Y(y))Ωr,n,m̃,k:p

= (pd)2
∫ 1

0

z2(p−1)(1− z)2dz
c− dzp

(by using the transformation z = 1− e−y), c = 1+Ωr,n,m̃,k:p and d = (1+ p)Ωr,n,m̃,k:p. Now,
in view of Remark 3, we have 0 < pΩr,n,m̃,k:p < 1. Thus, if 0 ≤ z ≤ 1, we get 0 < d

c zp < 1.
Therefore, by using the negative binomial expansion for (1− d

c zp)−1, we get

I3 =
(pd)2

c

∞

∑
j=0

(
d
c

)j ∫ 1

0
z2(p−1)(1− z)2zjpdz =

(pd)2

c

∞

∑
j=0

(
d
c

)j
β(2p + jp− 1, 3), (27)

since p > 1
2 . By substituting (25)–(27) in (24), the result follows.
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4.2. Pareto Distribution

Theorem 10. Let Y[r,n,m̃,k] be the concomitant of rth DGOS for Pareto distribution. Furthermore,
let Ωr,n,m̃,k:p > 0, pΩr,n,m̃,k:p 6= 1, and p > 1

2 . Then, the FI number of Y[r,n,m̃,k], for 1 ≤ r ≤ n, is
given by

I fY
(Y[r,n,m̃,k]) =

a(a + 1)2(1 + Ωr,n,m̃,k:p)

a + 2
− (a + 1)2(1 + p)Ωr,n,m̃,k:p β

(
p + 1,

a + 2
a

)
+ 2a(a + 1)p(1 + p)Ωr,n,m̃,k:pβ

(
p,

2a + 2
a

)

+
a2 p2(1 + p)2Ω2

r,n,m̃,k:p

1 + Ωr,n,m̃,k:p

∞

∑
j=0

(
(1 + p)Ωr,n,m̃,k:p

1 + Ωr,n,m̃,k:p

)j

β(2p + jp− 1, 3 +
2
a
).

Proof. From (22), we get

I fY
(Y[r,n,m̃,k]) =

∫ ∞

1

[
∂ ln fY(y)

∂y

]2{
1 + (1− (1 + p)Fp

Y(y))Ωr,n,m̃,k:p

}
fY(y)dy− 2p(1 + p)

× Ωr,n,m̃,k:p

∫ ∞

1
Fp−1

Y (y) f́Y(y) fY(y)dy +
[
Ωr,n,m̃,k:p p(1 + p)

]2

×
∫ ∞

1

F2(p−1)
Y (y) f 3

Y(y)dy

1 + (1− (1 + p)Fp
Y(y))Ωr,n,m̃,k:p

= I1 + I2 + I3, (28)

where

I1 =
∫ ∞

1

[
∂ ln fY(y)

∂y

]2{
1 + (1− (1 + p)Fp

Y(y))Ωr,n,m̃,k:p

}
fY(y)dy

= a(a + 1)2
[∫ ∞

1
(1 + Ωr,n,m̃,k:p)y−a−3dy− (1 + p)Ωr,n,m̃,k:p

∫ ∞

1
(1− y−a)py−a−3dy

]
=

a(a + 1)2(1 + Ωr,n,m̃,k:p)

a + 2
− (a + 1)2(1 + p)Ωr,n,m̃,k:p

∫ 1

0
up(1− u)

2
a du

=
a(a + 1)2(1 + Ωr,n,m̃,k:p)

a + 2
− (a + 1)2(1 + p)Ωr,n,m̃,k:p β

(
p + 1,

a + 2
a

)
, (29)

I2 = −2p(1 + p)Ωr,n,m̃,k:p

∫ ∞

1
Fp−1

Y (y) f́Y(y) fY(y)dy

= 2p(1 + p)Ωr,n,m̃,k:p

∫ ∞

1
(1− y−a)p−1a2(a + 1)y−2a−3dy

= 2a(a + 1)p(1 + p)Ωr,n,m̃,k:p

∫ 1

0
up−1(1− u)

2
a +1du

= 2a(a + 1)p(1 + p)Ωr,n,m̃,k:p β

(
p,

2a + 2
a

)
, (30)

and (by using the transformation z = 1− y−a and the abbreviations c = 1 + Ωr,n,m̃,k:p and
d = (1 + p)Ωr,n,m̃,k:p)

I3 =
[
Ωr,n,m̃,k:p p(1 + p)

]2 ∫ ∞

0

F2(p−1)
Y (y) f 3

Y(y)dy
1 + (1− (1 + p)Fp

Y(y))Ωr,n,m̃,k:p

=
(apd)2

c

∫ 1

0

z2(p−1)(1− z)2+ 2
a dz

1− d
c zp

.

Now, in view of Remark 3, we have 0 < pΩr,n,m̃,k:p < 1. Thus, if 0 ≤ z ≤ 1, we get
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0 < d
c zp < 1. Therefore, by using the negative binomial expansion for (1− d

c zp)−1, we get

I3 =
(apd)2

c

∞

∑
j=0

(
d
c

)j ∫ 1

0
z2(p−1)(1− z)2+ 2

a zjpdz

=
(apd)2

c

∞

∑
j=0

(
d
c

)j
β(2p + jp− 1, 3 +

2
a
),

(31)

since p > 1
2 . By substituting (29), (30) and (31) in (28), the result follows.

4.3. Power Function Distribution

Theorem 11. Let Y[r,n,m̃,k] be the concomitant of rth DGOS for power function distribution.
Furthermore, let Ωr,n,m̃,k:p > 0, pΩr,n,m̃,k:p 6= 1, and a(2p + 1) > 2. Then, the FI number of
Y[r,n,m̃,k], for 1 ≤ r ≤ n, is given by

I fY
(Y[r,n,m̃,k]) =

a(a− 1)2(1 + Ωr,n,m̃,k:p)

a− 2
−

a(a− 1)(1 + p)[2ap + a− 1]Ωr,n,m̃,k:p

(1 + p)a− 2

+
(ap(1 + p)Ωr,n,m̃,k:p)

2

1 + Ωr,n,m̃,k:p

∞

∑
j=0

(
(1+p)Ωr,n,m̃,k:p

1+Ωr,n,m̃,k:p

)j

2p− 2
a + jp + 1

.

Proof. From Equation (22), we have

I fY
(Y[r,n,m̃,k]) =

∫ 1

0

[
∂ ln fY(y)

∂y

]2{
1 + (1− (1 + p)Fp

Y(y))Ωr,n,m̃,k:p

}
fY(y)dy

− 2p(1 + p)×Ωr,n,m̃,k:p

∫ ∞

1
Fp−1

Y (y) f́Y(y) fY(y)dy

+
[
Ωr,n,m̃,k:p p(1 + p)

]2
×
∫ 1

0

F2(p−1)
Y (y) f 3

Y(y)dy
1 + (1− (1 + p)Fp

Y(y))Ωr,n,m̃,k:p

= I1 + I2 + I3,

(32)

where

I1 =
∫ 1

0

[
∂ ln fY(y)

∂y

]2{
1 + (1− (1 + p)Fp

Y(y))Ωr,n,m̃,k:p

}
fY(y)dy

=
∫ 1

0
(a− 1)2y−2

[
(1 + Ωr,n,m̃,k:p)− (1 + p)Ωr,n,m̃,k:pyap

]
aya−1dy

=
a(a− 1)2(1 + Ωr,n,m̃,k:p)

a− 2
−

a(a− 1)2(1 + p)Ωr,n,m̃,k:p

(1 + p)a− 2
,

(33)

I2 = −2p(1 + p)Ωr,n,m̃,k:p

∫ 1

0
Fp−1

Y (y) f́Y(y) fY(y)dy

= −2p(1 + p)Ωr,n,m̃,k:p

∫ 1

0
ya(p−1)a2(a− 1)y2a−3dy

= −2a2(a− 1)p(1 + p)Ωr,n,m̃,k:p

∫ 1

0
y(p+1)a−3dy

=
−2a2(a− 1)p(1 + p)Ωr,n,m̃,k:p

(1 + p)a− 2
,

(34)
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and (by using the transformation z = F(y) = ya and the abbreviations c = 1 + Ωr,n,m̃,k:p
and d = (1 + p)Ωr,n,m̃,k:p)

I3 =
[

p(1 + p)Ωr,n,m̃,k:p

]2 ∫ ∞

0

F2(p−1)
Y (y) f 3

Y(y)dy
1 + (1− (1 + p)Fp

Y(y))Ωr,n,m̃,k:p

=
(apd)2

c

∫ 1

0

z2(p−1)z2− 2
a dz

1− d
c zp

.

Now, in view of Remark 3, we have 0 < pΩr,n,m̃,k:p < 1. Thus, if 0 ≤ z ≤ 1, we get
0 < d

c zp < 1. Therefore, by using the negative binomial expansion for (1− d
c zp)−1, we get

I3 =
(apd)2

c

∞

∑
j=0

(
d
c

)j

2p− 2
a + jp + 1

, (35)

since a(2p + 1) > 2. By substituting (33)–(35) in (32), the result follows.

Remark 4. It is worth mentioning that some results in [38] are doubtful. For example, the FI
number defined by (15) seems to be wrong, because we have −1 ≤ αC?(r, n, m, k) ≤ 1, which
implies that log(−1 + αC?(r, n, m, k)) and log(−1− αC?(r, n, m, k)) have no meaning, since
−2 ≤ −1 + αC?(r, n, m, k) ≤ 0 and −2 ≤ −1− αC?(r, n, m, k) ≤ 0. Moreover, the integration
defined in (19) seems to be wrong.

5. Conclusions

In modelling bivariate data, when the prior information is in the form of marginal
distributions, it is an advantage to consider families of bivariate distributions with specified
marginals. Upon realizing that the HK–FGM provides a flexible and efficient family that
can be used in such contexts, we studied the concomitants (which are related to the order-
ing bivariate RVs) of DGOSs (GOSs) under a general framework (when the parameters
γ1, . . . , γn are assumed to be pairwise different) from the HK–FGM family. We derived
some useful relations that enable us to compute recursively the moments of the single
and product of the concomitants of DGOSs for any arbitrary marginals (Theorems 1–3).
The study of DGOSs (GOSs) under this framework enabled us to consider the POS model
(Example 1) as an important censoring sampling scheme. In Section 3, we computed
and studied the Shannon entropy for concomitants of DGOSs from the HK–FGM family
(Theorem 4). Moreover, we computed the moments and Shannon entropy of concomitants
of DGOS from the HK–FGM model for the exponential, Pareto and power function dis-
tributions (Theorems 5–7). The FI number was computed in Section 4, Theorem 8. Finally,
the moments and FI number were computed in Theorems 9–11 for the exponential, Pareto
and power function distributions, respectively.

Although all the results of this paper were obtained in a general framework, the
only limitation of the adopted approach is perhaps the imperative of the bivariate data
belonging to the HK–FGM DF. Clearly, by adopting the same procedure and the method of
this paper, analogous results for other generalizations of the FGM model can be obtained.

When we talk about the prospects for future research, we consider here two problems.
Estimation of the dependent parameters in HK–FGM DF or the associated parameters with
the DF of the RV Y of primary interest using concomitants of DGOS or GOS values on the
auxiliary RV X is an important future application. This problem has been tackled by [21]
for m-GOSs and the generalized FGM family. The second future research problem is to
use the kernel density estimator of the Shannon entropy defined in Theorem 4 (under the
assumption that fY is unknown). This estimator is the most commonly used nonparametric
density estimator found in the literature (see, for example [42]).
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