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Abstract: The performance of devices fabricated from piezoelectric semiconductors, such as sensors
and actuators in microelectromechanical systems, is superior; furthermore, plate structures are the
core components of these smart devices. It is thus important to analyze the electromechanical coupling
properties of piezoelectric semiconductor nanoplates. We established a nanoplate model for the
piezoelectric semiconductor plate structure by extending the first-order shear deformation theory. The
flexural vibrations of nanoplates subjected to a transversely time-harmonic force were investigated.
The vibrational modes and natural frequencies were obtained by using the matrix eigenvalue solver
in COMSOL Multiphysics 5.3a, and the convergence analysis was carried out to guarantee accurate
results. In numerical cases, the tuning effect of the initial electron concentration on mechanics
and electric properties is deeply discussed. The numerical results show that the initial electron
concentration greatly affects the natural frequency and electromechanical fields of piezoelectric
semiconductors, and a high initial electron concentration can reduce the electromechanical fields and
the stiffness of piezoelectric semiconductors due to the electron screening effect. We analyzed the
flexural vibration of typical piezoelectric semiconductor plate structures, which provide theoretical
guidance for the development of new piezotronic devices.

Keywords: piezoelectric semiconductor; nanoplate; flexural vibration; natural frequency; vibra-
tion modal

1. Introduction

In 1960, Hutson discovered the piezoelectric effect in ZnO and CdS semiconduc-
tors [1]. However, owing to the weak piezoelectricity of piezoelectric semiconductors
(PSCs), researchers early on usually treated them as normal semiconductor materials. With
the development of micro and nanoscale fabrication technologies, PSC structures with
larger piezoelectric effects were fabricated, such as ZnO fibers, films, bands, belts, spirals,
and tubes [2–4]. Multifunctional devices now include sensing, driving, carrier transport,
and photoelectron excitation in single PSC structures. Hence, PSCs enable considerable
potential in new intelligent and multifunctional electronic devices [5–8]. However, basic
problems in PSCs were found, such as electromechanical fields in fibers [9,10], near-field
cracks [11,12], I–V characteristics of positive-negative carrier junctions [13,14], flexural and
vibration of beams [15], thermal effects [16,17], and waves propagations [18,19].

In microelectromechanical systems, such as semiconductor devices, plate structures
are the important core components. The theory studies on PSC plates also attracted much
attention. For example, Yang and Zhou [20] derived two-dimensional (2D) equations
coupled extensional, flexural, and thickness-shear motions of PSC thin plates from the
three-dimensional equations by power series expansions in the plate thickness coordinate.
They also analyzed the propagation of thickness-shear waves and the amplification effect of
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an electric field on thickness-shear waves. Similarly, Yang et al. [21] derived 2D equations
coupled extensional, flexural, and thickness-shear motions of PSC laminated plates, and the
amplification effect of an electric field on thickness-shear waves was analyzed. Li et al. [22]
studied the thickness-extensional vibration of a piezoelectric semiconductor plate, the effect
of semiconduction on mechanical-to-electrical energy conversion was investigated. Tian
et al. [23] analyzed the characteristics of elastic waves in a PSC plate structure with Stroh
theory, effects of the initial carrier density, plate thickness, and biasing electric field on the
wave speed and attenuation were deeply discussed. Tian et al. [24] obtained analytical
solutions of SH waves in transversely isotropic multilayered PSC plates and discussed the
effect of the mechanical imperfect interface on the dispersion behavior of SH waves. Luo
et al. [25] obtained the analytical solutions of electromechanical fields for an elastic and PSC
laminated thin film with a pair of infinite opposite sides under a static flexural load and
numerically investigated tuning effects of the initial electron concentration. Luo et al. [26]
then studied the same PSC plate model as reference [25] under periodic loads and derived
the first three-order natural frequencies. Zhao et al. [27] analyzed a thermal piezoelectric
semiconductor plate with a shooting method and obtained the numerical solutions of the
electromechanical field and temperature along a thickness-extensional direction.

During the service process, PSC devices are usually subjected to periodic loads. How-
ever, in current researches on PSC plates under periodic loads, PSC plates are restrictedly
regarded as infinite plates. These steady vibration problems are then simplified as the
one-dimensional (1D) extensional or flexural problems. Motivated by this, we derived the
2D equations of the finite PSC plate with coupled flexural and thickness-shear motions and
investigated its flexural vibrations driven by a time-harmonic force. The modal analysis of
the PSC plate was performed via COMSOL Multiphysics 5.3a. Natural frequencies and
vibration modes of the electromechanical fields of the PSC plate were obtained, and the
effect of the initial electron concentration on the vibrational properties was discussed. Basic
equations for the PSCs plate are given in Section 2, and the forced vibration analysis is
introduced in Section 3. The convergence analysis and numerical results are discussed in
Section 4 and summarized in Section 5.

2. Piezoelectric Semiconductor Plate Model

For an n-type PSC without body force and free of electric charge, the three-dimensional
(3D) basic theory can be described with Cartesian tensor notation. The equations of motion,
Gauss’s law of electrostatics, and the equation of charge conservation can be written as [20]

σji,j = ρ
..
ui,

Di,i = q
(

N+
D − n

)
, (i, j = 1, 2, 3 or x, y, z),

Ji,i = q
.
n,

(1)

where σji, Di, and Ji are the stress tensor, electric displacement component, and electric cur-
rent density component, respectively; ρ and ui denote the mass density and displacement
components, respectively; q, N+

D , and n denote the unit electric charge (1.602 × 10−19 C),
donor impurity and electron concentrations, respectively. Moreover, the comma in the
subscript indicates the partial differentiation,

..
ui and

.
n respectively denote the 2-order and

1-order partial differentiation with respect to the time independent t.
The constitutive relations for 3D PSCs are given by:

σij = cijklεkl − ekijEk,
Di = eiklεkl + κikEk,
Ji = qnµijEj + qDijn,j,

(2)

where εkl and Ek are the strain tensor and electric field components, respectively, cijkl, ekij,
and κik are the elastic, piezoelectric, and dielectric constants, respectively, and µij and Dij
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are the electron mobility and diffusion coefficients, respectively. The strains εij and electric
fields Ei are related to the displacement ui and the electric potential Φi through

εij = (ui.j + uj,i)/2,
Ei = −φ,i.

(3)

The electron concentration n can be written as n = n0 + ∆n, where ∆n is the electron
concentration perturbation, n0 is the initial electron concentration. For a small electron
concentration perturbation, the constitutive relations in Equation (2) can be linearized as

σij = cijklεkl − ekijEk,
Di = eiklεkl + κikEk,
Ji = qn0µijEj + qDij(∆n),j,

(4)

In a natural state, n0 = N+
D , thus, Equation (1) becomes

σji,j = ρ
..
ui,

Di,i = −q∆n,
Ji,i = q∆

.
n.

(5)

We now consider a transversely isotropic PSC plate with thickness 2 h, length l, and
width d (2 h < < l, d) under a transversely time-harmonic force fz, the reference coordinate
plane o-xy is in the geometric middle plane of the plate, as depicted in Figure 1.
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Figure 1. A PSC plate subjected to a transverse time-harmonic force fz.

To overcome the complexity of a 3D PSC plate and describe the transient behaviors
correctly, we simplify it to a 2D PSC plate model by extending the first-order shear de-
formation theory, in which shear and flexural motions in the plate thickness direction are
considered. The mechanical displacements, electric potential, and electron concentration
perturbation are approximated by [20]

ux ∼= zψx(x, y, t),
uy ∼= zψy(x, y, t),
uz ∼= w(x, y, t),
φ ∼= φ(x, y, t),
∆n ∼= ∆n(x, y, t),

(6)
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where ux, uy, and uz are the mechanical displacements, Ψx and Ψy are the plate-thickness
shear displacements, and w is the deflection. Substitution of Equation (6) into Equation (3),
the relevant strains can be expressed as

εx = ∂ux
∂x
∼= z ∂ψx

∂x ,
εy =

∂uy
∂y
∼= z ∂ψy

∂y ,

γxy = ∂ux
∂y +

∂uy
∂x
∼= z( ∂ψx

∂y +
∂ψy
∂x ),

γzx = ∂ux
∂z + ∂uz

∂x
∼= ψx +

∂w
∂x ,

γzy =
∂uy
∂z + ∂uz

∂y
∼= ψy +

∂w
∂y .

(7)

By introducing the stress relaxation approximation of σz = 0 into Equation (2), we
have the following expression

εz = −(c33klεkl − c3333ε33 − ek33Ek)/c3333 (8)

By substituting Equations (7) and (8) into Equation (4), the constitutive equations can
be rewritten as

σx = z(c11
∂ψx
∂x + c12

∂ψy
∂y ),

σy = z(c12
∂ψx
∂x + c11

∂ψy
∂y ),

τxy = c66z( ∂ψx
∂y +

∂ψy
∂x ),

τzx = c44(ψx +
∂w
∂x ) + e15

∂φ
∂x ,

τzy = c44(ψy +
∂w
∂y ) + e15

∂φ
∂y ,

Dx = e15(ψx +
∂w
∂x )− κ11

∂φ
∂x ,

Dy = e15(ψy +
∂w
∂y )− κ11

∂φ
∂y ,

Jx = −qn0µ11
∂φ
∂x + qD11

∂∆n
∂x ,

Jy = −qn0µ11
∂φ
∂y + qD11

∂∆n
∂y ,

(9)

where the effective material constants are defined by

c11 =
c11 − c2

13
c33

, c12 =
c12 − c2

13
c33

. (10)

To make the 2D plate model yield the same natural frequencies as the 3D PSC structure,
two shear correction factors k1 and k2 must be introduced to moderate the excessive
transverse shear strain energy. The replaced strains γxz and γzy are written as [20]

γzx → k1γzx, γzy → k2γzy. (11)

Integrating Equation (9) through the thickness, the extended inner forces of the PSC
plate are defined by

Mx =
∫ h
−h zσxdz, My =

∫ h
−h zσydz , Mxy =

∫ h
−h zτxydz,

Qzx =
∫ h
−h τzxdz, Qzy =

∫ h
−h τzydz,

dx =
∫ h
−h Dxdz, dy =

∫ h
−h Dydz,

jx =
∫ h
−h Jxdz, jy =

∫ h
−h Jydz,

(12)

where Mx, My, and Mxy are the bending moments and torque, Qzx and Qzy are shear
stresses, dx and dy are surface electric charges, and jx and jy are surface electric current
densities. Then, we have
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Mx = 2
3 h3(c11

∂ψx
∂x + c12

∂ψy
∂y ),

My = 2
3 h3(c12

∂ψx
∂x + c11

∂ψy
∂y ),

Mxy = 2
3 h3c66(

∂ψx
∂y +

∂ψy
∂x ),

Qzx = 2h [k2
1c44(ψx +

∂w
∂x ) + k1e15

∂φ
∂x ],

Qzy = 2h [k2
2c44(ψy +

∂w
∂y ) + k2e15

∂φ
∂y ],

dx = 2h [k1e15(ψx +
∂w
∂x )− κ11

∂φ
∂x ],

dy = 2h [k2e15(ψy +
∂w
∂y )− κ11

∂φ
∂y ],

jx = 2hq(−n0µ11
∂φ
∂x + D11

∂∆n
∂x ),

jy = 2hq(−n0µ11
∂φ
∂y + D11

∂∆n
∂y ).

(13)

By integrating Equation (5) with z through the plate thickness, the equations of shear
and flexural motions, Gauss’s law, and charge conservation for the 2D plate model are
given by

∂Mx
∂x +

∂Mxy
∂y −Qzx + fx = 2ρh3

3
∂2ψx
∂t2 ,

∂Mxy
∂x +

∂My
∂y −Qzy + fy = 2ρh3

3
∂2ψy
∂t2 ,

∂Qzx
∂x +

∂Qzy
∂y + fz = 2hρ ∂2w

∂t2 ,
∂dx
∂x +

∂dy
∂y + v = −2hq∆n,

∂jx
∂x +

∂jy
∂y + ϑ = 2hq ∂∆n

∂t ,

(14)

where fx, fy, fz, v, and ϑ are the equivalent surface loads, surface electric charge, and surface
electric current density, respectively. They are defined by

fx = [zτzx]
h
−h, fy =

[
zτzy

]h
−h, fz = [σz]

h
−h, v = [Dz]

h
−h, ϑ = [Jz]

h
−h. (15)

When the plate is subjected to a transverse time-harmonic force fz, then fx = fy = 0,
v = 0, and ϑ = 0. The substitution of Equation (13) into Equation (14) yields the governing
equations for the PSC plate

c11
∂2ψx
∂x2 + c66

∂2ψx
∂y2 + (c12 + c66)

∂2ψy
∂x∂y − 3h−2k2c44

(
ψx +

∂w
∂x

)
− 3h−2ke15

∂φ
∂x = ρ

∂2ψx
∂t2 ,

c66
∂2ψy
∂x2 + c11

∂2ψy
∂y2 + (c12 + c66)

∂2ψx
∂x∂y − 3h−2k2c44

(
ψy +

∂w
∂y

)
− 3h−2ke15

∂φ
∂y = ρ

∂2ψy
∂t2 ,

k2c44

(
∂ψx
∂x + ∂2w

∂x2

)
+ ke15

∂2φ

∂x2 + k2c44

(
∂ψy
∂y + ∂2w

∂y2

)
+ ke15

∂2φ

∂y2 + fz = ρ ∂2w
∂t2 ,

−κ11
∂2φ

∂x2 + ke15

(
∂ψx
∂x + ∂2w

∂x2

)
− κ11

∂2φ

∂y2 + ke15

(
∂ψy
∂y + ∂2w

∂y2

)
= −q∆n,

−n0µ11
∂2φ

∂x2 + D11
∂2∆n
∂x2 − n0µ11

∂2φ

∂y2 + D11
∂2∆n
∂y2 = ∂∆n

∂t .

(16)

It is assumed that the four plate edges are fixed, and that contact between metals and
the PSC plate is ohmic. Then, the boundary conditions for the PSC plate are given by

ψx = 0, ψy = 0, w = 0, φ = 0, ∆n = 0, x = 0 and l,
ψx = 0, ψy = 0, w = 0, φ = 0, ∆n = 0, y = 0 and d.

(17)

In addition, the initial state of the PSC plate is considered static, that is

ψx = 0, ψy = 0 w = 0, ∆n = 0,
t = 0∂ψx

∂t = 0, ∂ψy
∂t = 0, ∂w

∂t = 0,
(18)
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3. Modal Analysis

As shown in Figure 1, the upper surface of the PSC plate is under a transverse time-
harmonic force fz = F0 eiωt, where ω is the excitation frequency. For harmonic motion, the
solutions of the governing equations are

ψx
ψy
w
φ

∆n

 =


Ψx
Ψy
W
Φ

∆N

eiωt, (19)

where Ψx, Ψy, W, Φ, and ∆N are extended mode shapes. By substitution of Equation (19)
into Equation (16), the common factor of eiωt can be canceled from the differential equations
Equation (16), then governing equations for Ψx, Ψy, W, Φ, and ∆N can be rewritten as

ρω2Ψx + c11
∂2Ψx
∂x2 + c66

∂2Ψx
∂y2 + (c12 + c66)

∂2Ψy
∂x∂y − 3h−2k2c44(Ψx +

∂W
∂x )− 3h−2ke15

∂Φ
∂x = 0,

ρω2Ψy + c66
∂2Ψy
∂x2 + c11

∂2Ψy
∂y2 + (c12 + c66)

∂2Ψx
∂x∂y − 3h−2k2c44(Ψy +

∂W
∂y )− 3h−2ke15

∂Φ
∂y = 0,

ρω2W + k2c44(
∂Ψx
∂x + ∂2W

∂x2 ) + ke15
∂2Φ
∂x2 + k2c44(

∂Ψy
∂y + ∂2W

∂y2 ) + ke15
∂2Φ
∂y2 + F0 = 0,

−κ11
∂2Φ
∂x2 + ke15(

∂Ψx
∂x + ∂2W

∂x2 )− κ11
∂2Φ
∂y2 + ke15(

∂Ψy
∂y + ∂2W

∂y2 ) = −q∆N,

−iω∆N − n0µ11
∂2Φ
∂x2 + D11

∂2∆N
∂x2 − n0µ11

∂2Φ
∂y2 + D11

∂2∆N
∂y2 = 0.

(20)

The Formula (20) is a partial differential equation set that is hard to solve analytically
with boundary conditions in Formula (17); therefore, the advanced numerical simulation
software COMSOL Multiphysics (version 5.3a) is chosen to solve this steady vibration
problem in PSC plate. With the use of the eigenvalue solver, vibration modals including
nature frequencies ω and extended vibration modes (Ψx, Ψy, W, Φ, and ∆N) can be derived,
and the extended internal forces (Mx, My, Mxy, Qzx, Qzy, dx, dy, jx, and jy) can also be derived.

4. Numerical Examples

As one kind of third-generation semiconductor material, gallium nitride (GaN) is
widely used in new types of intelligent and multifunctional electronic devices due to its
wide bandgap, high piezoelectric, and other excellent functional properties. Therefore,
in the following numerical cases, a GaN plate with a thickness of 2 h = 1 µm, length of
l = 10 µm, and width of d = 10 µm is examined. The material constants of the GaN plate are
listed in Table 1 [28], and the shear correction factors k1 and k2 are set as k1= k2 = 0.9069 [20].
We assume that the applied time-harmonic force fz is a sine wave, and its amplitude is a
constant as F0 = 103 N/m2.

Table 1. The elastic, piezoelectric, and dielectric constants of GaN.

Property Parameter Value Unit

Elastic constant

c11 293.7 GPa
c12 124.1 GPa
c13 158.5 GPa
c33 282.0 GPa
c44 22.3 GPa

Piezoelectric constant e13 −0.52 C m−2

Dielectric constant ε33 9.385 × 10−11 C V−1 m−1

Electron mobility µ11 9.62 × 10−2 m2 V−1 s−1

Diffusion constant d11 2.49 × 10−3 m2 s−1

4.1. Vibration Behaviors

The initial electron concentration n0 was fixed at 1020 m−3 to ensure converged nu-
merical results. The extended vibration modes (W, Φ, and ∆N) of the central point (l/2,
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d/2) in the plate versus the total element number NE were calculated (see Table 2). In the
following calculation, we used NE = 300 × 300 to discretize the PSC plate in consideration
of both the calculation accuracy and efficiency.

Table 2. The values of W, Φ, and ∆N at central point versus the element number NE.

NE

n0 = 1020 (m−3) n0 = 1014 (m−3)

W (10−4 m) Φ (10−2 V) ∆N (1018 m−3) W (10−4 m) Φ (10−1 V) ∆N (1014 m−3)

36 × 36 2.549 6.643 4.020 8.252 8.632 1.796
78 × 78 2.784 6.555 4.307 8.273 8.653 1.802

100 × 100 2.791 6.552 4.316 8.273 8.654 1.802
150 × 150 2.795 6.550 4.321 8.274 8.654 1.802
200 × 200 2.796 6.551 4.321 8.274 8.654 1.802
300 × 300 2.795 6.550 4.321 8.274 8.654 1.802
400 × 400 2.795 6.550 4.321 8.274 8.654 1.802

For the central point (l/2, d/2) of the plate, the absolute value of the deflection W
versus the excitation frequencyω is plotted in Figure 2. Three peaks W occur because of
the resonance and correspond to the first three order natural frequencies ω1, ω2, and ω3,
with values 4.653 × 108 rad/s, 8.305 × 108 rad/s, and 11.265 × 108 rad/s, respectively.
In addition, the electric potential and electron concentration perturbation corresponding
to resonance frequencies also reaches their peaks. In general, a high energy conversion
efficiency for conversing mechanical energy into electrical energy can be realized in a
resonance state; this can be used in the piezoelectric vibration energy harvesters.
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Figure 2. Deflection W versus the driving frequency ω.

We then used the first-order natural frequency as the driving frequency (ω = ω1) and
examined the first-order modal of the PSC plate. Due to the symmetry, all the distribution
patterns of the electromechanical fields along the x-direction are the same as those along the
y-direction. Therefore, only the electromechanical fields along the x-direction were analyzed.
Shear displacement ψx is antisymmetrically distributed around the central line x = l/2 (see
Figure 3a), and extreme values occur at points (l/4, d/2) and (3 l/4, d/2). The distribu-
tions of the deflection W, electric potential Φ, and electron concentration perturbation ∆N
are similar, and all change uniformly. Extreme values all occur at the central point (see
Figure 3b–d) due to the uniformly distributed load and the fixed boundary conditions. In
addition, in Figure 3d, an electron redistribution phenomenon can be clearly observed. This
phenomenon occurs due to electrons spontaneously move to the high potential region.
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Figure 3. Distributions of (a) shear displacement Ψx, (b) deflection W, (c) electric potential Φ, and (d) electron concentration
perturbation ∆N in the plate.

The shear stress Qzx, surface electric charge dx, and surface electric current density
jx are antisymmetric distribution around the central line x = l/2 (see Figure 4a,d,e), and
extreme values of Qzx, dx, and jx all occur at the central points in the left and right fixed
boundaries. The bending moment Mx is symmetrically distributed around the y-axis (see
Figure 4b). The extreme values also occur at the central points of the left and right fixed
boundaries, and the torque Mxy is symmetrically distributed around the diagonal lines of
the plate (see Figure 4c).

4.2. Effects of Initial Electron Concentration

The effects of the initial electron concentration n0 on vibrations were examined. With
decreasing n0, numerical solutions of the electromechanical fields converged more easily.
When n0 = 1014 m−3, the total element number NE = 150 × 150 is used, as shown in Table 2.

The variation in the first natural frequency ω1 of the PSC plate versus n0 is plotted
in Figure 5. The effect of n0 on ω1 is small until it is in the range 1016–1020 m−3, where
ω1 decreases sharply with n0. Figure 5 indicates an electron screening effect, in which
increasing numbers of mobile electrons in the semiconductor will screen the effective
polarization charges when n0 increases. Moreover, Figure 5 indicates that a higher initial
electron concentration can reduce the stiffness of GaN PSC.
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Figure 5. The first natural frequency ω1 versus initial electron concentration n0.

The distributions of the electromechanical fields along the line y = d/2 were analyzed.
We defined the normalized electron concentration perturbation and the surface electric
current density as

∆N = ∆N/n0, jx = jx/(qn0d11). (21)

With fixed boundaries, the deflection W, electric potential Φ, and electron concentration
perturbation ∆N all exhibit parabolic and symmetric distributions about the central line x = l/2,
and extreme values occur at the central point (see Figures 6–8). It is shown that when n0
increases, W and the absolute value of Φ and ∆N all decrease with n0 (see Figures 6–8), and
when n0 is relatively large, such as n0 = 1018 m−3, Φ and ∆N become decrease slowly with
n0 (see Figures 7 and 8). These changes of deflection W, electric potential Φ, and electron
concentration perturbation ∆N with initial concentration n0 all due to the electron screening
effect. As n0 increases, there are more electrons to screen the polarization charge, which
leads to a weaker piezoelectric effect and a decrease of the absolute value of Φ and ∆N.
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Figure 8. Normalized electron concentration perturbation ∆N along the midline y = d/2 versus initial
electron concentration n0.

The electron field Ex and surface electric current density jx exhibit nonlinear and
antisymmetric distributions about the central line at x = l/2 and decrease with increasing
n0 because of electron screening (see Figures 9 and 10). It is shown that the initial elec-
tron concentration has a significant effect on the electromechanical fields and electronic
transport of PSC plates. This phenomenon provides a significant guide for the develop-
ment and optimization of semiconductors devices, such as nanogenerators, sensors, and
field-effect transistors.
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5. Conclusions

Based on the 3D theory of PSC, the first-order shear deformation theory is extended
to develop a simplified 2D plate model for the transient analysis. The flexural vibrations
of the structure under a time-harmonic load were investigated with numerical software
COMSOL. The vibration modes and natural frequencies of the PSC plate were obtained,
and the influence of initial electron concentration on electromechanical behaviors was
deeply discussed. The main results from numerical studies can be summarized as follows.

1. The amplitude of the deflection corresponding to the first resonant frequency is
much larger than those at higher resonant frequencies, and a high energy conversion
efficiency for conversing mechanical energy into electrical energy can be realized in a
resonance state;

2. With the increase in the initial electron concentration, the first-order nature frequency
decreases until it reaches a constant value. This phenomenon indicates that initial
electron concentration plays a role in the stiffness reduction;
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3. Due to the electron screen effect, the deflection, electric field, and electric current den-
sity in the PSC plate all decrease with the increase in the initial electron concentration.

The size effect has a significant effect on the mechanical and electrical properties of
PSC structures at the nanoscale. It is expected that the size effect, such as the surface effect,
can be considered in the vibration analysis of PSC plates.
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