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Asthma is a heterogeneous inflammatory disorder of the airways, and multiple studies have addressed the vital role of the
nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3)/caspase-1/interleukin-1β
(IL-1β) pathway in asthma, but its impact on ovalbumin- (OVA-) induced neutrophilic asthma remains unclear. Here, we
explored this pathway’s effect on airway inflammation in neutrophilic asthma to clarify whether blocking this signaling could
alleviate asthmatic airway inflammation. Using an established OVA-induced neutrophilic asthma mouse model, we provided
asthmatic mice with a highly selective NLRP3 inhibitor, MCC950, and a specific caspase-1 inhibitor, Ac-YVAD-cmk. Our
results indicated that asthmatic mice exhibited increased airway hyperresponsiveness, neutrophil infiltration, and airway
mucus hypersecretion, upregulated retinoid-related orphan receptor-γt (RORγt) mRNA expression, and downregulated fork
head box p3 (Foxp3) mRNA expression, which was concurrent with NLRP3 inflammasome activation and upregulation of
caspase-1, IL-1β, and IL-18 expression in lung. Treatment of NLRP3 inflammasome inhibitors significantly attenuated airway
hyperresponsiveness, airway inflammation, and reversed T helper 17 (Th17)/regulatory T (Treg) cell imbalance in asthmatic
mice. We propose that the NLRP3/caspase-1/IL-1β pathway plays an important role in the pathological process of
neutrophilic asthma and provides evidence that blocking this pathway could potentially be a treatment strategy to ameliorate
airway inflammation in asthma after validation with future experimental and clinical studies.

1. Introduction

Bronchial asthma, referred to as asthma, is a heterogeneous
disease with cough, chest tightness, wheezing, shortness of
breath, and other respiratory symptoms as the main clinical
manifestations. Asthma is an inflammatory disease with air-
way hyperresponsiveness (AHR) and reversible airway
obstruction [1, 2]. There are about 310 million bronchial
asthma patients worldwide. With the continuous deteriora-
tion of air quality and environmental conditions, the inci-
dence of bronchial asthma is increasing year by year [3, 4].
In current clinical treatment, corticosteroids and inhaled

bronchodilators are mainly used to improve asthma; how-
ever, they may also produce undesired side effects, as well
as patient resistance and unresponsiveness to long-term
use. Therefore, there is an urgent need to find new and more
specific asthma therapeutic targets in clinical treatment,
especially for neutrophil subtypes of severe asthma. This
subtype is mainly characterized by neutrophil-dominant air-
way inflammation, increased Th17-mediated immune
responses, and less response to corticosteroids [5, 6].

Recently, a growing number of studies have looked at the
role of inflammasomes in airway diseases. The NLRP3 inflam-
masome is an intracellular sensor that detects damage-
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associated molecular patterns (DAMPs) and pathogen-
associated molecular patterns (PAMPs) and represents a
crucial component of innate immune responses in the airways
[7, 8]. Activated NLRP3 binds to the apoptosis-associated
speck-like protein containing CARD (ASC), which in turn
interacts with the cysteine protease caspase-1 to form a com-
plex called the inflammasome, further leading to caspase-1
activation. Caspase-1 further cleaves the proinflammatory
cytokines IL-1β and IL-18 into their active forms [9, 10]. IL-
1β is a well-recognized inducer of neutrophilia potentially
contributing to the pronounced airway inflammation [11].
IL-18 responds to external factors, triggers lots of proinflam-
matory reactions, and participates in hyperreactivity of the
respiratory tract [12]. In addition, recent evidence indicated
that IL-1β and IL-18 act in synergy with IL-23 to promote
the differentiation of Th17 cells and IL-17A production that
contributes to AHR and neutrophilic airway inflammation
[13, 14]. Accumulating evidence has demonstrated that
NLRP3 inflammasome is involved in the pathogenesis of air-
way inflammation and the process of airway remodeling in
asthma [15, 16]. Mice with allergic asthma induced by OVA
and aluminium adjuvants demonstrated enhanced protein
expression of NLRP3 and caspase-1, along with elevated IL-
1β and IL-18 release by epithelial cells and macrophages in
the airways [17]. Furthermore, in murine models of asthma
induced by OVA or house dust mite (HDM), blocking NLRP3
with specific inhibitor or gene knockout mice significantly
alleviated asthma symptoms [18, 19].

Given this background, the NLRP3/caspase-1/IL-1β
pathway apparently plays an important role in the pathogen-
esis of asthma, but the precise effects of NLRP3 inflamma-
some activation on airway inflammation in an OVA-
induced murine model of neutrophilic asthma remain elusive
and deserve investigation. In our study, female Balb/c mice
were used to establish the neutrophilic asthma model and
simultaneously administered with a high selective NLRP3
inhibitor, MCC950, as well as the specific caspase-1 inhibitor
Ac-YVAD-cmk for therapeutic purposes, and the relation-
ships among NLRP3/caspase-1/IL-1β pathway, neutrophilic
airway inflammation, and Th17/Treg immune responses
were determined.

2. Materials and Methods

2.1. Animals. Six to eight-week old female Balb/c mice (16-
18 g) were obtained from Shanghai Institute of Planned
Parenthood Research (Shanghai, China). Twenty-four mice
of the same strain and sex, with similar age and weight,
were divided into four groups according to the complete
randomization method, and each group contained six ani-
mals. Mice were bred and housed in a specific pathogen-
free (SPF) laboratory with 12hr light-dark cycle and 24-
26°C ambient temperature. Physiological status of mice
was checked 3 times a week before OVA sensitization and
daily after sensitization. Overdose of sodium pentobarbital
by intraperitoneal injection was used before sacrifice in
order to minimize suffering and distress. No seriously ill
or dead mice were found prior to sacrifice. All experiments
were approved by Institutional Animal Care and Use Com-

mittee of Shanghai Jiao Tong University, Shanghai, China
(Permit Number: DWSY2020-0074).

2.2. OVA-Induced Asthma and Interventions. Mice were
divided randomly into four groups: control, neutrophilic
asthma (NA), MCC950, and Ac-YVAD-cmk (A-Y-c), and
each group contained six mice. Control group: mice were
injected subcutaneously with phosphate-buffered saline
(PBS) on day 0 and then inhaled PBS by nebulizer for 20
minutes on days 21 and 22; NA group: mice were sensitized
by subcutaneous injections with 20μg of grade V chicken
egg OVA (Sigma-Aldrich), emulsified in 75μl complete
Freund’s adjuvant (CFA, Sigma-Aldrich) on day 0, and then
exposed to aerosols consisting of 1% OVA on days 21 and
22; MCC950 group: mice were given daily intraperitoneal
injections of MCC950 (50μg/g, Sigma-Aldrich) for three
consecutive days before the aerosols; A-Y-c group: Ac-
YVAD-cmk (5μg/g, Sigma-Aldrich) was administrated into
mice by intraperitoneal injections three hours before each
aerosol inhalation (Figure 1).

2.3. Assessment of Hyperresponsiveness. Twenty-four hours
after the last challenge, pulmonary resistance measure-
ments were performed in anesthetized and mechanically
ventilated mice in response to increasing doses of metha-
choline(Sigma-Aldrich) by ultrasonic nebulization (3.125,
6.25, 12.5, 25, and 50mg/ml), as described in previous
research [20]. Pulmonary resistance measurements were
performed every five minutes after each nebulization step
until a plateau was reached. The resistance index (RI) for
each methacholine concentration represents the results.

2.4. Bronchoalveolar Lavage Fluid (BALF) Collection and
Differential Cell Counts. Mice were sacrificed by overdose
of sodium pentobarbital and bronchoalveolar lavage (BAL)
was performed after the assessment of hyperresponsiveness.
Briefly, the trachea was cannulated, and the lungs were
lavaged 3 times with PBS. The collected BALF was centri-
fuged to obtain a pellet containing BAL cells and superna-
tant. Gently dissolve the pellet in 200μl PBS and store the
supernatant at -80°C for cytokine analysis. Differential cell
counts of at least 300 cells were performed according to
standard morphological criteria on Wright-Giemsa (Beyo-
time, China) stained slides. Cell numbers were counted
and expressed as mean ± SEM per milliliter per group.

2.5. Myeloperoxidase (MPO) Activity Measurement. Mea-
surement of lung MPO activity is to assess neutrophil
inflammation as described in earlier studies [21]. Briefly,
thiobarbituric acid was added to BALF or lung tissue
homogenate, and the mixture was centrifuged to take the
supernatant, which was measured spectrophotometrically
to assess MPO activity.

2.6. Enzyme-Linked Immunosorbent Assay (ELISA). Cyto-
kine concentrations in BALF were measured using specific
mouse IL-1β, IL-18, IL-17A, and IL-10 ELISA kits
(eBioscience). The experimental method was performed
strictly according to the manufacturer’s instructions.
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2.7. Western Blotting. Lung tissues were homogenized with
ice-cold radioimmunoprecipitation assay buffer (Beyotime,
China) containing protease inhibitors and separated on a
12% SDS-polyacrylamide gel. In the next step, the mem-
branes are transferred to polyvinylidene fluoride (PVDF)
membranes and then blocked with 5% nonfat milk in a
Tween 20 buffer. The membranes are then incubated with
the following primary antibodies: rat anti-mouse NLRP3
(2μg/ml, R&D) and goat anti-mouse IL-1β (0.25μg/ml,
R&D). After incubating the samples overnight, the corre-
sponding horseradish peroxidase-conjugated anti-rat or
anti-goat IgG secondary antibodies (1/10000 dilution,
R&D) were added. Band signals were visualized by enhanced
chemiluminescence using an ECL development kit (Beyo-
time, China) according to the manufacturer’s instructions.

2.8. RT-qPCR Analysis. After the lungs were homogenized,
total RNA was extracted using Trizol reagent (Invitrogen),
and the quality of extracted RNA was analyzed using an Agi-
lent 2100 Bioanalyzer (Agilent Technologies). cDNA sam-
ples were obtained by reverse transcription reaction using
PrimeScript Reverse Transcriptase (TaKaRa). ABI Prism
7500 (Applied Biosystems) was used with the following pro-
gram to perform real-time PCR: 95°C for 2min, 95°C for
15 s, 40 cycles of amplification, 58°C for 15 s, and 72°C for
60 s. All primer sequences were synthesized by Shanghai
Biosune Biotechnology Company. Primer were as follows:
GAPDH forward 5′-TGA ACC ACG AGA AAT ATG
ACA AC-3′, reverse 5′-ATG AGC CCT TCC ACA ATG
C-3′; NLRP3 forward 5′-CCT GGT CTG CTG GAT TGT
G-3′, reverse 5′-AGT GGT CTT GGA GGT CTG G-3′;
caspase-1 forward 5′-ATC TTT CTC CGA GGG TTG G-
3′, reverse 5′-AAG TCT TGT GCT CTG GGC AG-3′; IL-
1β forward 5′-TTC AGG CAG GCA GTA TCA C-3′,
reverse 5′-CAG CAG GTT ATC ATC ATC ATC C-3′; IL-
18 forward 5′-ACT GTA CAA CCG CAG TAA TAC-3′,
reverse 5′-AGT GAA CAT TAC AGA TTT ATC CC-3′;
RORγt forward 5′-ATT CAG TAT GTG GTG GAG TTT
G-3′, reverse GTG GTT GTT GGC ATT GTA GG-3′; and

Foxp3 forward 5′-CCA GGA CAG ACC ACA CTT C-3′,
reverse 5′-CGC ACT TGG AGC ACA GG-3′. GAPDH gene
expression was used as a reference for data normalization.
The fold change was calculated by the 2-△△CT method.

2.9. Flow Cytometry (FCM). Mice spleens were isolated, and
cell clumps were disintegrated and filtered using nylon mesh
(70μm pore size) to form a single cell suspension. 1× RBC
lysis buffer (eBioscience) was used to remove the erythro-
cytes. In order to detect Th17 and Treg cells, cells were
treated with a lymphocyte activator mixture (50 ng/ml phor-
bol 12-myristate 13-acetate (PMA, Sigma-Aldrich), 1μg/ml
ionomycin (Peprotech), and 1/1000 dilution brefeldin A
(eBioscience)) for five hours and labeled with surface
markers FITC anti-CD4 mAb (eBioscience) and APC anti-
CD25 mAb (eBioscience). Cells were washed, fixed, and
permeabilized based on instructions from the manufacturer
(eBioscience) and then stained intracellularly with PE-
Cyanine7 anti-IL-17 mAb (Biolegend) or PE-anti-Foxp3
mAb (eBioscience). We electronically gated lymphocytes
according to their forward scatter and side scatter properties,
and then, we detected all labeled cells using FCM on our
CytoFLEX Flow Analyzer. The data were analyzed using
the CytExpert software (version 2.4).

2.10. Lung Histopathological Analysis. After collecting BALF,
the low right lobe of the lungs was preserved in 4% buffered
formaldehyde and paraffin embedded. Lungs were cut into
4μm slices and stained with H&E and PAS to evaluate histo-
logical alterations. Three observers independently scored
peribronchial inflammatory infiltration (0-5) as follows
[22]: 0, normal; 1, a few cells; 2, a ring of inflammatory cells
1 cell layer deep; 3, a ring of inflammatory cells 2 to 4 cells
deep; and 4, a ring of inflammatory cells > 4 cells deep. The
five points of goblet cell hyperplasia in the airway epithelium
are as follows: 0, normal; 1, <25% of the epithelium; 2, 25-
50% of the epithelium; 3, 50-75% of the epithelium; and 4
equaled >75% of the epithelium [23].

2.11. Statistical Analysis. GraphPad Prism 8.3.1 was used for
graphing and statistical analysis. Data were given as mean
± SEM, and group comparisons were made using one-way
ANOVA with Bonferroni post hoc tests for multiple com-
parisons. A value of p < 0:05 was considered statistically
significant.

3. Results

3.1. Blockade of the NLRP3/Caspase-1/IL-1β Pathway
Ameliorated Airway Hyperresponsiveness, Neutrophilic
Airway Inflammation in OVA-Induced Asthma. To explore
the effects of the NLRP3/caspase-1/IL-1β pathway on asth-
matic airway inflammation, we established the murine
model of neutrophilic asthma induced by OVA combined
with CFA. As indicated in Figures 2(a) and 2(b), the NA
group had significantly more bronchial inflammation, epi-
thelial goblet cell hyperplasia, and mucus hypersecretion
than the control group, which alleviated after MCC950 ther-
apy. Aligned with this finding, OVA-challenged mice

0 7

OVA/CFA subcutaneous injection

14 18 19 20 212223 Days

OVA aerosol inhalation
MCC950 intraperitoneal injection
Ac-YVAD-cmk intraperitoneal injection
Sacrificed

Figure 1: Ovalbumin sensitization, challenge, and intervention
protocol. Balb/c mice were systemically sensitized by subcutaneous
injection with OVA/CFA on day 0 and then challenged with OVA
aerosols on days 21 and 22. MCC950 was administrated into mice
by intraperitoneal injections for three consecutive days before the
aerosols. Three hours before each exposure to aerosol, mice were
injected intraperitoneally with Ac-YVAD-cmk. OVA: ovalbumin;
CFA: complete Freund’s adjuvant.
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Figure 2: Continued.
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exhibited significantly increased airway reactivity to metha-
choline accompanied by increased inflammatory cell infiltra-
tion compared to the control group, and the difference was
statistically significant (p < 0:05), including neutrophils,
macrophages, lymphocytes, and eosinophils into the air-
ways. This reaction was reversed with MCC950 treatment
(Figures 2(c) and 2(d)).

To further explore the function of neutrophils, the
MPO activity was measured, and the data showed that its
activity in both BALF and lungs from the asthma group
was significantly increased versus the control group (both
p < 0:05), and these increases were both markedly reversed
by MCC950 (Figure 2(e)). Meanwhile, caspase-1 inhibitor
Ac-YVAD-cmk was also administrated into mice before
aerosol inhalation, and similar results were obtained. It fol-
lows then that inhibition of the NLRP3/caspase-1/IL-1β
pathway attenuates AHR, airway inflammatory infiltration,
and mucus hypersecretion in neutrophilic asthma.

3.2. NLRP3/Caspase-1 Inhibitors Downregulated Inflammasome
Activation and Downstream Factors. To elucidate the effect of
NLRP3 inhibitor MCC950 on the activation of inflammasome,
NLRP3 and IL-1β protein expression was measured by west-
ern blot analysis, the latter being a key downstream effector
of inflammasome. As demonstrated in Figures 3(a) and 3(b),
asthmatic mice’s lung tissue protein levels of NLRP3 and IL-
1 were much greater than controls, whereas MCC950 and
the caspase-1 inhibitor Ac-YVAD-cmk almost eradicated IL-
1 protein expression. The asthmatic group and the two inter-
vention groups had similar NLRP3 expression. ELISA was
used to measure IL-1 and IL-18 levels in BALF. As indicated
in Figure 3(c), OVA-challenged animals showed greater levels
of IL-1 and IL-18 in BALF than control mice (both p < 0:05),
which were lowered by MCC950 and caspase-1 inhibitor.

Then, we used real-time PCR to examine inflammasome-
related factor mRNA expression. The mRNA levels of NLRP3,
caspase-1, and the normal downstream effectors IL-1 and IL-
18 were all higher in NA lung tissue. Both NLRP3 and
caspase-1 inhibitors significantly reduced IL-1 and IL-18
expression (Figure 3(d)). Moreover, MCC950 had no effect
on NLRP3 transcription.

3.3. Blockade of the NLRP3/Caspase-1/IL-1β Pathway
Suppressed Th17-Mediated Immune Responses in OVA-
Induced Neutrophilic Asthma. Since the imbalance of Th17,
Treg cells, and their related cytokines play a vital role in the pro-
gression of asthma [24], we investigated the effects of NLRP3
and caspase-1 inhibitors on Th17-mediated immune responses
in this murine model. The fraction of IL-17A-producing CD4+

T cells (Th17 cells) in spleen was measured using FCM. The
NLRP3 inhibitor MCC950 decreased the fraction of Th17 cells
induced by OVA (Figures 4(a) and 4(b), both p < 0:05). We
performed an ELISA to assess whether MCC950 inhibited
Th17-related cytokine production in BALF. As demonstrated
in Figure 4(c), the NA group had higher levels of IL-17A in
BALF than the control group, although this was decreased
by MCC950 therapy. The expression of the Th17 cell-related
transcription factor RORt in lung tissue was also increased
by OVA (p < 0:05) but decreased by MCC950 (p < 0:05)
(Figure 4(d)). The caspase-1 inhibitor Ac-YVAD-cmk demon-
strated comparable effects to an NLRP3 inhibitor.

3.4. Blockade of the NLRP3/Caspase-1/IL-1β Pathway
Upregulated Treg-Mediated Immune Responses in OVA-
Induced Neutrophilic Asthma. Finally, we determined
whether these inhibitors also have effects on Treg cells in this
model. Figures 5(a) and 5(b) reveal that NLRP3 and caspase-
1 inhibitors restored the loss of Treg cells in CD4+ T cells
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Figure 2: Blockade of the NLRP3/caspase-1/IL-1β pathway ameliorated airway hyperresponsiveness, airway inflammation induced by
ovalbumin. (a) Representative H&E-stained and PAS-stained lung sections of different groups. Original magnification was 200x. (b)
Semiquantification of airway inflammation and PAS staining was performed. (c) Resistance index (RI) to double multiplication
concentration of methacholine (3.125, 6.25, 12.5, 25, and 50mg/ml) was measured. (d) Number of total inflammatory cells, neutrophils,
macrophages, lymphocytes, and eosinophils in BALF. (e) MPO activity in BALF and lung tissue. There were six mice in each group.
Data are expressed as mean ± SEM. Compared to the control group, ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001; compared to the
neutrophilic asthma group, #p < 0:05, ##p < 0:01, and ###p < 0:001. NLRP3: nucleotide-binding oligomerization domain-like receptor
family pyrin domain containing 3; MPO: myeloperoxidase; BALF: bronchoalveolar lavage fluid.
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isolated from spleen. Using ELISA, we found IL-10, a Th17-
related cytokine, in BALF. The content of IL-10 in the BALF
of OVA-challenged mice was substantially lower than in the
control group (p < 0:05). The decrease was due to NLRP3
and caspase-1 inhibitors (Figure 5(c)). Last, we analyzed
Treg cell-related transcription factor Foxp3 mRNA expres-
sion in lung tissue. As shown in Figure 5(d), the expression

of Foxp3 mRNA was also downregulated in the NA group
but elevated in the MCC950 and A-Y-c groups.

4. Discussion

This study demonstrated that blocking the NLRP3/caspase-
1/IL-1 pathway significantly reduced OVA-induced airway
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Figure 3: NLRP3/caspase-1 inhibitor downregulated inflammasome activation and downstream factors. (a, b) Protein expression of NLRP3
(117KD) and IL-1β (35 KD) in lung homogenates was detected by western blot, and densitometric analysis was performed. (c) The
concentration of IL-1β and IL-18 in BALF was quantified by ELISA. (d) mRNA expression of Nlrp3, caspase-1, IL-1β, and IL-18 in lung
homogenates was detected by real-time PCR. Data are expressed as mean ± SEM. n = 6. Compared to the control group, ∗p < 0:05, ∗∗p <
0:01, and ∗∗∗p < 0:001; compared to the neutrophilic asthma group, #p < 0:05, ##p < 0:01, and ###p < 0:001. NLRP3: nucleotide-binding
oligomerization domain-like receptor family pyrin domain containing 3; BALF: bronchoalveolar lavage fluid; ELISA: enzyme-linked
immunosorbent assay; PCR: polymerase chain reaction.
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hyperresponsiveness, inhibited inflammatory cell infiltration
into per bronchial regions, and reduced the number of
inflammatory cells in BALF, while also reversing the Th17/
Treg cell balance in asthmatic patients with neutrophilic air-
way inflammation (NAIR).

Asthma is a heterogeneous airway inflammatory disease
with several clinical phenotypes, of which severe forms char-
acterized by Th17-mediated immune responses and
neutrophil-dominant airway inflammation respond poorly
to corticosteroid [25, 26]. Increasing evidence links increased
airway neutrophil infiltration to glucocorticoid insensitivity
and decreased lung function, possibly due to lack of gluco-
corticoid receptor (GR) expression in neutrophils in the air-
way tissues. In severe asthma, a direct link between Th17
cells and airway inflammation and remodeling processes
has been established [27, 28]. As previously published [29],
we used an OVA-induced neutrophilic asthma mouse model
with airway AHR, neutrophil infiltration, mucus hyperpro-
duction, and increased Th17-mediated immune responses.
Activation of the NLRP3 inflammasome was associated with
increased expression of NLRP3, caspase-1, IL-1, and IL-18 in
mice with neutrophilic asthma. As an inflammasome, NLRP3
is a multiprotein complex that has been linked to allergen-

induced inflammation in the airways [30, 31]. As reported
previously, NLRP3 inflammasome is mainly expressed in air-
way epithelial cells, T cells, and neutrophils [32]. As the first
defense barrier to respond to injuries and pathogens, lung epi-
thelial cells exhibit important protective roles in airway
inflammation, while neutrophils and T cells play crucial roles
in amplification of pulmonary inflammation through release
of multiple inflammatory mediators [33]. Previous studies
have highlighted the role of NLRP3 inflammasome in the
pathogenesis of asthma. Concomitantly, a multitude of clinical
and experimental studies have demonstrated that the expres-
sion of NLRP3 inflammasome is significantly increased in
patients with asthma and asthmatic murine models [34, 35].
A recent research found that inhibiting the NLRP3 inflamma-
some reduced AHR and airway inflammation in a steroid-
resistant asthma mouse model [36]. NLRP3 expression and
MCC950 effects on airway inflammation in neutrophilic asth-
matic mice have not been described. We investigated NLRP3
protein expression in the lungs of OVA-sensitized and chal-
lenged mice to fill this gap. The findings showed that in asth-
matic mice, NLRP3 protein and mRNA expression was
increased relative to the control group. In this paradigm, inhi-
biting NLRP3 with MCC950, a selective small-molecule
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Figure 4: Inhibition of the NLRP3/caspase-1/IL-1β pathway suppressed ovalbumin-induced Th17 cell response. (a, b) Splenocytes were
derived from mice and stimulated with PMA and ionomycin, and after fixed and permeabilized, cells were incubated with extracellular
and intracellular antibodies. Stained cells were run on the CytoFLEX Flow Analyzer and analyzed with the CytExpert software. (c) The
concentration of IL-17A in BALF was quantified by ELISA. (d) mRNA expression of RORγt in lung homogenates was detected by real-
time PCR. Data are expressed as mean ± SEM. n = 6. Compared to the control group, ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001; compared
to the neutrophilic asthma group, #p < 0:05, ##p < 0:01, and ###p < 0:001. NLRP3: nucleotide-binding oligomerization domain-like
receptor family pyrin domain containing 3; PMA: phorbol 12-myristate 13-acetate; BALF: bronchoalveolar lavage fluid; ELISA: enzyme-
linked immunosorbent assay; RORγt: retinoid-related orphan receptor-γt; PCR: polymerase chain reaction.
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inhibitor of NLRP3 inflammasome, significantly reduced
OVA-induced AHR, airway neutrophilic inflammation, and
mucus overproduction.

While it has been confirmed that a blockade of NLRP3
inflammasome activation alleviates neutrophilic airway
inflammation, the precise mechanism involved remains
poorly understood. Activation of the NLRP3 inflammasome
may activate caspase-1, increasing the release of mature IL-1
and IL-18 [37, 38]. Previous research has linked NLRP3-
dependent IL-1 responses to neutrophilic asthma etiology
[36, 39]. Other investigations have indicated that blocking
IL-1 activity with neutralizing antibodies or deleting the
IL-1 receptor prevents asthma development [40]. In the

OVA-induced asthma mouse model, IL-18-deficient animals
had reduced neutrophilic airway inflammation and remod-
eling [41]. Our research found higher IL-1 and IL-18 expres-
sion in the lungs, as well as increased airway neutrophils.
Inflammation caused by OVA involves IL-1 and IL-18. The
NLRP3 inflammasome inhibitor MCC950 and the caspase-
1 inhibitor Ac-YVAD-cmk both lowered IL-1 and IL-18
production in the lungs of OVA-exposed mice, reducing
hyperresponsiveness, inflammation, and airway remodeling.
The findings showed that MCC950 reduced inflammation
by reducing caspase-1, IL-1, and IL-18 expression.

Neutrophil-mediated Th17 cell response has been asso-
ciated to asthmatic neutrophilic inflammatory airway
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Figure 5: Inhibition of the NLRP3/caspase-1/IL-1β pathway upregulated ovalbumin-induced Treg cell response. (a, b) Splenocytes were
derived from mice and fixed and permeabilized, and cells were incubated with extracellular and intracellular antibodies. Stained cells
were run on the CytoFLEX Flow Analyzer and analyzed with CytExpert software. (c) The concentration of IL-10 in BALF was quantified
by ELISA. (d) mRNA expression of Foxp3 in lung homogenates was detected by real-time PCR. Data are expressed as mean ± SEM. n =
6. Compared to the control group, ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001; compared to the neutrophilic asthma group, #p < 0:05,
##p < 0:01, and ###p < 0:001. NLRP3: nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3; BALF;
bronchoalveolar lavage fluid; ELISA: enzyme-linked immunosorbent assay; Foxp3: fork head box p3; PCR: polymerase chain reaction.
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inflammation. Recent research shows that NLRP3 inflam-
masome hyperactivation increases IL-1 production, which
enhances the expression of IRF4 and RORt during Th17
differentiation [42, 43]. Other research has shown that IL-1
or IL-18 in combination with IL-23 may stimulate Th17 cell
IL-17 production [44]. By increasing glucocorticoid insensi-
tivity, smooth muscle hypercontractility, and neutrophil
migration to the airways, IL-17A has been shown to contrib-
ute to the pathophysiology of asthma. Decreased IL-17A
production may potentially contribute to severe asthma
[45–47]. Increasing the number of Th17 cells and IL-17A
protein in neutrophilic asthmatic mice matched these find-
ings. This asthmatic model’s Th17 immune response was
greatly reduced by inhibiting the NLRP3/caspase-1 signaling
pathway with MCC950 or Ac-YVAD-cmk. Paradoxically,
Foxp3+ Treg cells are implicated in immunological homeo-
stasis, suppressing allergic responses, and limiting inflam-
mation in asthma [48]. It has demonstrated that many
Treg-based treatments successfully reduce allergic airway
illness in several animals [49]. As revealed in our work, inhi-
biting NLRP3 inflammasome activation increased Foxp3
mRNA expression and the Treg immunological response.
Our findings showed that inhibiting the NLRP3/caspase-1/
IL-1 pathway helped rebalance Th17/Treg cells in asthma
patients.

5. Conclusion

In a mouse model of OVA-induced neutrophilic inflamma-
tion in asthma, the current research found enhanced NLRP3
inflammasome activation. Furthermore, inhibiting the
NLRP3/caspase-1/IL-1 pathway reduced AHR, inflamma-
tion, and mucus hypersecretion, while increasing Treg-
mediated immune responses. While further research is
needed to pinpoint the exact mechanism, these results pro-
vide light on the etiology of neutrophilic asthma and indi-
cate that blocking the NLRP3/caspase-1/IL-1 pathway
might be a viable asthma treatment target.
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