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Abstract

One of the key mechanisms of transcriptional control are the specific connections between transcription factors (TF) and cis-
regulatory elements in gene promoters. The elucidation of these specific protein-DNA interactions is crucial to gain insights
into the complex regulatory mechanisms and networks underlying the adaptation of organisms to dynamically changing
environmental conditions. As experimental techniques for determining TF binding sites are expensive and mostly
performed for selected TFs only, accurate computational approaches are needed to analyze transcriptional regulation in
eukaryotes on a genome-wide level. We implemented a four-step classification workflow which for a given protein
sequence (1) discriminates TFs from other proteins, (2) determines the structural superclass of TFs, (3) identifies the DNA-
binding domains of TFs and (4) predicts their cis-acting DNA motif. While existing tools were extended and adapted for
performing the latter two prediction steps, the first two steps are based on a novel numeric sequence representation which
allows for combining existing knowledge from a BLAST scan with robust machine learning-based classification. By
evaluation on a set of experimentally confirmed TFs and non-TFs, we demonstrate that our new protein sequence
representation facilitates more reliable identification and structural classification of TFs than previously proposed sequence-
derived features. The algorithms underlying our proposed methodology are implemented in the two complementary tools
TFpredict and SABINE. The online and stand-alone versions of TFpredict and SABINE are freely available to academics at
http://www.cogsys.cs.uni-tuebingen.de/software/TFpredict/ and http://www.cogsys.cs.uni-tuebingen.de/software/SABINE/.
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Introduction

Transcription factors (TF) are the key regulators of cell- and

tissue-specific regulation of gene expression and play a crucial role

in the orchestration of diverse biological processes, such as cell

differentiation and the adaptation to changed environmental

conditions [1–3]. The induction or activation of target genes is

achieved by the specific recognition of a DNA-motif located in the

corresponding promoter regions, which is specifically recognized

by the DNA-binding domain(s) of a TF. The specific interactions

between TFs and their target genes are of high relevance for a

more profound understanding of transcriptional gene expression

in eukaryotes.

As experimental techniques for characterizing the structure and

determining the binding sites of TFs are expensive and mostly

performed for individual factors only, there is a need for accurate

computational methods, which can be employed in large-scale

studies aimed at the genome-wide analysis of transcriptional

regulation in eukaryotic model organisms.

Within the last years, diverse computational approaches have

been developed for the identification and structural characteriza-

tion of TFs. In most cases, these methods rely on sequence

homology and use heuristic alignment methods (e.g., BLAST or

PSI-BLAST) to identify proteins, which are structurally similar

and functionally related to a given input protein [4,5]. Besides

these alignment-based methods, diverse machine learning-based

methods have been designed for protein sequence classification.

All of these approaches involve the computation of a numerical

feature representation of the input sequence and the training of a

supervised classifier on a set of labeled sequences. For the feature

representation approaches using the single amino acid composi-

tion, the dipeptide composition or a pseudo-amino acid compo-

sition have been proposed [6,7]. More recently, PSSM profile

features generated by PSI-BLAST, or functional domain compo-

sition features generated by InterProScan were successfully

employed for characterizing proteins with respect to functional

classes, subcellular locations, or certain structural properties [8–

11]. Among many other supervised learning algorithms, artificial

neural networks, SVMs, and HMMs were adopted to train

abstract models for the prediction of protein attributes based on

various features derived from their amino acid sequences [12–14].
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The problem of predicting TF binding specificities has also been

previously addressed by various studies employing diverse

computational approaches. The pioneering methods in this field

infer deterministic rules from the empirical inspection of protein-

DNA complexes, i.e., individual amino acid binding preferences

are deduced from the observed frequencies of contacts with

specific nucleotides [15]. Tan et al. propose a comparative

genomics approach to connect novel TFs with DNA-binding

motifs in E. coli [16]. More recently, Morozov et al. inferred

position frequency matrices (PFMs) from protein-DNA complexes

and predicted binding sites of 67 TFs of S. cerevisiae using a

Bayesian Gibbs sampling algorithm in combination with structural

homology models [17].

Here, we present a four-step classification workflow for the

structural and functional characterization of TFs, which combines

homology-derived knowledge with supervised learning techniques

for the prediction of protein characteristics. Given a set of protein

sequences, our method 1) identifies the TFs among these

sequences, 2) predicts their structural superclasses, 3) identifies

their DNA-binding domains, and 4) infers their DNA motif. The

first two steps are performed using machine learning-based

classifiers trained on a novel feature representation for protein

sequences, which is here demonstrated to increase the prediction

accuracy of common supervised classifiers when compared to

feature types proposed in preceding related studies. In the third

step known protein domains are detected in the input sequences

using the tool InterProScan and the DNA-binding domains are

selected based on specific GO terms attributed to these domains.

Finally, a recently published algorithm adopting Support Vector

Regression (SVR) is used to identify TFs with similar DNA-

binding specificities based on their DNA-binding domain sequence

similarity to the input TF [18]. We improved the algorithm in

order to increase the chance that a PFM can be transferred to a

given TF. Furthermore, the prediction accuracy has been

evaluated depending on diverse types of sequence similarity scores

that are used as predictive features for SVR model construction.

The described algorithms are implemented in the user-friendly

tools TFpredict and SABINE, which are freely available to

academic researchers. For convenience, both tools were integrated

into a web-based bioinformatics pipeline for the structural and

functional annotation of transcription factors.

Methods

Generation of the validation datasets
First, we obtained protein sequences of TFs from the expert

curated databases TRANSFAC (version 2012.2) and MatBase

(version 8.2) [19,20]. If a TF was contained in both databases the

corresponding entries were merged in order to generate a non-

redundant dataset. For each TF entry, we extracted the

corresponding EntrezGene ID, organism, and PFMs. The protein

sequences were obtained from UniProt, and missing superclass

annotations were taken from TRANSFAC [21,22]. Protein

domains were either extracted from UniProt or predicted using

InterProScan (version 4.6). Subsequently, these domains were

filtered using a predefined set of GO terms (all child terms of

‘‘DNA-binding’’), in order to specifically filter DNA-binding

domains. Then, 41,622 non-TF proteins were extracted from

UniProt (release 2012_06), using the key words kinase, ubiquitin,

actin, antigen, biotin, histone, chaperone, tubulin, transmembrane protein,

endonuclease, exonuclease, translation initiation factor in the database

query, as previously done by Zheng et al. [14,23]. In order to

reduce the chance of mislabeling errors and thereby, ensure

sufficient quality of our validation set, we refined the automatic

labeling procedure proposed by Zheng et al. by adding diverse

post-filtering steps. First, we removed all obviously mislabeled non-

TFs, for which entries existed in the TF databases TRANSFAC

and MatBase. Second, we excluded all putative non-TFs that were

associated to the TF-specific GO term ‘‘sequence-specific DNA

binding transcription factor activity’’ (GO:0003700). Due to these

post-filtering steps, 374 (2.6%) non-TFs that are expected to have

a high chance of being mislabeled could be identified.

In order to reduce the redundancy among the 3,340 TF

sequences, we employed the clustering tool CD-HIT, which

selected 1,487 representative sequences using a sequence similarity

threshold of 80% [24]. The number of non-TFs was then chosen

based on the ratio 1:10 for TFs to non-TFs, which we would

expect in eukaryotes based on previous studies [25,26]. Using a

sequence identity threshold of 56% in CD-HIT, we obtained a

strongly homology-reduced set of 14,814 non-TFs. On the basis of

the compiled sets of proteins, we evaluated the prediction accuracy

of different classification steps, namely TF/non-TF classification,

superclass prediction and PFM inference. Finally, we excluded all

proteins for which no domains could be identified by InterProScan

or for which no BLAST hits were reported, because some of the

feature types considered in our comparison could not appropri-

ately represent these proteins. Consequently, our final validation

set contained 1,485 TFs and 14,032 non-TFs. After subdividing

the TF sequences based on their structural superclasses, the

validation set encompassed 271 Basic domain, 228 Zinc finger,

787 Helix-turn-helix, 101 Beta scaffold, and 98 other TF

sequences. Dataset S1 contains all TF and non-TF sequences in

FASTA format.

Generation of BLAST score percentile features
In order to combine the benefits of homology-based approaches

with robust machine learning-based prediction models for the

identification and classification of TFs, we conceived a novel

feature representation for primary protein structures, which

captures their homology relations to proteins of known class. For

this purpose, we developed the BLAST score percentile features,

which enable the incorporation of the results from a BLAST

search into state-of-the-art machine learning methods for super-

vised classification. The idea is to transform a BLAST result, i.e., a

list of hits each associated with a bit score, into a feature vector of

fixed size. The bit score S0~
lS{ ln K

ln 2
is derived from the raw

score S and the constants K and l, which depend on the used

scoring system which is in our application provided by the

BLOSUM62 substitution matrix [27]. The raw score S, which

equals the sum of BLOSUM62 substitution matrix scores across all

amino acid pairs aligned between the query and hit sequence is

converted into a normalized bit score, which is comparable

between different scoring schemes [27]. In this work, the bit score

distributions obtained for the hits of each protein class (TF and

non-TF) were represented by means of percentiles. For TF/non-

TF classification, we computed the minimum, lower quartile,

median, upper quartile and maximum of the bit scores assigned to

BLAST hits which are known TFs. Analogously, a 5-dimensional

percentile feature vector was computed to capture the bit score

distribution of the non-TF hits. The final feature vector is then

obtained by concatenation of the two class-specific components.

For superclass prediction the protein sequences were mapped to

25-dimensional feature vectors composed of 5 components, each

corresponding to a certain superclass and capturing the specific bit

score distribution observed for the respective hits.

Prediction of Transcription Factor Characteristics
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Generation of PSSM profile features
The use of homology-based features for the detection of DNA-

binding proteins, such as TFs, was previously proposed by Kumar

et al., who introduced a PSSM-based feature representation, which

exploits evolutionary information for classification of protein

sequences [28]. First, the tool PSI-BLAST is used to generate a

position-specific scoring matrix (PSSM) built from the hits of a

local alignment of the query sequence against a sequence database.

The iterative PSI-BLAST heuristic identifies proteins containing

similar subsequences and merges these hits into an n620 PSSM

profile, which is refined until convergence in a predefined number

of further BLAST runs. In order to transform the PSSM into a

feature representation with a fixed number of dimensions, the

n620 PSSM is transformed into a 20620 matrix by summing up

rows that correspond to same amino acid. After dividing each

value by the sequence length and scaling the result using the

function f : R?½0,1� with f (x)~
1

1ze{x
the modified 20620

matrix is written as a 400-dimensional feature vector.

Generation of k-mer features
Another approach, which is in wide and common use for the

numerical feature representation of amino acid sequences, is based

on the presence or frequency of subsequences of length k. The

basic idea of these k-mer features is to represent a sequence by the

subsequences of length k, which are contained therein. For a fixed

k, a feature vector containing 20k components is generated, where

each component represents a certain k-mer. Then the number of

occurrences of each k-mer is used as feature representation for a

given protein sequence [29].

Generation of pseudo amino acid features
The naive approach for obtaining a feature representation of a

protein sequence is to use the relative frequencies of each amino

acid. As this trivial feature type does not capture any information

on the sequence order, the pseudo amino acid features were

proposed as a complementary feature type [6]. In essence, these

features score the physicochemical similarities H(Ri, Rj) of two

contiguous amino acids Ri and Rj. These correlation scores are

then averaged across all pairs of amino acids which have a distance

i [ {1,…, l} to each other in order to compute the i-th tier

correlation factors h1, …, hl. After a final scaling step a feature

vector containing 20 features capturing amino acid frequencies

and l features incorporating the sequence order is generated.

Generation of functional domain composition features
An approach, which was successfully used by Zheng et al. for the

detection and classification of TFs, is to represent a protein

sequence by its domain composition [11]. Known protein domains

and functional sites within the given sequence can, for instance, be

identified based on profile-HMMs using the tool InterProScan

[30]. A sequence is then represented by a binary feature vector

containing a component for each protein domain that was found

in one of the training sequences. If a certain domain was found in

the input sequence, the respective component is set to 1 and

otherwise to 0.

Classification of protein sequences
Different protein sequence representations were incorporated as

features into the classifiers SVM, KNN, Naive Bayes, Decision

Tree and Random Forest implemented in the WEKA package

[31]. A 464-fold nested cross-validation was performed in order to

assess the classification performance. To this end, the validation

data was split by stratified sampling, in order to maintain the

original class distribution in each subset. Model parameters were

tuned in an unbiased manner by performing an inner cross-

validation on the training data of each outer cross-validation split.

A summary value of the classification performance was then

obtained by calculating the average area under the ROC curve

(avgROC). As the avgROC is only applicable to assessing the

performance of binary classifiers, we split the superclass prediction

task into five one-versus-rest classification tasks and averaged the

corresponding ROC scores.

Superclass prediction method by Zheng et al.
In contrast to our approach, which combines five binary one-

versus-rest classifiers for the discrimination between five structural

superclasses of TFs, the state-of-the-art method proposed by

Zheng et al. employs the concept of Error-Correcting Output

Codes (ECOC) for constructing a multiclass meta-classifier on top

of multiple two-class SVMs. According to Dietterich et al., who

first described this methodology, a code of length lk~2k{1{1 is

required to solve a k-class problem [32]. The code length lk
directly corresponds to the number of binary classifiers needed to

solve the multiclass learning problem. Hence, Zheng et al. had to

integrate the prediction outcomes of seven SVMs for distinguish-

ing between the four main superclasses: Basic domain, Zinc finger,

Helix-turn-helix and Beta scaffold [14,21]. Since in this work we

also account for the fifth superclass ‘‘Other’’, we extended the

Zheng method to the five-class learning problem evaluated here,

which requires the training of 15 binary SVM classifiers. Following

the definition of ECOC given by Dietterich et al., we constructed

an exhaustive code for five classes as illustrated in Table 1 [32].

Positively and negatively labeled TFs were determined for each

SVM according to the bit strings corresponding to the columns of

Table 1. In order to predict the class of an input protein sequence,

the binary outcomes of the 15 classifiers were concatenated to a bit

string of length 15, and the hamming distance to each row in

Table 1 was calculated. As each row corresponds to a certain

superclass, the predicted class can be obtained from the row with

the shortest hamming distance. If the row could be unambiguously

determined by minimum distance decoding, a probability of 1 was

assigned to the corresponding class and all other classes were given

a probability of 0. If multiple rows with minimum distance existed,

we assigned equal probabilities to each of the corresponding

classes.

Identification of DNA-binding domains
The stand-alone version of the tool InterProScan (http://www.

ebi.ac.uk/Tools/pfa/iprscan) was downloaded from EMBL-EBI

and locally installed. All protein signature recognition methods

provided by InterProScan were used to predict functional

domains. Default parameters were used, except that the option

for returning Gene Ontology (GO) terms for each identified

protein domain was switched on. Based on the GO term

associations the DNA-binding domains among the domains

returned by InterproScan could be filtered. For this purpose, a

list containing the GO identifiers of the molecular function ‘‘DNA-

binding’’ and of all sub-categories was obtained from the GO

project website (http://www.geneontology.org).

Inference of DNA motifs
The prediction of the DNA motif that is specifically recognized

by a given TF was performed based on the improved version of a

recently published algorithm, which is implemented in the current

version of the tool SABINE [18]. SABINE (Stand-Alone BINding

Prediction of Transcription Factor Characteristics
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specificity Estimator) compares a given transcription factor to a

predefined set of TFs for which experimentally confirmed DNA

motifs are available from appropriate databases (e.g., TRANS-

FAC, MatBase or JASPAR) [19,20,33]. Based on various features

capturing evolutionary, structural, and physicochemical similari-

ties of the DNA-binding domains, the PFM similarity is predicted

by means of Support Vector Regression (SVR). The best matches,

i.e., the TFs with highest predicted PFM similarity to the factor of

interest, are filtered based on a predefined PFM similarity

threshold (Figure 1A), which is dynamically chosen in the current

version of SABINE. Then an outlier filter is applied, which avoids

the merging of dissimilar PFMs. By filtering PFMs with high

relative average distance to the other matrices, the filter ensures

homogeneity of the remaining PFMs (Figure 1B). The merging of

the PFMs is performed using a progressive alignment algorithm

implemented in the tool STAMP, which successively aligns the

DNA motifs of the best matches along a guide tree (Figure 1C).

The resulting consensus binding profile of the filtered best matches

corresponds to the predicted DNA motif.

Assessment of the PFM transfer error
The correspondence between the predicted and experimentally

confirmed PFMs was assessed based on the Smax-log-odds score,

which was proposed as a PFM similarity measure by Pape et al.

[34]. Given two PFMs X and Y the authors compute the

probability cX,Y(k) of a hit of X which overlaps at the k-th position

with a hit of Y in a random DNA sequence. Next, the log ratio

SX ,Y (k)~ log
cX ,Y (k)

aX
:aY

of cX,Y(k) and the joint probability aX
:aY

that a hit was independently created by X and Y at this position is

calculated. By computing the maximum across all offsets k

between the hits of X and Y and across all possible orders (i.e.,

XY and YX) and orientations (i.e., forward and reverse strand) of

the DNA motifs, the log-odds score Smax(X ,Y ) is computed

according to the following equation, where ~XX and ~YY denote the

reverse complements of the PFMs X and Y, respectively:

Smax(X ,Y )~

max max
k

SX ,Y (k)f g, max
k

S ~XX ,Y (k)
n o

, max
k

SY ,X (k)f g, max
k

S ~YY ,X (k)
n o� �

:

For the sake of better interpretability the PFM similarity score

Smax(X ,Y ) was normalized using the geometric mean of the

similarities computed for the comparison of X and Y, respectively,

against itself:

�SSmax(X ,Y )~
Smax(X ,Y )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Smax(X ,X ):Smax(Y ,Y )
p :

Finally, the normalized PFM similarity score was converted into

a distance �DDmax(X ,Y )~1{�SSmax(X ,Y ) defined on the interval [0,

1] which was used to assess the PFM transfer error, i.e., the

deviation between the predicted and experimentally confirmed

DNA motif of a TF, in a 4-fold stratified cross-validation

procedure.

Implementation of TFpredict
As SABINE requires the structural superclass, and the DNA-

binding domains of a given input TF, we developed the tool

TFpredict, which infers all structural properties of TFs needed by

SABINE. As described in more detail above, these characteristics

are obtained from SVM classifiers trained on BLAST-based

features (Figure 2) and from the tool InterProScan. TFpredict is

completely implemented in JavaTM. It uses the online version of

InterProScan for DNA-binding domain identification and employs

classifiers from the Weka package for TF/non-TF classification

and superclass prediction [30,31]. In order to more effectively

exploit the domain information acquired from InterProScan, the

user can choose if predictions shall be made based on character-

istic domains, which were specifically observed in TFs of a certain

superclass during training. The calculation of the bit score

percentile features, used for numerical protein sequence represen-

tation, involves the use of the sequence similarity search tool

BLAST+ [35]. TFpredict runs out of the box on any system,

provided that a JavaTM virtual machine is installed.

Implementation of SABINE
SABINE is also implemented in Java, but requires a Linux

platform, as it depends on diverse platform-dependent third-party

software packages. For domain sequence similarity estimation,

SABINE uses alignment methods implemented in BioJava as well

as several sequence kernels (e.g., Local Alignment Kernel,

Mismatch Kernel, SVM-pairwise score) [29,36–39]. To estimate

the structural domain similarity of TFs, we integrated PSIPRED

to predict secondary structures [40]. We measure PFM similarity

using MoSta and for the merging of best match PFMs the tool

STAMP is applied [34,41]. For training and evaluation of the

Support Vector Regression models the libSVM implementation

was used [42]. Since the last release, SABINE was enhanced with

various features, which simplify the usage and increase the

Table 1. Exhaustive Error-Correcting Output Code for TF superclass prediction.

SVM classifier

Superclass 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Other 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Basic domain 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

Zinc finger 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1

Helix-turn-helix 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

Beta scaffold 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

The table shows the code used for the construction of a 5-class ECOC classifier which integrates the prediction outcomes of 15 binary SVM classifiers. Each column
corresponds to a two-class SVM, which treats structural classes assigned to 1 as positives and classes assigned to 0 as negatives. The rows correspond to the 5
superclasses. Each entry (bit) in the table equals to the binary prediction outcome expected from a certain SVM classifier for a query protein of a specific superclass.
doi:10.1371/journal.pone.0082238.t001

Prediction of Transcription Factor Characteristics
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applicability of the tool. A graphical interface and a publicly

available online version of SABINE were implemented. Further-

more, a convenient installation script is provided for the stand-

alone version of the tool. The best match threshold parameter (see

Methods section) is now dynamically chosen, depending on the

quality of the best matches, such that there is an increased chance

that a DNA motif can be predicted for the given input TF.

Furthermore, a confidence is now associated with each prediction.

Results and Discussion

Discrimination of TFs from other proteins
We evaluated the performance of different sequence-based

feature types for the prediction of relevant structural and

functional attributes of specific transcription factors. Seizing and

combining the main concepts of homology-based and machine

learning-based approaches, we created a numerical sequence

representation, which enables the accurate discrimination of TFs

from other proteins (Figure 2). In a comparison against published

protein sequence representations in terms of the average

performance achieved by widely used supervised classification

methods, our bit score percentile features were ranked first

(Figure 3). The performance was assessed on a homology-reduced

set of protein sequences, containing 1,485 TFs and 14,406 non-

TFs, based on the average area under the ROC curve resulting

from a 464-fold nested, stratified cross-validation.

From Figure 3 it becomes apparent that most feature types

achieve less sensitivity (,0.9) at an equally high specificity of 0.98

when compared to the naive method that simply predicts the class

of the best BLAST hit among the homology-reduced set of

training sequences with less than 100% sequence identity to the

query protein. Interestingly, only the feature types that incorporate

prior knowledge about either protein function of homologues or

functional domain composition are capable of achieving compa-

rable or higher classification accuracy than the naive method.

While the performance observed for the domain-based features

still leaves some room for improvement and shows a stronger

dependency on the chosen machine learning technique, a nearly

perfect classification outcome was found for the bit score percentile

features independent of the employed classifier. It is also notable

that the TF prediction performance of pseudo-amino acid features

is increased for most classifiers when compared to PSSM profile

and k-mer features, respectively. This result may in part be

explained by the fact that pseudo-amino acid features account for

the sequence order to some degree while this information is

completely lost by PSSM compression and k-mer fragmentation,

respectively. The average performance measured in terms of ROC

score for each classification method is depicted in Figure S1. In

summary, SVM, KNN and Random Forest, which achieved a

Figure 1. Bioinformatics pipeline for the structural and functional annotation of transcription factors. First the input protein sequence
is aligned to a non-redundant protein database using the BLAST heuristic. The bit score distributions of the TFs and non-TFs among the BLAST hits
are represented by means of percentiles. These percentiles are incorporated into SVM classifiers for the discrimination of TFs from non-TFs (Step 1). If
a given protein sequence was classified as a TF, another SVM is applied to predict its structural superclass (Step 2). The tool InterProScan is used to
predict the functional domains of the TF and the DNA-binding domains among these are identified based on the associated GO terms (Step 3).
Finally, the tool SABINE infers a DNA motif using an SVR-based algorithm (see Methods section) that takes the structural superclass and DNA-binding
domains of the TF as input (Step 4).
doi:10.1371/journal.pone.0082238.g001

Prediction of Transcription Factor Characteristics
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Figure 2. Calculation of BLAST bit score percentile features. The protein sequence is aligned to TF and non-TF sequences in a non-redundant
sequence database, which does not contain the input sequence itself. Next, the bit scores of all TFs and non-TFs among the BLAST hits are extracted
from the BLAST result. The bit score distributions observed for TFs and non-TFs, respectively, are represented based on the minimum p0, the lower
quartile p25, the median p50, the upper quartile p75 and the maximum p100. The bit score feature representation is then obtained by concatenation of
the components calculated for the TF and non-TF class. In addition to binary classification tasks this feature representation is also applicable to
multiclass problems, such as the prediction of TF superclasses. For this purpose, the feature vector components capturing the bit score distributions
of each superclass were concatenated.
doi:10.1371/journal.pone.0082238.g002

Figure 3. Evaluation of classifiers and feature types for TF/non-TF discrimination. (A) Each of the shown curves corresponds to one of five
supervised machine learning methods trained on our novel bit score percentile features, which were employed to distinguish TFs from other
proteins. The individual curves obtained for each of the four cross-validation folds were averaged based on the class discrimination cutoffs. Averaged
ROC curves were computed in an analogous manner for (B) k-mer features, (C) PSSM profile features, (D) functional domain features and (E) pseudo
amino acid features. The sensitivity and specificity achieved by the naive BLAST-based approach correspond to a single point in ROC space marked by
an asterisk.
doi:10.1371/journal.pone.0082238.g003

Prediction of Transcription Factor Characteristics
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mean ROC score (avgROC) greater than 0.93, performed

considerably better on the task of separating TFs from non-TFs

than Naive Bayes (avgROC = 0.82) and Decision Tree (avgROC

= 0.86).

For all approaches that involve the use of BLAST (i.e., the naive

method, the PSSM profile and the bit score percentile features) a

prediction is only possible, if at least one hit with sufficient

sequence similarity to the input protein is detected in the sequence

database. This issue prevented us from making a prediction for 14

(0.1%) of the proteins in our dataset and was only observed for

non-TFs, as a consequence of the more stringent similarity

threshold (80% for TFs and 56% for non-TFs), which was used to

reduce sequence redundancy. However, a considerably higher

limitation of the prediction rate was observed for the functional

domain features. As InterProScan was not able to identify any

known domains for 397 proteins, a prediction was not possible for

2.4% of the sequences. In summary, the comparison of the two

feature representations, which permitted higher classification

performance than the naive approach, showed that our novel bit

score percentile features offer a significantly higher chance that a

prediction is possible than the functional domain features.

Prediction of transcription factor superclasses
In order to assess the performance achieved by different

combinations of classifiers and features for superclass prediction,

the ROC scores of binary one-versus-rest classifiers were

determined by a 464 nested cross-validation for each of the five

superclasses and then the average was calculated. Using the naive

approach a mean sensitivity of 0.84 was obtained at a specificity of

0.97. A significantly weaker performance was observed for PSSM

profile, pseudo-amino acid and k-mer features (Figure 4). While

the achieved classification performance was independent of the

classification method for the former two feature types, the

accuracy achieved with k-mer features was particularly high when

used in combination with SVM. The benefits of k-mers as feature

representation for SVMs have been previously demonstrated by

Leslie et al., who first introduced the k-mer-based spectrum and

mismatch kernels [29,38].

As stated for TF/non-TF classification, the bit score percentile

and functional domain features stand out as the most powerful

numerical representations of protein sequences. Both feature types

facilitate the nearly error-free assignment (avgROC .0.98) of TFs

to their structural superclasses. Strikingly, less misclassification was

found for sequences represented by bit score percentiles. The best

average classification performance was achieved by the Random

Forest and SVM (avgROC .0.9). The remaining three classifiers

achieved mean ROC scores between 0.83 and 0.89 (Figure S2 B).

When assessing the classification error separately for each one-

versus-rest classifier trained for the specific recognition of a certain

superclass, we observed that the most reliable predictions were

made for the zinc finger class (Figure S2 C). Nevertheless, reliable

predictions may not be possible for specific families of TFs, such as

C2H2-type zinc fingers proteins. This problem arises from the fact

that C2H2-type DNA-binding domains (IPR013087) do not

specifically occur in Zinc finger TFs, but also in non-TF proteins

with DNA-binding activity (e.g., Q9STM3, Q6P2A1) or TFs

attributed to other superclasses (e.g., P15336, Q3T921), due to a

structurally different, second DNA-binding domain. Consequent-

ly, approaches that infer structural TF classes based on sequence

homology may fail or produce ambiguous prediction outcomes,

because of the structural heterogeneity of the local alignment hits.

In order to systematically screen for problematic TF instances

and families, TFpredict was applied to a large set of protein

sequences, comprising 6,314 TFs with superclass annotations from

TRANSFAC. The results from this global analysis can be found in

Table S1. In short, 192 of 6,314 (3%) proteins were not identified

as TFs and for 500 of 6,122 (8%) proteins recognized as TFs, a

wrong superclass was predicted. Among the 192 unrecognized TFs

144 (75%) proteins are C2H2-type zinc fingers (2.3), which can

hardly be discriminated from C2H2-type DNA-binding non-TFs,

due to a high local sequence homology and similar domain

composition. For all other problematic TF classes less than ten

undetected TFs were observed. These classes include bZIP (1.1),

bHLH (1.2), Tryptophan clusters (3.5), Homeo domain (3.1),

Heteromeric CCAAT factors (4.8), Fork head/winged helix (3.3),

and Runt (4.11) factors. Consistently, 308 (62%), of the 500

misclassified TFs belong to the C2H2-type zinc finger factors. We

found that the high degree of misclassification observed for the

C2H2-type TFs is in most cases a consequence of the structural

heterogeneity of the detected BLAST hits. This heterogeneity

arises from the fact that in our homology-reduced BLAST

database many TFs harboring Cys2His2-type zinc finger domains

are not labeled as Zink fingers, due to a second DNA-binding

domain (e.g., bZIP or homeo domain), which determines their

superclass. Besides many problematic factors belonging to the

Cys2His2-type zinc fingers (2.3), we found that TFs from the

classes HMGI(Y) (0.2.), HMG (4.7), bZIP (1.1) and bHLH (1.2)

were also overrepresented among the misclassified TFs.

The sequence-based identification of TFs and their subsequent

structural classification has already been performed by Zheng

et al., who adopted SVMs in conjunction with functional domain

features for this task. Zheng et al. evaluated their approach by jack-

knife cross-validation on a set of 138 TFs with annotated

superclass, which amounts to less than one tenth of the training

and validation data used in this study. In contrast to Zheng et al.

we used nested cross-validation in order to ensure unbiased

selection of optimized model parameters, and assessed the

performance based on the average area under the ROC curve

instead of the accuracy. Since the accuracy may be inconclusive

for imbalanced datasets, we chose the avgROC, which is firstly

insensitive to changes in the class distribution and secondly

considers multiple thresholds for class discrimination.

Comparison to existing methods for the identification
and classification of TFs

Within the last years different tools have been developed for the

sequence-based computational prediction of specific protein

classes. For instance, Kumar et al. developed the tool DNAbinder

() for the specific recognition of DNA-binding proteins. In brief,

their method employs SVM classifiers trained on PSSM profile

features capturing evolutionary information [28]. More recently,

Zheng et al. implemented TFMiner that adopts an SVM classifier

trained on functional domain features for TF identification and

discriminates between four structural superclasses by means of

multiple SVMs combined with ECOC [14].

For the comparison presented here, the methods presented

earlier by Kumar et al. and Zheng et al., respectively, were re-

implemented according to the authors’ descriptions, to ensure a

fair performance comparison on a common validation dataset

using the same randomly determined 464 cross-validation splits

for each method. Since the web-tool DNAbinder by Kumar et al.

was designed for the detection of DNA-binding proteins, which

also includes specific families of non-TF proteins (e.g., RNA

polymerases, DNA methyltransferases, etc.), a retraining of the

corresponding SVM models was required for the sake of fairness.

Due to the fact that Kumar’s method can be straightforwardly

extended to the prediction of superclasses by use of multiclass

SVMs, we also investigated the suitability of this method for
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solving the second classification step. As Zheng et al. confined their

analysis to four of the five possible TF superclasses, their method

was also adapted to overcome its limited applicability to the here

considered 5-class learning problem (see Methods).

From Figure 5 it becomes apparent that only our method

increases in terms of sensitivity at equal specificity as compared to

the naive method. Furthermore, it can be concluded that the

Zheng method clearly offers an increased performance in relation

to the Kumar method. Surprisingly, the complex ECOC-based

multiclass SVM (avgROC = 0.898), which requires 3 times the

computational cost, was clearly outperformed by an ordinary one-

versus-rest multiclass SVM (avgROC = 0.977, see orange curve in

Figure 4D).

Identification of DNA-binding domains
As our algorithm for DNA motif prediction requires the

sequence intervals spanned by the DNA-binding domains of a

given TF, the tool InterProScan which scans a given amino acid

sequence using models of known domains (e.g., profile HMMs)

was integrated into our four-step prediction framework. Since the

tool returns the corresponding Gene Ontology (GO) terms

associated to each of the identified domains, we were able to

specifically filter the DNA-binding domains. We did not assess the

quality of the retrieved DNA-binding domain annotations,

because this information is either obtained from the external

database InterPro or predicted by the tool InterProScan [30,43].

Due to the fact that both the database and the associated scanning

tool were implemented by EMBL-EBI and not modified within

this work, the validation of the retrieved domain information is

beyond the scope of this article and the reader is referred to the

corresponding publications [30,43].

Prediction of transcription factor DNA motifs
In 2010, we presented a method for inferring the DNA-binding

specificities of TFs [18]. On the basis of a large, non-redundant set

of TFs with known binding specificities, we trained SVR-based

models which quantitatively estimate the PFM similarity of two

given TFs, by using diverse sequence-derived features, which

measure the evolutionary, physicochemical and structural similar-

ity of their DNA-binding domains. Thus, given a TF with

unknown DNA-binding specificity, functionally similar TFs with

annotated DNA motifs can be identified by using a cut-off for their

predicted PFM similarity. In a second step, these PFMs are filtered

for outliers, progressively aligned and then merged to generate the

predicted binding profile.

Our method has been implemented in the tool SABINE, which

was now equipped with a graphical user interface and trained on a

large up-to-date set of TFs compiled by integration of the

proprietary databases TRANSFAC (Biobase) and MatBase

(Genomatix) [19,20]. Due to diverse improvements of the

algorithm, there is now an increased probability that a DNA

motif can be predicted for a given TF and each prediction is

associated with a confidence.

In order to increase the efficiency to the algorithm, we assessed

the impact of omitting the most computationally intensive features

required for predicting a PFM. From the sequence similarity

features calculated by SABINE, the local alignment kernel (LAK)

features and the mismatch kernel (MMK) features account for

53% and 28% of the average runtime, respectively. While a

runtime of 42 min was needed on average for a prediction based

on all features, 5 min were required without using LAK and

MMK features on a Linux server (Scientific Linux 6.2) with AMD

Opteron 6174 CPU (12 cores, 2.2 GHz). Since low runtimes may

be desirable for large batch processing tasks, we investigated the

Figure 4. Evaluation of classifiers and feature types for superclass prediction. The classification performance of representative and widely
used machine learning methods incorporating different features for superclass prediction was assessed my means of threshold-averaged ROC curves
obtained from stratified 464-fold nested cross-validation. The differently colored curves correspond to distinct classification methods (see legend).
For each classifier the area under the curve (AUC) is denoted. ROC curves were obtained from classifiers incorporating (A) our novel bit score
percentile features, (B) k-mer features (C) PSSM profile features (D) functional domain features and (E) pseudo amino acid features.
doi:10.1371/journal.pone.0082238.g004
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performance of the SABINE algorithm depending on the inclusion

of LAK and MMK features. The quality of the predicted PFMs

was evaluated based on its similarity to the experimentally

confirmed PFMs obtained from the source databases. To this

end, we determined the PFM transfer error, i.e., the distance

between the predicted and the annotated PFM, based on the Smax-

log-odds score (see Methods section) proposed by Pape et al. [34].

In parallel, we also assessed the impact of the best match threshold

(BMT) parameter on the prediction accuracy and the chance that

a prediction is possible. The BMT corresponds to a lower bound

for the predicted PFM similarity of a best match, i.e., TF with

known PFM contained in the SABINE training set, to the input

factor with unknown PFM. As this parameter directly defines the

set of best-matching TFs whose PFMs are merged to generate the

predicted DNA motif its choice may substantially impact the

quality of the results.

Consistent with our expectations it becomes clearly apparent

from Figure 6 that both the PFM transfer error and the transfer

rate decrease with increasing BMT. The differences in the

prediction accuracies achieved with different features are most

striking for lower values of the BMT between 0.5 and 0.8. When a

BMT$0.85 is selected, only marginal performance differences can

be observed between features. While a high value for the BMT

limits the algorithm mostly to trivial PFM transfers between

homologous or closely related TFs, lower values for the BMT

permit non-trivial PFM transfers, i.e., the inference of the DNA

motif of a TF, for which no evolutionary related TFs with known

PFM exist in the training set. With regard to the evaluation results

shown in Figure 6A, one may conclude that the computationally

intensive kernel-based sequence similarity measures MMK and

LAK both to a comparable degree contribute to a reduced error of

non-trivial PFM transfers. Consistent with these findings, we also

observed a trend towards a smaller absolute average error (AAE)

and mean squared error (MSE) for the superclass-specific SVR

regression models, which were integrated into SABINE to estimate

the PFM similarity of two TFs based on kernel- and alignment-

based domain sequence similarity features (Figure S3).

In the previous version of SABINE, we proposed to use a

stringent, fixed BMT of 0.95 to ensure a sufficient quality of the

predicted PFMs. However, by setting the BMT dynamically at

runtime based on the PFM similarities predicted for the best

matches, the chance that particularly non-trivial PFM transfers are

possible can be dramatically increased at the cost of a small

decrease in accuracy (Figure 6B). While the old parameter settings

(fixed BMT of 0.95) allowed for predicting a DNA motif for 25%

of the TFs in our validation set, a PFM could be proposed for

more than 80% using the new settings (variable BMT between 0.5

and 0.95). Interestingly, the introduced additional error is smaller

than 0.1 in terms of normalized �DDmax distance, which was also on

average observed for PFMs determined based on different wet lab

experiments [18,34]. However, the prediction rate as well as the

accuracy is expected to be lower for the public version of SABINE,

as only 26% of the training data could be used.

Availability of tools
TFpredict and SABINE are both freely available as online and

stand-alone tools under GNU General Public License (GPL)

version 3 and can be downloaded from http://www.cogsys.cs.uni-

tuebingen.de/software/TFpredict/ and http://www.cogsys.cs.

uni-tuebingen.de/software/SABINE/, respectively. For conve-

nience, a web-based, workflow was implemented, which facilitates

the sequential processing of a protein sequence with the two tools

(Figure 1). The tools are fully documented and provide a

command-line interface for large-scale batch processing tasks, as

well as an online version, rendering the tools useful for

experimental biologists.

Conclusions

In this study we compared different features and classifiers on

the problems of predicting TFs, their structural class and their cis-

acting DNA motif, based on their amino acid sequences. For this

purpose, we developed a novel feature representation that

facilitates combining prior knowledge from homology searches

with robust machine learning-based classification. Performing

cross-validation on a homology-reduced set of labeled protein

sequences, we demonstrated that our method is superior to a naive

BLAST-based approach and outperforms several previously

Figure 5. Performance comparison against previous approach-
es. (A) The classification performance achieved by our novel sequence
feature representation in conjunction with SVM classifiers was
compared to two other SVM-based approaches, which were previously
published by Zheng et al. and Kumar et al., respectively. The Kumar
method employs SVMs trained on PSSM profile features (orange curve
in Figure 3C) and the Zheng method corresponds to SVMs incorporat-
ing functional domain features (orange curve in Figure 3D). The
prediction accuracy was assessed in terms of the area under the
threshold-averaged ROC curves obtained from stratified 464-fold
nested cross-validation. The bar plot beside the ROC curves depicts
the area under the curve that was observed for each of the three
approaches. (B) Similar plots as in (A), showing the results of ROC
evaluation for the task of predicting the structural superclasses of TFs.
Kumar’s method, which was originally devised for the prediction of
DNA-binding proteins, was extended to facilitate the discrimination of
multiple superclasses. The corresponding ROC curve is identical to the
orange curve in Figure 4C. The method by Zheng et al., which was
originally designed for the specific detection of 4 superclasses, was
extended to the five-class problem evaluated here. As described in
more detail in the methods section the extended Zheng method is
based on a metaclassifier that integrates the prediction outcomes of 15
binary SVMs based on an Error-Correcting Output Codes (ECOC).
doi:10.1371/journal.pone.0082238.g005
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proposed sequence-derived feature representations with regard to

the average prediction accuracy achieved by commonly used

supervised classification methods. Our novel approach is imple-

mented in the Java application TFpredict, which was designed as

an upstream tool for SABINE, and provides all structural

characteristics required by the SABINE algorithm for the

prediction of TF binding specificities. Furthermore, we developed

an algorithmically improved version of SABINE, which has now a

considerably increased chance to succeed in making a prediction.

The tool was equipped with both a GUI and web-interface and the

incorporated regression models were trained on a richer and more

recent set of TFs with annotated DNA motifs. A comparison of

selected features of SABINE with respect to their contribution to

an increased quality of the predictions showed that the inclusion of

all features is in particular beneficial for non-trivial DNA motif

predictions. However, if for a given factor closely related TFs with

annotated DNA motifs exist in the SABINE training set, the

computationally intensive kernel-based sequence similarity fea-

tures MMK and LAK, which account for approximately 80% of

the total run time, are not required.

In summary, the tools TFpredict and SABINE provide

complementary and accurate methods for the identification,

structural annotation and DNA motif prediction of TFs. Both

tools can be conveniently accessed via a public web-interface and a

workflow was implemented which permits the fully automated,

successive execution of the tools. In summary, the algorithms and

the software presented in this work contribute to a more profound

understanding of the complex mechanisms underlying transcrip-

tional regulation in eukaryotes.

Supporting Information

Figure S1 TF/non-TF classification performance de-
pending on features and classifiers. ROC scores resulting

from cross-validation of different classifiers for the discrimination

of TFs from other proteins are illustrated as box plots. The boxes

correspond to the ROC score distributions observed for (A)

different feature types and (B) diverse classification methods.

(PDF)

Figure S2 Superclass prediction performance depend-
ing on features and classifiers. ROC score distributions

resulting from cross-validation of classifiers for superclass predic-

tion are illustrated as box plots and were separated by (A) feature

types, (B) classification methods. The boxes depicted in (C)

correspond to the ROC scores achieved by the one-versus-rest

classifiers trained for the specific detection of TFs belonging to a

certain structural superclass.

(PDF)

Figure S3 Regression error of SABINE SVR models.
Shown is the (A) mean squared error (MSE) and the (B) average

absolute error (AAE) of the support vector regression models used

by SABINE to predict the PFM similarity of two TFs based on

diverse features measuring the sequence similarity of their DNA-

binding domains. SVR models were trained separately for each of

the five structural superclasses, based on TF pairs with a DNA-

binding domain sequence similarity .0.3 with respect to the

BLOSUM62 substitution matrix. Then, the regression error, i.e.,

the difference between the true and the predicted PFM similarity

of each TF pair was assessed by cross-validation.

(PDF)

Table S1 Global screen for problematic TF instances.
On the basis of the TF databases TRANSFAC and MatBase, a list

of 6,314 TFs with annotated superclass was compiled. For each

protein, the corresponding accession used by the source database,

the gene symbol and a cross-reference to UniProt are provided.

The annotated and predicted superclasses are shown in different

columns for each TF. If TFpredict failed in recognizing a certain

protein as a TF, the corresponding entry in the column ‘‘Predicted

Superclass’’ was set to ‘‘NA’’. The rightmost column indicates for

each protein, whether the identification and structural character-

ization was successful.

(XLSX)

Dataset S1 FASTAs file containing TF and non-TF
sequences. The file contains the 1,485 TF sequences and

14,406 non-TF sequences, which were extracted from the

databases TRANSFAC, MatBase, and UniProt and used for

classifier training and validation. For each sequence the corre-

Figure 6. Evaluation of different features for DNA motif prediction. (A) The deviation between the predicted and annotated DNA motifs (i.e.,
PFM transfer error) was assessed based on the average [0, 1]-distance �DDmax (see Methods section) by 4-fold stratified cross-validation. The curves
indicate the average PFM transfer error observed for different features depending on the minimum PFM similarity (i.e., best match threshold)
predicted for the training set TFs, whose PFMs were merged to generate the predicted PFM. (B) The relative frequency with which a DNA motif could
be predicted for a given TF (i.e., PFM transfer rate) was concurrently determined for varying best match thresholds. The shown curves correspond to
the PFM transfer rate observed for different features, which were incorporated into the SVR models used for PFM similarity estimation.
doi:10.1371/journal.pone.0082238.g006
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sponding UniProt ID, protein class (TF or non-TF) and source

database (TRANSFAC, MatBase, or UniProt) is indicated in the

header.

(TXT)
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