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Abstract: Open-cell metal foams are porous medium for thermo-fluidic systems. However, their
complex geometry makes it difficult to perform time-resolved (TR) measurements inside them. In this
study, a TR particle image velocimetry (PIV) method is introduced for use inside open-cell metal foam
structures. Stereolithography 3D printing methods and conventional post-processing methods cannot
be applied to metal foam structures; therefore, PolyJet 3D printing and post-processing methods were
employed to fabricate a transparent metal foam replica. The key to obtaining acceptable transparency
in this method is the complete removal of the support material from the printing surfaces. The
flow characteristics inside a 10-pore-per-inch (PPI) metal foam were analyzed in which porosity is
0.92 while laminar flow condition is applied to inlet. The flow inside the foam replica is randomly
divided and combined by the interconnected pore network. Robust crosswise motion occurs inside
foam with approximately 23% bulk speed. Strong influence on transverse motion by metal foam
is evident. In addition, span-wise vorticity evolution is similar to the integral time length scale of
the stream-wise center plane. The span-wise vorticity fluctuation through the foam arrangement is
presented. It is believed that this turbulent characteristic is caused by the interaction of jets that have
different flow directions inside the metal foam structure. The finite-time Lyapunov exponent method
is employed to visualize the vortex ridges. Fluctuating attracting and repelling material lines are
expected to enhance the heat and mass transfer. The results presented in this study could be useful
for understanding the flow characteristics inside metal foams.

Keywords: open-cell metal foam; flow characteristics; time-resolved PIV; 3D printing; refractive
index matching

1. Introduction

Flow through porous media is a topic of interest in many disciplines of science
and engineering, such as petroleum engineering [1], groundwater hydrology [2], heat
exchangers [3], catalyst reactors [4], mixers [5], and filters [6]. Fluid flow through porous
media should be studied carefully because the local flow characteristics can affect the global
characteristics of the fluid systems [7,8]. Open-cell metal foams are an irregular metallic
porous medium [9]. The skeletal part of the metal foam is a Plateau’s border network
and involves nodes and struts [10]. The skeletal part forms trabecular-like bone cells [11],
which deliver desired geometrical features for thermo-fluidic applications, including high-
porosity [12], big specific surface zone [13], twisting flow paths [14], and good strength [15].

Metal foams are fascinating because of their applicability in various fields. Many
experimental/ numerical methods have been employed to study flows in metal foam. Flow
visualization methods are favorable approaches to understanding the fluid flow physics
of metal foams. Studies including lump parameters inherently neglect the localized flow
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features. Additionally, numerical studies highly require robust experimental results for
validation [16].

To date, several works have been done regarding experimental fluid flow visualization.
Hwang et al. [17] qualitatively visualized the flow of inlet and outlet of two different metal
foams (porosity: 0.7 and 0.9) using smoke-wire. When the porosity was 0.7, the amount
of smoke accumulation upstream was larger and so was the size of eddies downstream
from the metal foam. The smoke accumulation and eddies may represent the permeability
related to the pressure drop. Eggenschwiler et al. [18] investigated the velocity uniformity
of the highly asymmetric flow through a honeycomb monolith and a metal foam. The flow
through the metal foam showed much higher velocity uniformity than that through the
honeycomb monolith. The homogenization of the velocity profile through the metal foams
might have been caused by effects of the structure and the relatively high pressure drop.

Hutter et al. [19] investigated the flow and mass transfer in the flow upstream and
downstream of three different metal foams with 20, 30, and 45 pores-per-inch (PPI) using
particle image velocimetry (PIV) and laser-induced fluorescence (LIF). The flow behind the
20-PPI metal foam had higher turbulent kinetic energy and mixing performance than that
behind the 30 and 45-PPI metal foams. This result indicates that the flow behavior in metal
foams should be carefully characterized prior to use.

Butscher et al. [20] investigated the flow through a foam-like porous structure (poros-
ity: 0.78) with periodic and uniform cell topology using two-frame PIV and refractive index
matching techniques. In their experiment, the jet flowing into the cells was decelerated by
the cell geometry, which enhanced the heat and mass transfer. Their results are helpful
for understanding metal foam flow, but the high-porosity metal foam structure cannot be
printed by stereolithography 3D printing.

Ensemble-averaged flow fields through 4× scale foam were studied by Onstad
et al. [21] employing magnetic resonance velocimetry (MRV). A turbulent flow with cell
Reynolds of 840 (bulk Reynolds: 7900) was considered when passing through the foam.
A strong transverse flow was evident with 20 to 30% of superficial speed. MRV suffers
from achieving TR results when flow field is complex and small, such as in metal foam
fluid flow.

Regarding the literature review, to the best of the author’s knowledge, a detailed
characteristics study of the fluid flow inside metal foams has not been published. Therefore,
the flow structure inside of those materials is unclear. Several parameters, including
laminar inlet condition, temporal features, and the fluid flow evolution inside foams,
should be further investigated. Thus, this study described a detailed method for TR PIV
measurement of a transparent foam. The spatiotemporal features of fluid flow through the
metal foam were investigated. The outcome of this study can be used for both theoretical or
numerical research. Theoretical flow structures, phenomena, and evolution of flow through
the metal foams will be known, which helps further implementation of these structures
into the new application. Numerically, the results of this study will be a robust case study
for validation of computational fluid dynamics (CFD) simulations.

2. Materials and Methods
2.1. Fabrication and Refractive Index Matching of Transparent Metal Foam Replica

Aluminum foam with 10 PPI (Duocel® Foam, ERG Aerospace Corp., Oakland, CA,
USA.) was prepared as a metal foam replica. X-ray tomography with 743× 740× 459 voxels
was employed to generate a 3D geometry file with spatial resolution of 0.032 mm. In
computer-aided design (CAD) software, replica was cropped to dimensions of 10 × 10 ×
25 mm. Due to resolution of the printer, the size of the cropped replica was doubled. Then,
the final sizes of the model file were 20 × 20 × 50 mm. The detailed geometry information
is provided in Table 1.
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Table 1. Geometrical characteristics of utilized foam.

Porosity (ε) Strut Diameter (ds) Pore Diameter (dp) Cell Diameter (dc)

0.92 0.8 ± 0.06 mm 3.9 ± 0.33 mm 9.02 ± 1.06 mm

Two 3D printing techniques that can be used to print transparent porous media are
the stereolithography and PolyJet methods. In Stereolithography, the surface of liquid
resin is irradiated with a UV laser to cure it. In the PolyJet method, fine resin droplets
are jetted onto the model surface and cured by UV lamps. The PolyJet method can print
different materials simultaneously. Stereolithography provides better surface roughness of
the printed model, but the PolyJet method is suitable for printing metal foam structures
because the struts of the metal foam need support material when they are printed. Figure 1a
shows the replica printed by PolyJet 3D printer. Printer materials were Vero Clear resin
and water soluble support material.
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Figure 1. 3D printed transparent replica of metal foam (a) before and (b) after post-processing for
refractive index matching.

Achieving an optically clear surface is crucial; therefore, before starting the experi-
mental campaign, a series of post-processing actions should be performed. This procedure
includes:

1. The support material must be removed completely since it is not transparent. This
was done using a water jet after soaking the model for half a day.

2. Wet sanding must be done to obtain the best transparency. The sanding was started
from a coarse sand to finer one. All the surfaces were sanded, and each time, the
model was inspected under a light source to recognize the sandpaper size change
where surface defects were no longer visible after last sanding pass. Each sanding
step was done perpendicular to the previous one.

3. The printed model was then placed in a water channel with water circulating at
ambient temperature for 48 h.

4. For the final step, polishing was done by a polishing substantial to achieve a glossy
high-quality surface.
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The printing orientation was also considered as [20,22]. Figure 1b shows the 3D
printed transparent foam after the completion of every process. As can be seen after
post-processing procedures, a glossy surface is achieved.

The main issue regarding the flow-field measurement inside a foam replica is to avoid
optical distortion. Therefore, the refractive index should be studied. The refractive index of
Vero Clear material is 1.515 for a wavelength of 532 nm. A refractive index matched (RIM)
solution based on NaI was provided using the solution formula developed by Gallagher
et al. [23] (60.2 wt% NaI, 32.4 wt% water, and 7.36 wt% glycerin). The grades of reagents
were higher than extra pure. Water was degassed in a vacuum chamber before making
RIM. In addition, the RIM was degassed by increasing the temperature to 40 ◦C and then
cooled down to room temperature. Sodium thiosulfate (0.1 wt%) was added to avoid the
discoloration [24] caused by NaI reacting with oxygen to form triiodide ions. In addition,
it is recommended to store the solution in a glass container, because sodium thiosulfate
reacts with some metals, such as aluminum and stainless steel, to form complexes. To
demonstrate the suitability of RIM, Butscher, Hutter, Kuhn, and von Rohr 2012 utilized a
sample text below the specimen to present the RIM, while Aycock et al. 2017 employed
a sample gride under the replica to show the RIM in a qualitative manner. In the current
study, the method of Butscher, Hutter, Kuhn, and von Rohr 2012 was applied to confirm
the RIM. Figure 2a,b presents the metal foam replica without and with index matching,
respectively. As evidenced, it can be seen that using above procedures led to a suitable-
matched refractive index in comparison.
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2.2. Experiment Test Section

A square acrylic duct was manufactured (20 mm × 20 mm × 500 mm), as shown
in Figure 3a. Non-dimensional sizes based on the duct width, which, from now on, will
becalled diameter (D) for a better wording to compare with previous works, are indicated.
Inlet and outlet of the duct are located on the upper side of the duct to see span-wise
fluid flow. The model was placed at a length of 15 D from inlet to remove the entrance
length effects.
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Figure 3. Experimental setup configuration: (a) test section details; (b) overall setup configuration.

A loop was arranged to allow the RIM to flow over the test section. The test loop
included gear pump, RIM container, bubble trap, flowmeter, and test section. Silicon
hose connected the components. To maintain the RIM solution temperature, a constant
temperature hot plate of 25 ◦C was located under the solution container. In addition, the
container was partly immersed in a water bath.

Figure 4a shows the test section filled with the prepared RIM solution. It is practically
impossible to match the refractive index completely, so the many edges of the metal foam
replica are still shown. However, it has acceptable transparency, as shown in Figure 4b.
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2.3. PIV Measurement Setup

A CMOS high-speed camera (FastCam SA1.1, Photron, 1k × 1k pixels) and a 5 W,
532 nm continuous wave laser were employed to conduct TR 2-D PIV. Figure 5a shows the
positions of the camera and laser sheet. Position 1 was used to observe stream-wise planes,
while positions 2 and 3 were used to observe span-wise planes. The equivalent diameter of
the struts was less than 1 mm, so the laser sheets thickness was fixed to 0.8 mm. Fluorescent
polymer particles (1–20 µm) coated with rhodamine B were used as the tracer particles.

Choosing the best time spacing between image pairs (camera framer rate) was de-
pendent to the camera sensor size (pixels), real field of view size (physical sizes), and
flow field velocity. Based on these parameters, the frame rate of the camera was set to
750 fps, considering the flow velocity in the pores. Greyscale images with 8-bit depth and
10,000 frames were captured and processed by the TR PIV algorithm. The background was
subtracted using the POD filter developed by Mendez et al. [25]. The velocity vector fields
were obtained by the fast Fourier transform multi-pass algorithm [26]. The interrogation
sizes of the passes were 64 × 64 pixels, 32 × 32 pixels, and 24 × 24 pixels.

The displacement of the particles was about 1/6 of the final size of the interrogation
area [27]. Each interrogation area was overlapped by 50%. Based on the displacement infor-
mation from the overlapped borders and corners of the interrogation area, the interrogation
area was deformed by spline interpolation to interpolate the data between the passes. A
two-dimensional Gaussian function was used to find the peak intensity of the correlation
matrix [28]. A local median filter was used to validate the velocity vectors [29]. A sample
of the stream-wise instantaneous velocity vector images is shown in Figure 5b. The velocity
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vectors that were filtered by the local median filter are indicated in red. The evidence
of suitable camera frame rate was that there were no bad vectors or unusual vectors in
Figure 5b; therefore, we could be sure that the selected fps was considered enough to
capture the flow field characteristics.
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2.4. Preliminary Experiments

Before starting the experimental campaign, a semi-validation of setup was done to
show how the experimental setup and FPS were suitable to capture the flow structure. In
addition, it can be used to demonstrate the development condition of the velocity profile
at the inlet of porous media, as in [20]. The bulk velocity (Ub) was calculated from the
volume flow rate as 0.82 ± 0.01 m/s within a 95% confidence level. The Reynolds numbers
based on channels hydraulic diameter was 511, while the Reynolds number based on
pore diameter was 100. These numbers prove that the flow regime was laminar; however,
based on the Reynolds number of the pore diameter following recent publications [30–32],
the flow regime was categorized as unsteady laminar, where the laminar wake oscillates.
In addition, a bubble trap was installed to minimize the inflow of bubbles into the test
section. Figure 6a shows the velocity contour superimposed with velocity vectors upstream
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of the metal foam replica for instantaneous velocity contour (x: −1.75 D~−2.25 D, y:
−0.5 D~0.5 D, z: 0 D).
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The stream-wise velocity U can be defined as:

U =
〈
u(x, y, z)〉+ u′(x, y, z, t) (1)

where 〈u(x, y, z)〉 is the mean velocity, and u′(x, y, z, t) is the fluctuation velocity. The other
velocity components can also be defined in the same manner. The velocity magnitude
diagram at (−2 D,−0.5 D~0.5 D, 0 D) is shown in Figure 6b. This location is shown as a red
line in Figure 6a. The velocity profile shows good agreement with the numerical solution
for the laminar flow in the same square duct. This result shows that the flow upstream of
the metal foam replica is laminar. In addition, it demonstrates that the flow at the inlet of
the porous material is fully developed. However, a little deviation is obvious, which can be
an evidence of unsteadiness, which was previously discussed as unsteady laminar flow.
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3. Results and Discussion
3.1. Velocity Magnitude

Figure 7a presents the mean velocity contours of u and v at z = 0, which is superim-
posed with velocity vectors. The direction of flow is from left to right. x-direction distance
is non-dimensionalized by both pore and channel diameters in the top and bottom of
figure, respectively. The channel diameter is employed to non-dimensionalized y-direction
distance, and the mean velocity is non-dimensionalized by the bulk velocity. Figure 7b
shows the mean velocity contours overlaid with the metal foam structure. The solid model
was cropped by z = ±0.1 D.
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(b) with overlay of metal foam structure.

The main flow upstream of the foam was divided to two or three streams by the
foam pores when the main flow met the foam structure for first time. Several jets were
made at x = 0 to 0.25 D. After passing through the cells, the jets slowed; however, new jets
were simultaneously shaped by other pores. This conversion from earlier jets to new ones
continued steadily. This separation and combination through the foam led to well-mixing
of fluid. Considering that the current study performed a 2D measurement, the number of
these separations and combinations will be greater.
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The separation regions behind the struts should be considered since they affect pres-
sure drop. However, Figure 7 does not present out-of-plane velocity, but separation
performance is in agreement with Onstad et al. [21]. The size of the separation area is sup-
posed to depend on the metal foam strut shape. The strut’s shape is circular or triangular
depending on porosity, according to Plateau’s law, which describes higher porosity in a
more triangular strut shape. The current study was performed on a triangular strut shape.
Moon et al. [33] studied the effect of shape of strut in Kelvin cells on heat transfer and
pressure drop.

3.2. Mean Velocity Profile

To extract the velocity profiles on the span-wise flow, the sheet laser was changed
according to Figure 8a. Figure 8b shows the velocity profiles on the plane at z = 0 D. The
blue line and red line show the normalized stream-wise velocity component <u>/Ub and
normalized transverse velocity component <v>/Ub, respectively. The peaks of <u>/Ub in
each part of Figure 8 represent the jet formed by a pore. When main stream met the foam
structure at Figure 8b, the <u>/Ub profile began to be influenced by the flow resistance
generated by the metal foam structure, while at x = 0.25 D, multiple jet-like profiles occurred
inside the structure. The number of jets on the plane at z = 0 D varied from two to five in
different sections due to foam pore numbers.
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It is evident that the main change occurred in <v>/Ub in comparison with <u>/Ub,
which was representative of the jet direction since <u>/Ub magnitudes are not significant.
However, both of them should be considered to determine jet direction. The positive peak
indicated the + y-direction, and the negative peak indicated the ™y-direction. Valleys
indicated that the flow was parallel to the x-axis or low-velocity region. When <v>/Ub was
averaged through the foam replica, <v>/Ub was around 23%, which is quite similar to the
20–30% results of Onstad et al. [21]. This similarity should be considered precisely since
Reynolds number in this work was considerably lower than Onstad et al. [21]. This demon-
strates that the advection through the foam model is predominantly affected by replica
configuration, which is in agreement with Onstad et al. [21], who state that significant
transverse movement may happen during laminar conditions.

3.3. Mean Vorticity

Figure 9a,b show the contours of the mean vorticity 〈ωz〉 on the plane at z = 0 D. The
out-of-plane vorticity 〈ωz〉 in this plane can be defined as:

ωz = (
dv
dx
− du

dy
) (2)
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The mean velocity vector field is superimposed on the vorticity contours. It can clearly
be seen that many shear layers are formed by the metal foam structures, and these layers
are disturbed by the structures and other jets. This increases the flow instability and causes
velocity fluctuation. Figure 10a,b show the root-mean-squared (RMS) fluctuation velocity
u′rms created through the foam, which can be defined as:

u′rms =

√
u′1

2 + u′2
2 + u′l

2

l
(3)
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where u′l
2 refers to the fluctuating part of velocity, when instantaneous velocity vector u is

decomposed into a mean velocity u and a fluctuating part ú (u = u + ú), while l refers to
1 of 10,000 captured frames. The RMS fluctuation of the transverse velocity (v′rms) can be
defined in the same manner.
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At the inlet of the foam model, u′rms/Ub and v′rms/Ub were near zero, but increased
to 0.1–0.4 through the foam model. After leaving the foam model, they approached
zero once more. The velocity fluctuated in several areas, including the pore outlet, jet
junction, and behind the struts. This demonstrates that the oscillation might be produced by
transverse movements created by the foam configuration or unstable shear layers through
the interaction of jets. However, further investigation of the origin of these phenomena
is crucial.

3.4. Integral Time Scale and Length Scale

The integral time and length scales can be calculated for better understanding. The
temporal auto-correlation function (ρu′ ) for the stream-wise velocity component u′ is
defined as [34]:

ρu′(x, y, z, τ) =
u′(x, y, z, t)u′(x, y, z, t + τ)

〈u′(x, y, z, t)u′(x, y, z, t)〉 (4)

where τ is the time lag. The integral time scale (Tu′ ) of the stream-wise velocity component
u′ is defined as:

Tu′(x, y, z) =
∫ n

0
ρu′(τ)dt (5)
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where n is the time when ρu′ reaches the first zero. In this study, n is set to the point where
ρu′ reaches a sufficiently low value (0.05) for practical purposes [35]. Considering the Taylor
hypothesis, the integral length scale (Lu′ ) can be defined as [34]:

Lu′(x, y, z) = Tu′(x, y, z)〈u(x, y, z)〉 (6)

Figure 11 shows the calculated integral time and length scales of u′(t) on the plane at
z = 0 D. The scales were normalized by their maximum values. The bar indicates the line
average for the y-axis. The integral time scale rapidly decreases logarithmically at an early
stage from 0.5 D to 2.25 D. The integral time scale increases slightly from the outlet region
of the metal foam at x = 2.0 D–2.25 D. The integral length scale shows a similar tendency to
the integral time scale. These results show that the flow gradually becomes complex as it
passes through the metal foam structure, which may be an effect of the evolving transverse
motion in the structure.
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3.5. Span-Wise Vorticity

Figure 12 shows the mean vorticity field to illustrate the evolution of the stream-wise
vortices through the metal foam structures. The positions of the laser sheet are the same
as in Figure 8a. To capture the images, both positions of 2 and 3 were used to capture
sharper images. However, it was possible to take images from one side. Sections from
−0.5 D to +0.5 D were captured from position 3, while the others were taken from position
2. In Figure 13a, there was no stream-wise vortex at x = −0.5 D and 0 D. At x = 0.25 D,
several counter-rotating stream-wise vortices were generated. At x = 2.0 D, the number of
vortices was highly increased. At x = 2.25 D and 2.5 D, the number and vorticity of vortices
appeared similar to each other. At x = 2.75 D, these vortices began to dissipate and lose
momentum. At x = 4.0 D, the vortices had almost dissipated completely. The tendency of
the vortex evolution was similar to that of the integral time scale in Figure 11.

The spatially-averaged vorticity magnitude (
√

ωx2) and span-wise planes RMS vor-
ticity fluctuation (ω′x,rms) are revealed in Figure 12b. Vorticity fluctuation is one of the im-

portant characteristics of turbulence. The value of
√

ωx2 increased while passing through
the foam model and then dissipated to the first state once downstream of the foam. ω′x,rms
increased suddenly in the entrance of the foam model then maintained constant inside the
metal foam structure. It is believed that this turbulent characteristic wass caused by the
interaction of jets, which have different flow directions inside the metal foam configuration.
Interestingly, at x = 2.0 D, ω′x,rms quickly decreased, and then it slowly decreased through
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x = 2.75–4 D, downstream of the foam replica. ω′x,rms quickly decreased during x = 2.0–2.5.
Downstream of the model, a flow separation zone was formed, which decreased the
static pressure.
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3.6. Finite-Time Lyapunov Exponent (FTLE)

The finite-time Lyapunov exponent (FTLE) method was used to identify the vortical
structures of smooth time-dependent velocity fields. FTLE obtains Lagrangian coherent
structures (LCSs) by measuring the expansion rate of two neighboring particles during a
finite time. FTLE integration during TF is defined as [36]:

FTLETF (X0, t0) =
1
|TF|

ln
√

λmax

(
Ct0+TF

t0
(X0)

)
(7)

where TF is the integration time, and (X0, t0) is the initial position of the tracking fluid
particle. λmax

(
Ct0+TF

t0
(X0)

)
is the largest singular value of the Cauchy–Green deformation

tensor. The Cauchy–Green deformation tensor (Ct0+TF
t0

(X0)) is expressed as [36]:

Ct0+TF
t0

(X0) =
[
∇Ft0+TF

t0
(X0)

]T
·∇Ft0+TF

t0
(X0) (8)
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where ∇Ft0+TF
t0

(X0) : X(t0)→ X(t0 + TF) is the flow map, and the superscript T is the
transpose operator.

TF was set to +1 s and −1 s for the forward and backward FTLE, respectively. The
forward FTLE indicates the repelling material line for TF < 0, and the backward FTLE
indicates the attracting material line for TF > 0. The grid resolution is 0.1 mm × 0.1 mm.

Figure 13a,b show the contours of the forward and backward FTLE fields at x = 2.25 D.
Surprisingly, many ridges of the vortical structures were identified. Both the attracting and
the repelling material lines were considered to contribute to the heat and mass transfer
inside the metal foam structure. The FTLE ridges that had lower integration values could
be regarded as fluctuating regions. These regions were expected to contribute greatly to the
heat and mass transfer by helping the mechanical mixing by the metal foam structure. This
result is consistent with the vorticity fluctuation shown in Figure 13. This also provides
evidence of the metal foam causing considerable flow disturbances, even at a relatively
low Reynolds number.
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4. Conclusions

A methodology has been presented for TR PIV measurements in a metal foam struc-
ture. A metal foam sample was scanned using X-ray microtomography and printed with a
transparent material using a PolyJet 3D printer. Detailed post-processing methods for the
printed model were introduced because conventional methods could not be applied to the
small and complex structure. Time-resolved PIV measurements were conducted, and veloc-
ity fields were obtained for various regions of interest with inlet laminar flow conditions.

The fluid flow entering the foam configuration was very complicated. The pore
network formed a jet; thereafter, the flow was divided and combined. Interflowing jets dis-
turbed shear layers created by other jets. A significant transverse velocity near 0.23 〈v〉/Ub
was generated, which is in agreement with Onstad et al. [21], who state that significant
transverse movement may happen even in the laminar flow inside of metal foams.

The span-wise vorticity evolution in the foam configuration was investigated. The
span-wise vorticity inside the metal foam was predicted to increase linearly along the
stream-wise direction and show a similar tendency to the integral time/length scale at
z = 0 D. The span-wise vorticity demonstrated significant oscillation because of complexity
of the flow movement inside the foam configuration, and the fluctuation was visualized
by the FTLE method. It is believed that this turbulent characteristic was caused by the
interaction of jets that have different flow directions inside the metal foam structure. This
was expected to enhance the heat and mass transfer inside the metal foam. This study
was performed for a Reynolds number and a foam geometry. In addition, channel size
was small; therefore, wall effects must be considered. Therefore, there are open doors for
future studies on flow features employing different Reynolds numbers and different metal
foam arrangements.
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