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Abstract: We previously reported that water-soluble cyclic selenides can mimic the antioxidative
function of glutathione peroxidase (GPx) in water through a simple catalytic cycle, in which the
selenide (>Se) is oxidized by H2O2 to the selenoxide (>Se=O) and the selenoxide is reduced by a thiol
back to the selenide. In methanol, however, the GPx-like activity could not be explained by this simple
scenario. To look into the reasons for the unusual behaviors in methanol, monoamino-substituted
cyclic selenides with a variable ring size were synthesized, and the intermediates of the catalytic cycle
were characterized by means of 77Se-NMR and LC–MS spectroscopies. In water, it was confirmed
that the selenide and the selenoxide mainly contribute to the antioxidative function, though a slight
contribution from the dihydroxy selenane (>Se(OH)2) was also suggested. In methanol, on the other
hand, other active species, such as hydroxyselenonium (>Se+–OH) and hydroxy perhydroxy selenane
(>Se(OH)(OOH)), could be generated to build another catalytic cycle. This over-oxidation would be
more feasible for amino-substituted cyclic selenides, probably because the ammonium (NH3

+) group
would transfer a proton to the selenoxide moiety to produce a hydroxyselenonium species in the
absence of an additional proton source. Thus, a shift of the major catalytic cycle in methanol would
make the GPx-like antioxidative function of selenides perplexing.

Keywords: antioxidant; enzyme model; glutathione peroxidase; hydroxy perhydroxy selenane;
selenide; selenoxide

1. Introduction

Reactive oxygen species (ROS)—such as hydrogen peroxide (H2O2), superoxide anion (·O2−),
hydroxyl radical (HO·), and singlet oxygen—which are steadily generated during the consumption
processes of triplet oxygen, have high oxidizability to damage DNAs, cellular lipids, and proteins,
leading various life-threatening disorders, such as protein-misfolding disease in central nervous
systems, myocardial infarction in heart, diabetes in liver, and cataract in eyes [1]. To protect
themselves from such oxidative stress, eukaryotic organisms have evolved systems involving
various antioxidative enzymes. Glutathione peroxidase, a representative antioxidative enzyme and a
well-known selenoenzyme, has selenocysteine (Sec), a selenium analog of natural cysteine, at the active
site. Glutathione peroxidase (GPx) catalyzes the reduction of H2O2 to harmless water (H2O) using
glutathione (GSH) as a reducing cofactor. From a view point of drug design for antioxidant therapy,
much effort has been directed for decades toward development of organoselenium compounds [2–7],
which can act as GPx-like catalysts, and also toward elucidation of their catalytic mechanisms [8–11].
Various GPx model compounds, most of which are aromatic diselenides (ArSeSeAr), have been
developed and their catalytic activities have been evaluated [12–25]. In the meantime, aliphatic
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and/or aromatic monoselenides (RSeR′) are also known to act as GPx-like catalysts through a unique
selenide/selenoxide redox cycle (Scheme 1, cycle A), in which selenide 1 is oxidized by H2O2 to
the corresponding selenoxide 2, which is reduced back to 1 by a thiol substrate (RSH) [26–29].
In addition, Back et al. reported that bis(3-hydroxypropyl) selenide can be oxidized to a reactive
spiro dioxoselenurane species, instead of a selenoxide, which is also reduced back to the corresponding
selenide by thiols [30,31]. Recently, Braga and coworkers demonstrated the presence of another catalytic
cycle (cycle B) [32]. According to their report, selenoxide 2 is in equilibrium with dihydroxy selenane
3a or hydroxyselenonium 3 in methanol, and 3 reacts with H2O2 to generate a highly reactive species
(i.e., hydroxy perhydroxy selenane 4), which is a much greater oxidant than 2 for thiol substrates.
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Scheme 1. Proposed glutathione peroxidase (GPx)-like catalytic cycle of a selenide. (A) selenide/selenoxide
redox pathways mainly observed in water [26–29]; (B) another catalytic cycle mediated by
hydroxyselenonium 3 and hydroxy perhydroxy selenane 4 as a highly active oxidant [32].

In our laboratory, a series of water-soluble cyclic selenides, such as 7–9, have been synthesized,
and their potential GPx-like activities were evaluated in water as well as in methanol [26,27,29].
Our previous analysis revealed that they exhibit the activity through a simple redox interconversion
between a selenide and a selenoxide (i.e., cycle A in Scheme 1) in an aqueous medium, and also that
the magnitude of the activity can be controlled by changing the ring size and the polar functional
groups attached to the ring. The optimal ring size was five, and the GPx-like catalytic activity generally
became lower when the substituent on the ring structure was changed from carboxy (CO2H) to
hydroxy (OH), and then amino (NH2) groups. Since CO2H should exist as an ionized form (CO2

−), this
substituent would facilitate the conversion of selenide to selenoxide (reaction i in Scheme 1)—which is a
rate-limiting step in the catalytic cycle A—by elevating the HOMO (highest occupied molecular orbital)
energy level of the selenide by inductive electron releasing. On the other hand, a protonated amino
group (NH3

+) should decelerate the reaction due to the inductive electron withdrawal. Although a
magnitude of GPx activity of the cyclic selenides correlates well with both the HOMO energy level
and the second-order rate constant for the oxidation of selenide to selenoxide (reaction i) in water,
cyclic selenide 7, with a five-membered ring having one amino substituent, showed unexpectedly high
activity [29].

In methanol, on the other hand, cyclic selenides having amino substituents exhibited higher
GPx-like activity than those having OH or CO2H substituents. Thus, the activity rank of cyclic selenides
could not be explained by the simple scenarios, which were applicable in water [29], suggesting that
the presence of other catalytic cycles, such as cycle B. In this context, it would be important to assess
an effective GPx-like catalytic cycle in methanol for cyclic selenides, especially for those having amino
substituents, in order to explain the unusual behaviors.

In this study, monoamino-substituted cyclic selenides with a four- (5) or six-membered ring
(6) were additionally synthesized, and their GPx-like catalytic activity and the catalytic cycle were



Molecules 2017, 22, 354 3 of 13

investigated in water and in methanol by using monoamino cyclic selenide 7 (MASred), diamino cyclic
selenide 8 (DASred), and dihydroxy cyclic selenide 9 (DHSred) as reference selenides. The selenide
compounds employed in this study are lined up in Figure 1.
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Figure 1. Target compounds in this study (5 and 6) and previous selenides (7–9). Compounds 8 and 9
are racemic compounds.

2. Results and Discussion

2.1. Synthesis

Compounds 5 and 6 were synthesized by applying a similar protocol reported previously [33]
(Scheme 2). Boc-protected mesylates 12a and 12b were first prepared from diethyl aminomalonate
hydrochloride (10) or L-glutamic acid (11), respectively, by following previous methods with slight
modifications [34,35]. The mesylates were then converted into cyclic selenides 13a and 13b by
selenation with NaHSe. Finally, obtained 13a and 13b were treated with HCl to give target compounds
5 and 6, which were fully characterized by 1H, 13C, and 77Se-NMR as well as high-resolution mass
spectroscopy (HRMS).
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Scheme 2. Synthesis of monoamino selenides 5 and 6. Reagents and conditions: (i) (1) Boc2O, Et3N,
1,4-dioxane/H2O (5:2), 50 ◦C, 18 h, (2) NaBH4, EtOH, reflux, 1 h, (3) MsCl, Et3N, CH2Cl2, 20 h, room
temperature (rt); (ii) (1) EtOH, AcCl, reflux, 4 h, (2) Boc2O, Et3N, 1,4-dioxane:H2O = 5:2, 50 ◦C, 18 h,
(3) NaBH4, EtOH, reflux, 1 h, (4) MsCl, Et3N, CH2Cl2, 20 h, rt; (iii) NaHSe, iPrOH/1,4-dioxane, reflux,
2.5 h for synthesis of 13a from 12a; NaHSe, EtOH/THF, reflux, 3 h for synthesis of 13b from 12b;
(iv) HCl, H2O/EtOH, 35 ◦C, 20 h. a Details of the synthesis are given in Supporting Information.

2.2. Redox Properties of Selenides and Selenoxides in Water

The redox reactions of synthesized 5 and 6 were monitored by 77Se-NMR spectroscopy in D2O.
The spectral changes observed for 6 are shown in Figure S1 as a typical example. When 6 was reacted
with 1 equivalent of H2O2, the broad peak of 6 (136 ppm) completely disappeared after 2 h, and two
signals (829 ppm (major) and 834 ppm (minor)), which should correspond to two stereoisomers of
the selenoxide, appeared (Figure S1b). Quantum chemical calculation at B3LYP/6-31+G(d,p) showed
that the cis-isomer, which has an axial amino group on the six-membered ring, is 6.02 kcal/mol more
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stable than the trans-isomer, which has an equatorial amino group, in implicit water. Thus, the major
peak (829 ppm) in the NMR spectrum was assigned to the cis-isomer, in which a hydrogen atom of
the protonated ammonium (NH3

+) group would form an intramolecular hydrogen bond with the
oxygen atom of the selenoxide moiety. The selenoxide was reduced back to selenide 6 within 15 min
after addition of 1 equivalent of dithiothreitol (DTTred). For five-membered cyclic selenide 7, similar
spectral changes were observed in the 77Se-NMR analysis (Figure S3). Quantum chemical calculation
again suggested that among the two stereoisomers of the selenoxide the cis-isomer is more stable.

According to Scheme 1, selenoxide 2 can be further oxidized by an excess amount of H2O2

to hydroxy perhydroxy selenane 4 through hydroxyselenonium 3 and/or dihydroxy selenane 3a
(cycle B). To confirm whether such over-oxidation is possible or not, the selenoxide obtained from 6
(Figure S1b) was reacted with 4 equivalents of H2O2. However, obvious spectral changes were not
observed (Figure S1c). Nevertheless, when 4 equivalents HCl were further added as a proton source,
the major selenoxide signal disappeared on the NMR chart, leaving the minor trans-isomer with an
equatorial ammonium (NH3

+) group unreacted (Figure S1d). At this stage, any new signals were
not detected over a range of 0–1500 ppm in the 77Se-NMR spectrum, probably because of significant
line broadening of the absorption peak for the generated species, which would be the corresponding
hydroxyselenonium 3 or dihydroxy selenane 3a. Preferential conversion of the cis-isomer suggests
that the protonated axial NH3

+ group can assist conversion of the selenoxide by interacting with the
selenoxide oxygen, whereas the equatorial NH3

+ group cannot assist it. It should be noted that the
minor isomer of the selenoxide was not reacted, even when 6 equivalents in total of HCl was added.
When the resulting solution (Figure S1d) was added with 5 equivalents of DTTred, the selenide 6 was
regenerated, suggesting that the tetrahydroselenopyran skeleton was not decomposed during the
conversion to active species. In addition, when the solution of the selenoxide (Figure S1b) was added
with 4 equivalents HCl in the absence of H2O2, only the major peak of the selenoxide disappeared,
probably due to its conversion into hydroxyselenonium 3 or dihydroxy selenane 3a (Figure S1e).
The selenoxide was recovered by neutralization with 4 equivalents of NaOH (Figure S1f), suggesting
that selenoxide 2 and hydroxyselenonium 3 are in equilibrium with each other (reaction iii in Scheme 1).
Similar redox behaviors were observed for other amino selenides 5, 7, and 9 (Figures S2–S5), although
the selenoxide of 5 was decomposed by addition of an excess amount of H2O2 and HCl (Figure S2).
For the selenoxide of DHSred (9), a new signal (959 ppm), which would correspond to 3 or 3a, appeared
with an accompanying disappearance of the selenoxide peak (926 ppm) when 4 equivalents of HCl
was added to the solution of the selenoxide (Figures S5 and S6). The signal at 959 ppm disappeared
and the selenoxide signal appeared after neutralization with 4 equivalents of NaOH (Figure S6).

In order to identify the products of the above reactions, the sample solution during the redox
reaction of selenides with H2O2 was analyzed by LC–MS (atmospheric-pressure chemical ionization
(APCI) and electrospray ionization (ESI)) in a positive ion mode under a continuous flow condition
(0.3 mL/min). Typical MS spectra obtained for 6 are shown in Figure 2. After treatment of the selenide
with 1 equivalent of H2O2 in water for 2 h, the selenoxide (C5H12NO80Se+) was observed as a major
product, which was detected at m/z 182.0 (Figure 2a), while the small peak of dihydroxy selenane 3a
(C5H14NO2

80Se+), was detected at m/z 200.0. Further addition of H2O2 (4 equivalents) did not cause
dramatic changes in the MS spectrum (Figure 2b). However, when 4 equivalents of HCl were added,
the peaks of the selenoxide converted into 3a (Figure 2c), which would be generated through reaction
iii to v or reaction iv in Scheme 1. Furthermore, under an ESI+ condition, hydroxy perhydroxy selenane
4 (C5H14NO3Se+) was slightly but obviously detected (Figure S7), supporting that the selenoxide can
be over-oxidized to 4 under an acidic condition via hydroxyselenonium 3. Very recently, based on
theoretical calculation, Orian et al. reported that the conversions of a selenoxide into the corresponding
dihydroxy selenane and hydroxy perhydroxy selenane are significantly endothermic (+13.1 and
+16.4 kcal/mol, respectively) [36]. This is consistent with our observation that the conversion of
selenoxide 2 into 3a and 4 was not easy unless HCl and/or excess H2O2 were added. When the same
experiments were performed for monoamino selenide 7, similar results were obtained (Figure S8).
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For selenide 5, on the other hand, the reaction with H2O2 produced significant amounts of decomposed
compounds, for which the structures could not be characterized.
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Figure 2. LC–MS (atmospheric-pressure chemical ionization, APCI+) spectral changes during the
oxidation of the selenoxide form of selenide 6 in H2O at 25 ◦C. For a–c, H2O (100%) was used as an
eluent for the LC under a continuous flow at 0.3 mL/min, and 3 µL of the sample solution was injected
into the LC and analyzed by the APCI+ mode. Reaction conditions: (a) Selenide 6 (0.038 mmol) and
H2O2 (0.038 mmol) were mixed in H2O (800 µL); (b) to a was added H2O2 (0.15 mmol); (c): to b was
added HCl (0.15 mmol).

The results of LC–MS analysis strongly indicate that the simple redox reaction between selenide
and selenoxide (i.e., reaction i and ii in Scheme 1) is predominant during the GPx-like catalytic reaction
under a physiological pH condition (i.e., pH 7.4), while a small portion of the selenoxide, when it has
an amino substitution, could be over-oxidized.

2.3. GPx-Like Activity of Selenides 5–9 at pH 7.4

The GPx-like catalytic activities of the selenides were evaluated in a buffer solution at pH 7.4 in
the nicotinamide adenine dinucleotide phosphate (NADPH)-coupled assay [27,37]. In this assay, the
decomposition of H2O2 was monitored by NADPH consumption at 340 nm. The results are graphically
shown in Figure 3A. The initial velocities (ν0) of H2O2 decomposition catalyzed by various selenides
are summarized in Table 1.

Since the rate-determining step of cycle A is the oxidation step (reaction i), GPx-like catalytic
activity of selenides in water at pH 7.4 should depend on the second-order rate constants (kox) for
the reaction between the selenide and H2O2. Following the previous protocol [29], the kox value was
determined for 6 (Table 1). However, the kox value for selenide 5 could not be determined due to
the decomposition as mentioned above. The order of kox and ν0 values obtained for amino selenides
were 7 > 6 > 8 and 5 > 7 > 6 > 8, respectively, which were in complete agreement with each other.
The order was also consonant with the order of the HOMO energy levels calculated in water (Table 1),
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although diamino selenide 8 had a much higher HOMO level, probably due to the presence of two
NH3

+ substituents.
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Figure 3. GPx-like activity assay in buffer solution and in methanol. (A) Nicotinamide adenine
dinucleotide phosphate (NADPH)-coupled GPx assay for selenides 5–9. Reaction conditions were
[GSH]0 = 1.0 mM, [H2O2]0 = 2.5 mM, [NADPH]0 = 0.3 mM, [glutathione reductase] = 4 units/mL, and
[selenide] = 0.2 mM in pH 7.4 phosphate buffer at 25 ◦C. (B) Percentages of residual dithiothreitol
(DTTred) as a function of reaction time in the oxidation of DTTred with H2O2 in the presence of a selenide
catalyst (5–9) in CD3OD. Reaction conditions were [DTTred]0 = [H2O2]0 = 0.14 M and [selenide] =
0.014 M at 25 ◦C. Data for 7-9 were quoted from Reference [29].

Table 1. Summary of GPx-like catalytic activities of selenides in water and in MeOH along with
the second-order rate constants for oxidation and the HOMO (highest occupied molecular orbital)
energy levels.

Selenides ν0 (µM·min−1) a t50 (min) b kox (M−1·s−1) c HOMO in Water (eV) d Substituents

No catalyst 32.2 (±3.2) >300
>300 (4~10 equiv. HCl) - - -

5 61.3 (±3.4) 24 f –6.39 NH3
+

ax

6 52.6 (±2.1)
17

5 (+ 4 equiv. HCl)
3 (+10 equiv. HCl)

0.23 (± 0.02) –6.56 (ax) NH3
+

ax

MASred (7) e 59.8 (±1.1) 14 0.47 (± 0.05) –6.44 NH3
+

ax

DASred (8) e 47.2 (±4.3) 7 0.14 (±0.02) –5.32 NH3
+

ax,
NH3

+
ax

DHSred (9) e 54.2 (±4.0) 40 0.57 (± 0.03) –6.16 OHax, OHax

a Initial velocities (ν0) of H2O2 reduction in phosphate buffer at pH 7.4 and 25 ◦C; b Reaction times for 50%
conversion of DTTred to DTTox in CD3OD estimated from Figure 3B; c The second-order rate constants for the
reaction of selenide + H2O2 → selenoxide + H2O in water; d Calculated at B3LYP/6-31+G(d,p) in water using
the polarizable continuum model (PCM); e Data were quoted from Reference [29]; f Not determined. MASred:
monoamino cyclic selenide; DASred: diamino cyclic selenide; DHSred: dihydroxy cyclic selenide

2.4. GPx-Like Activity Assay in Methanol

The GPx-like activities were evaluated by the NMR method as described previously [26,27].
Oxidation of dithiothreitol (DTTred) was initiated by addition of H2O2 to a mixture of DTTred and a
catalytic amount (10 mol %) of a selenide in CD3OD. The reaction was carried out in a NMR sample
tube at 298 K. The 1H-NMR spectrum of the solution was measured after a certain period of time.
The change of the relative signal intensities of DTTred (δ = 3.67, 2H) and DTTox (δ = 3.03, 2H) was
integrated to calculate the percent conversion of DTTred to DTTox (Figure 3B). The times for 50%
conversion (t50) obtained are summarized in Table 1. All selenides catalyzed the oxidation of DTTred
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with H2O2. The order of the catalytic activity (i.e., the inverse of t50) was 8 > 7 > 6 > 5 > 9, which did
not match with the order in water (i.e., the magnitude of ν0), 5 > 7 > 9 > 6 > 8. In addition, it is obvious
that the amino groups on the rings had a proclivity to enhance the activity in methanol. Similar results
had been observed in our previous study [29]. These observations suggest that the reaction should be
catalyzed through not only cycle A, but also through another cycle, which would involve hydroxy
perhydroxy selenane 4 (cycle B). This assumption was indeed supported by the following analyses.

2.5. Components of the Reaction Solution in Methanol

To obtain information about a shift of the catalytic cycle in methanol, the components of the
reaction mixture were analyzed by means of 77Se-NMR and LC–MS (APCI+ or APCI−) spectroscopies.
The results of NMR analysis obtained for selenide 7 are shown in Figure S9. 77Se-NMR spectra in
CD3OD showed that 7 (δ = 148 ppm, Figure S9a) was oxidized by 1 equivalent of H2O2 to the selenoxide
(δ = 967 ppm (major) and 949 ppm (minor), Figure S9b). The two peaks can be assigned to cis- and
trans-stereoisomers, respectively, because ab initio calculation showed that the cis-isomer, which
forms an intramolecular hydrogen bond, is 6.24 kcal/mol more stable than the trans-isomer. When 1
equivalent of DTTred was added, the selenoxide was rapidly reduced to selenide 7. On the other hand,
when 4 equivalents H2O2 were added to the selenoxide, the major isomer (δ = 968 ppm) preferentially
converted into other species (Figure S9c). This is in significant contrast to the reaction in water, where
the selenoxide was unreacted in the absence of HCl. The selenoxide was completely converted into
other species, for which no signal was detected over the range of 0–1500 ppm, by further addition of
4 equivalents HCl (Figure S9d). When 5 equivalents of DTTred were added to the resulting sample
solution, the selenide was regenerated, suggesting that the selenoxide did not decompose but was
converted into active species. In addition, when the solution of the selenoxide (Figure S9b) was added
with 4 equivalent of HCl, the selenoxide completely reacted, probably to produce hydroxyselenonium
3 or dihydroxy selenane 3a, as observed for 6 in aqueous solution (Figure S9e). By neutralization
with NaOH, the selenoxide was recovered (Figure S9f). On the other hand, the LC–MS (APCI+)
analysis showed that by reacting selenide 7 (Figure 4a) with 1 equivalent of H2O2, generation of
a considerable amount of dihydroxy selenane 3a (m/z 186.0; C4H12O2

80Se+) was observed along
with the corresponding selenoxide (m/z 168.0; C4H10NO80Se+) (Figure 4b), suggesting that 3a was in
equilibrium with selenoxide 2 in methanol although HCl was absent. When four equivalents of H2O2

were further added to the resulting solution, small signals were observed at around m/z 202.0, which
corresponded to species 4 (C4H12NO3

80Se+) (Figure S10). Similar redox behaviors were also observed
for selenide 6, although the generation of the corresponding dihydroxy selenane 3a was less than
that of selenide 7 when 6 was reacted with excess H2O2 (Figure S11). On the other hand, oxidation
of selenide 5 by one equivalent of H2O2 in methanol provided complicated MS spectra, showing the
formation of not only selenoxide and species 3a but also several decomposed species. For 9, NMR
analysis showed that conversion of the selenoxide to an active species was progressed when excess
H2O2 and HCl were both added (Figure S12).

The NMR and LC–MS analyses suggested that in methanol amino-substituted selenides could
be over-oxidized to 4 by excess amounts of H2O2 even in the absence of HCl. It was, therefore,
assumed that in addition to cycle A of Scheme 1, cycle B would work in methanol for monoamino
selenides, except for 5. It is known that dihydroxy selenane 3a acts as a good oxidant for nucleophilic
substrates through the exchange of the hydroxy ligands, as shown in Scheme 3 [38–41]. Dihydroxy
tellurane, which is a tellurium analog of 3a, can also oxidize thiols to disulfides through similar ligand
exchange [42]. Thus, the 3a could be involved in the catalytic reaction as an active intermediate via the
cycle other than cycles A and B.
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2.6. Determinant Factors of the GPx-Like Activity of Selenides

According to component analysis during the redox reaction in methanol, it appeared that in
methanol convertibility of selenoxides to 3, 3a, and 4 would correlate to the GPx-like activity. Indeed,
the catalytic reaction of selenide 6 in methanol was dramatically accelerated when 4 or 10 equivalents
of HCl were added to the reaction solution, probably due to the enhancement of convertibility
of 6 into such active species (Figure 3B). It should be noted that the reaction was not accelerated
when HCl was added to the blank solution in the absence of a selenide catalyst. For the series
of monoamino-substituted selenides, it was suggested that over-oxidation of the selenoxide to 4
can be progressed by an excess amount of H2O2 even in the absence of a proton source (Figure 4,
Figures S9 and S11). This is probably because the cis-isomer of the selenoxide having a protonated
ammonium (-NH3

+) group in an axial direction is in equilibrium with hydroxyselenonium 3 as shown
in Scheme 4. Such equilibrium, however, cannot occur for the selenoxide of hydroxy-substituted
selenide 9. A preferential conversion of the cis-isomer as observed in Figures S1 and S9 would support
the presence of the equilibrium of Scheme 4.
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In aqueous medium, on the other hand, generation of species 3 was not obviously observed for
any selenides in the absence of HCl. This is probably because hydration around the selenoxides inhibits
the proton transfer from NH3

+ to oxygen atom to form 3, which might further react with H2O2 to form
4. Indeed, distances of the intramolecular hydrogen bonds between NH3

+ and the selenoxide moiety
calculated for selenides 6 and 7 were ca. 0.01 Å longer in water than those in methanol, supporting
more difficult conversion of the selenoxide to 3 in water than in methanol. Thus, the strength of the
hydrogen bonding to the selenoxide moiety may be one of the factors to determine the convertibility
of cyclic selenoxides into other active species, such as 3, 3a and 4, and hence enhance the GPx-like
activity in methanol. It should be noted though that the calculated hydrogen bond distance of the
selenoxide of 7 was slightly longer than that of the selenoxide of 6, the catalytic activity of 7 was larger
than that of 6.

3. Material and Methods

3.1. General

1H (500 MHz), 13C (125.8 MHz), and 77Se (95.4 MHz) NMR spectra were recorded at 298 K, and
coupling constants (J) are reported in hertz. High-resolution mass spectra (HRMS) and low-resolution
mass spectra (MS) were recorded under atmospheric-pressure chemical ionization (APCI+ or APCI−)
or electrospray ionization (ESI+) conditions. All reactions for the synthesis of selenides were monitored
by thin-layer chromatography (TLC). Gel permeation chromatography (GPC) was performed with a
general isocratic HPLC system using CHCl3 as the eluent. Ultraviolet (UV) spectra were measured
at 25.0 ◦C using a circulating water-bath system. Selenides 7 [33], 8 [29], and 9 [43] were prepared as
described. All other chemicals were used as purchased without further purification. NADPH-coupled
GPx activity assay in buffer solution at pH 7.4, GPx-like activity assay by NMR in CD3OD, and kinetic
analysis for selenide oxidation with hydrogen peroxide in water were performed by following our
previous literatures [26,27,29].

3-(tert-Butoxycarbonylamino)selenetane (13a). Selenium powder (0.289 g, 3.66 mmol) and sodium
borohydride (0.383 g, 9.11 mmol) were placed in a two-necked round-bottomed flask. After replacement
of air with argon gas in the flask, anhydrous isopropyl alcohol (25 mL) was added. The mixture was
stirred and heated under reflux conditions for 1 h under argon atmosphere to generate sodium
hydrogen selenide (NaHSe) in situ. A solution of 12a (0.482 g, 1.28 mmol) in 1,4-dioxane (20 mL) was
added to the resulting colorless solution. After further stirring under reflux conditions for 3 h, the
reaction solution was cooled to room temperature and evaporated. To the residual material were
added water (20 mL) and CH2Cl2 (20 mL), and extraction was conducted with CH2Cl2 (20 mL × 3).
The combined organic layers were washed with brine (40 mL), dried over MgSO4, and concentrated
under vacuum. The residual yellow solid was purified by silica gel column chromatography
(EtOAc/n-hexane 1:4) and then by GPC to give a white solid of 13a. Yield: 0.149 g, 49%; M.p.
120–122 ◦C; 1H-NMR (500 MHz, CDCl3): δ = 1.37 (s, 9H), 1.56 (s, 1H), 3.02–3.17 (m, 2H), 3.18–3.32 (m,
2H), 4.93 ppm (br s, 1H); 13C-NMR (125.8 MHz, CDCl3): δ= 24.8, 28.3, 49.5, 79.9, 153.8 ppm; 77Se-NMR
(CDCl3): δ = 94.3 ppm; MS (APCI+): m/z calcd for C8H16NO2Se+: 238.03 [M + H]+; found: 238.04.

(S)-3-(tert-Butoxycarbonylamino)tetrahydroselenopyran (13b). A similar protocol to the synthesis of 13a
was applied, though EtOH was used as a solvent for generation of NaHSe and THF was used as a
solvent to dissolve the starting material. Starting with 12b (0.489 g, 1.30 mmol), 13b was obtained
as a white solid. Yield: 0. 235 g, 68%; M.p. 93–94 ◦C; 1H-NMR (500 MHz, CDCl3): δ = 1.38 (s, 9H),
1.42–1.49 (m, 1H), 1.66–1.70 (m, 1H), 1.83–1.90 (m, 1H), 2.36–2.58 (m, 3 H), 2.79–2.89 (m, 1H), 3.80
(m, 1H), 4.97 ppm (br s, 1H); 13C-NMR (125.8 MHz, CDCl3): δ = 19.1, 24.7, 26.0, 28.4, 32.7, 46.4, 49.4,
154.8 ppm; 77Se-NMR (CDCl3): δ = 115.8 ppm; MS (APCI+): m/z calcd for C10H20NO2Se+: 266.07
[M + H]+; found: 266.08.
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3-Aminoselenetane Hydrochloride (5). HCl (4 mL, 5 M) was added to a solution of 13a (0.14 g, 0.59 mmol)
in Et2O (4 mL). The mixture was vigorously stirred for 18 h at 35 ◦C. After removal of the ether by
evaporation, the resulting aqueous layer was diluted with water (50 mL) and lyophilized to give a
white solid of 2 (99 mg, 97%). M.p. 172 ◦C (decomp); 1H-NMR (D2O): δ = 2.96–3.07 (m, 2H), 3.34–3.45
(m, 2H), 4.56–4.68 ppm (m, 1H); 13C-NMR (D2O) δ = 17.5, 48.6 ppm; 77Se-NMR (D2O): δ = 144.5 ppm;
HRMS (APCI+): m/z calcd for C3H8NSe+: 137.9816 [M − Cl]+; found:137.9802.

(S)-3-Aminotetrahydroselenopyran Hydrochloride (6). A similar protocol to the synthesis of 5 was applied.
Using 13b (0.23 g, 0.89 mmol) as a starting material, 6 was obtained as a white solid. Yield: 0.16 g,
90%; M.p. 192 ◦C (decomp); 1H-NMR (D2O): δ = 1.41–1.51 (m, 1H), 1.79–1.89 (m, 1H), 1.91–1.95 (m,
1H), 2.20–2.26 (m, 1H), 2.46–2.61 (m, 2H), 2.63–2.76 (m, 2H), 3.42–3.54 ppm (m, 1H); 13C-NMR (D2O):
δ = 18.7, 19.9, 26.5, 30.5 49.4 ppm; 77Se-NMR (D2O): δ = 136.2 ppm; HRMS (APCI+): m/z calcd for
C5H12NSe+: 166.0129 [M − Cl]+; found: 166.0130.

3.2. Quantum Chemical Calculation

The Gaussian 09 software package (revision B.01) [44] was employed. The structures were
optimized in water and in methanol at the B3LYP/6-31+G(d,p) level, using the polarizable
continuum model (PCM). For the cyclic selenides 6 and 7, all possible configurations were
tested, and the global-energy-minimum structure was thus determined. Frequency calculations
were performed for all the obtained structures to confirm that the structures had no imaginary
frequencies. The energy-minimum structures were used for analyzing the HOMO energy levels and
the intramolecular hydrogen-bond distances.

4. Conclusions

Here, we analyzed in-depth the GPx-like catalytic cycle of water-soluble amino-substituted cyclic
selenides in water and in methanol on the basis of the component analysis of the reaction solution by
means of 77Se-NMR and LC–MS spectroscopies. Under an aqueous condition at a physiological pH, it
was revealed that two components (i.e., the selenide and the corresponding selenoxide), can mainly
contribute to the antioxidative function though a slight contribution from the dihydroxy selenane
3a was also suggested. Thus, cycle A in Scheme 1 should be a major cycle in water as reported
in the literature [26–29]. In methanol, however, other active species, such as hydroxyselenonium 3
and hydroxy perhydroxy selenane 4 would be generated by over-reaction or over-oxidation of the
corresponding selenoxide by an excess amount of H2O2. These species (i.e., 3 and 4), should work as
active oxidants against thiol substrates in consort with selenoxide 2 and 3a if the velocities of reactions
iii and/or vi in Scheme 1 are comparable or faster than that of reaction ii. This situation would be
more feasible for amino-substituted cyclic selenides probably because the NH3

+ group would transfer
a proton to the selenoxide moiety to give hydroxyselenonium 3 in the absence of an additional proton
source. Thus, a shift of the major catalytic cycle in methanol would make the GPx-like antioxidative
function of selenides perplexing. The information obtained here will provide a valuable clue for design
of novel selenide-based antioxidative enzyme mimics.

Supplementary Materials: Supplementary materials (Synthesis of mesylates 12a and 12b; 1H, 13C, and 77Se-NMR
spectra of 5, 6, 13a and 13b; Figures S1-S12; Quantum chemical calculations of the selenoxides corresponding 6
and 7) are available online.
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