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Apoptosis is a programmed cell death that occurs naturally in physiological and pathological conditions. Defective apoptosis can
trigger the development and progression of cancer. Experiments suggest the ability of secretome derived from mesenchymal stem
cells (MSC) to induce apoptosis in cancer cells.We develop a hybrid discrete-continuousmultiscale model to further investigate the
effect of MSC-derived secretome in tumor growth.Themodel encompasses three biological scales. At the molecular scale, a system
of ordinary differential equations regulate the expression of proteins involved in apoptosis signaling pathways. At the cellular scale,
discrete equations control cellular migration, phenotypic switching, and proliferation. At the extracellular scale, a system of partial
differential equations are employed to describe the dynamics of microenvironmental chemicals concentrations. The simulation
is able to produce both avascular tumor growth rate and phenotypic patterns as observed in the experiments. In addition, we
obtain good quantitative agreements with the experimental data on the apoptosis of HeLa cancer cells treated with MSC-derived
secretome. We use this model to predict the growth of avascular tumor under various secretome concentrations over time.

1. Introduction

Apoptosis is a normal, genetically regulated process in which
a cell undergoes a sequence of intracellular complex processes
that trigger self-destruction. Cancers occur due to mutations
of certain fundamental genes that disable the cells to perform
apoptosis, giving rise to malignant tumor cells that grow
uncontrollably. With its genetic instability, an individual
tumor cell becomes a forerunner parent cell that has the
potential to develop into a cluster, biologically complex tumor
consisting of approximately 106 cells.

Various cancer treatments have been explored with the
ultimate goal of suppressing its growth and spreading and
perhaps even eradicating cancerous cells. Recently, mes-
enchymal stem cells (MSCs) have become a topic of great
focus in relation to cancer.MSCs are known to secrete a broad
panel of proteins including growth factors, chemokines, and
cytokines, which are called secretome [1]. Growing evidence
suggests that MSCs have an important role in affecting the
behavior of tumor cells [2]. While some studies reported

that MSCs favor tumor growth, others showed that MSCs
can suppress tumorigenesis [3, 4]. In particular, it has been
reported that secretome contained in conditioned media
(CM) of MSCs promotes apoptosis and autophagy of cancer
cells [5]. Experiments done by Sandra et al. show that
secretome significantly induces apoptosis in HeLa cancer
cells in concentration and time dependent manner [6].

From intracellular perspective, there are two well-known
major signaling pathways leading to apoptosis: the intrinsic
pathway centered onmitochondria and the extrinsic pathway
initiated by death receptors called Tumor Necrosis Factor
(TNF). There is now evidence showing that these two path-
ways are connected and affect one another [7, 8]. Moreover,
recent research has also revealed the third pathway, called the
perforin pathway, which involves T-cellmediated cytotoxicity
and is induced by granzyme B protein. Perforin pathway is
also connected to the intrinsic pathway and all three pathways
eventually converge into the activation of caspase 3 protein
leading to cell death, chromatin condensation, chromosome
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fragmentation, nuclear degradation, andprotein cytoskeleton
[8–10].

Understanding the dynamics of secretome-induced
apoptosis that can modulate cells’ life and death can
immensely provide therapeutic potential. Despite numerous
experimental studies, the underlying biological mechanism
of tumor apoptosis induced by MSC secretome is not yet
fully understood. Laboratory experiments may not be cost
effective and are often quite challenging to perform as each
experiment can only be done for specific cells and cannot
be easily modified to investigate others. Computational
model that simulates secretome-induced apoptosis provides
general virtual solution that could complement experimental
methods.

For a long time, various modeling techniques have been
used to simulate avascular tumor growth [11–20]. Continuous
models consider the interactions between cell density and
chemical concentrations that influence cell cycle events of
tumor cell population. These models employ a system of
partial differential equations to describe reaction-diffusion-
convection of cells and their microenvironmental elements.
Continuousmodels are computationally cost effective in gen-
eral; however, they do not maintain cell-specific properties
and individual cell interactions. On the other hand, discrete
models such as cellular automata, extended Potts, and agent-
based models focus on modeling single-cell phenomena and
upscale it to obtain information about macroscopic phenom-
ena of tumor growth. Drawbacks of the discrete approach
lie in their parametrization and the computational costs,
but it provides greater qualitative insight into the nature of
the system. Hybrid discrete-continuous models provide the
benefits of both implementationswithin the same simulation.
Some of the models listed above are multiscale models that
typically include cellular, subcellular, and extracellular levels.
However, all of these models simulated cancer growth in an
untreated environment, and hence none of them includes
any apoptosis-related signaling network at their subcellular
level. Previous modeling work on apoptosis itself, such
as [21–23], mostly focused on partial signaling pathways.
Hong et al. [24] proposed a continuous ordinary differential
equations (ODE) model for the apoptosis signaling network
to study the effect of cisplatin. Even though their com-
prehensive model included three major pathways involved
in cisplatin induced apoptosis, namely, the mitochondrial,
death receptor-mediated, and endoplasmic reticulum-stress
pathways, it is a single scale model at the molecular level and
is not integrated to the other levels of the system.

In this study, we develop a multiscale hybrid discrete-
continuous model that integrates continuous models of the
apoptosis signaling pathways and chemical concentration
dynamics at the molecular and extracellular levels into a
discrete agent-basedmodel at the cellular level. Our apoptosis
signaling pathways model is a system of ordinary differential
equations (ODEs) that comprehensively covers all three
known pathways that are involved in secretome-induced
apoptosis. Our simulation produces phenotypic patterns of
avascular tumor growth as observed in the experiments.
The model also verifies and obtains a good quantitative
agreementwith the experimental results by Sandra et al. [6] in

studying the role of secretome in inducing apoptosis of HeLa
cancer cells. This suggests that the model can potentially
be used as a tool in predicting tumor apoptosis induced by
various substances. With this model, we further quantify the
contribution of each signaling pathway in inducing apoptosis.
Lastly, we use the model to predict the effect of secretome of
various concentrations on tumor spheroid growth.

2. Materials and Methods

Our model spans across three biological time scales: molec-
ular scale, cellular scale, and extracellular scale, which are
closely integrated. At the molecular scale, the apoptosis
signaling network regulates cellular apoptosis induced by
secretome. At the cellular level, a discrete agent-based model
controls cell migration, proliferation, and death. At the
extracellular level, a system of partial differential equa-
tions describes diffusion, consumption or production, and
decay of extracellular substances, such as nutrient (oxygen),
extracellular matrix, matrix-degradative enzyme, and growth
inhibitors.

2.1. Molecular Scale: Apoptotic Signaling Pathways. Literature
study has shown that the three major signaling pathways
that are known to be involved in apoptosis are the extrinsic
(death receptor) pathway, intrinsic (mitochondrial) pathway,
and the perforin pathway [8–10]. The extrinsic and intrinsic
pathways we use here are adopted from various sources [8, 10,
24–26] with minor modifications. We integrate the perforin
pathway in order to build a comprehensive model that covers
all signaling pathways known to be involved in apoptosis
induced by MSC secretome. When a cell detects nonzero
concentration of the secretome in the medium, a cascade of
molecular events occur along these pathways.

A schematic model of the pathways used in this paper is
shown in Figure 1. The intrinsic pathway begins as secretome
induces DNA damage, which further results in the activation
of ATR and p53 proteins. As a response to the DNA damage,
the proapoptosis proteins, such as Bax and Bak, will be acti-
vated, leading to the opening of mitochondrial permeability
transition pore. This triggers the release of cytochrome c
from mitochondria into the cytosol [27–30]. On the other
hand, the antiapoptosis protein, such as Bcl-2, will inhibit the
release of cytochrome c. Cytochrome c will bind with Apaf-
1 and activate caspase 9. Activated caspase 9 will then cleave
and activate downstream caspases, such as caspase 3, which
is also known as the apoptosis executor protein.

The extrinsic pathway is initiated by death receptors,
called Tumor Necrosis Factor (TNF). The binding of TNF to
its receptor causes the level of FasL to increase, which leads to
the downstream activation of caspase 8. Activated caspase 8
can trigger the intrinsic pathway through the cleavage of Bid.
The truncated Bid further stimulates Bax and Bak. Alterna-
tively, the activated caspase 8 can bypass the intrinsic pathway
by directly initiating the activation of caspase 3 [8, 31].

The perforin pathway involves T-cell mediated cytotoxic-
ity and is perforin-granzyme dependent in activating caspase
10, which subsequently triggers the activation of caspase 3.
The interconnection (cross-talk) between the perforin and
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Figure 1: A schematic model of the three apoptosis signaling
pathways. (1) The extrinsic pathway mediated by death receptors,
(2) the intrinsic pathway centered on mitochondria, and (3) the
perforin pathway induced by granzyme B. Each pathway activates its
own initiator caspase (casp 8, 9, and 10) which in turn will activate
the executioner caspase 3. A solid arrow indicates activation or
upregulation, while a line terminated by a bar indicates inhibition
or downregulation. The arrows with broken red lines indicate the
cross-talk between these pathways.

intrinsic pathways occurs through the truncation of Bid by
the activated granzyme B [8]. All three pathways eventually
merge on the activation of caspase 3 that induces cellular
apoptosis.

The change of concentration of each protein involved in
the signaling pathways over time is given by an ordinary
differential equation (ODE) of the form

𝑑 [𝐶]
𝑑𝑡 = ∑𝑘1 [𝑆1] −∑𝑘2 [𝑆2] , (1)

where [𝐶] is the concentration of the chemical, 𝑘1[𝑆1] is the
production rate, and 𝑘2[𝑆2] is the consumption rate of [𝐶].
The biochemical kinetics involved in the model in Figure 1
are given in Table 1 and their corresponding system of ODEs

are listed in Table 2. Blocks A, B, and C in Table 2 list
the equations involved in extrinsic, intrinsic, and perforin
pathways, respectively. BlockD in this table lists the equations
that are needed by all three pathways.

Since it is assumed that secretome is distributed uni-
formly across the simulation domain, each cell initially
detects the same level of secretome and solves the system of
ODEs to determine its apoptosis level at each time step. In
our simulation, we employ the classical fourth-order Runge-
Kutta method to solve the system numerically [37]. Reaction
rate constants and the apoptosis proteins’ initial values used
in our simulation are listed in Tables 3 and 4.

2.2. Extracellular Scale: Reaction-Diffusion for Biochemical
Concentration. Cells interact and respond to their microen-
vironment, which is characterized by local extracellular
biochemical concentration. Combining the models proposed
by [16, 17, 19], we employ reaction-diffusion equations to
model the dynamics of these chemicals, which include
nutrient concentration 𝑢, waste (growth inhibitor) concen-
tration 𝑤, extracellular matrix (ECM) density 𝑓, and matrix-
degradative enzyme (MDE) concentration 𝑚. Each of these
quantities is a function of spatial variable x and temporal
variable 𝑡.
2.2.1. Nutrient (Oxygen) Concentration. In our model, local
nutrient concentration is one of the key factors that deter-
mines cell’s viability, aside from cellular apoptosis. At the
macroscopic scale, the evolution of nutrient concentration
𝑢(x, 𝑡) is given by the following reaction-diffusion equation:

𝜕𝑢
𝜕𝑡 = 𝐷𝑢∇

2𝑢 −
𝑁(𝑡)

∑
𝑘=1

𝛾𝑢 (x𝑘) 𝑒−|x−x𝑘|
2/𝜖2 − 𝛿𝑢𝑢, (2)

where 𝐷𝑢 is the nutrient diffusion constant, 𝑁(𝑡) is the
number of cells at time 𝑡, 𝛾𝑢(x𝑘) is the nutrient consumption
rate of cell 𝑘 which depends on the cell’s viability status
and its position x𝑘, 𝜖 is the degree of localized nutrient
consumption, and 𝛿𝑢 is nutrient decay rate. The first term of
the equation represents the diffusion of the nutrient in the
medium, while the summation in the second term defines
the total nutrient uptake by tumor cells that are still viable
or quiescent. Necrotic and apoptotic cells do not consume
any nutrients. At any given point x in the medium, individual
cell’s nutrient uptake rate is a function of cell’s position and
it declines exponentially as distance increases. Data from
[38, 39] show that the nutrient uptake rate of quiescent cells
is approximately half that of proliferating cells. For necrotic
and apoptotic cells, the uptake rate 𝛾𝑢 is set to 0. Cell 𝑘’s
local nutrient concentration is the value 𝑢(x, 𝑡), where x is
the nearest grid point to the cell’s position x𝑘. We define
two threshold values 𝑇1 and 𝑇2 for the cell’s local nutrient
concentration to determine its viability status. Cell 𝑘 is said
to be viable whenever 𝑢(x, 𝑡) > 𝑇2, quiescent if 𝑇1 ≤
𝑢(x, 𝑡) ≤ 𝑇2, and necrotic otherwise. As oxygen is one
of the most important cellular nutrients that is crucial for
cell metabolism, we chose the parameter values of diffusion
constant 𝐷𝑢, consumption rate 𝛾𝑢, and decay rate 𝛿𝑢 to be
those of oxygen.
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Table 1: Biochemical kinetics involved in apoptosis signaling pathways.

Extrinsic pathway

Secretome + FasL
𝑘11󳨀→ FasL∗

FasL∗ + Casp8 𝑘
+
12󴀕󴀬
𝑘−12

FasL∗.Casp8 𝑘13󳨀󳨀→ Casp8∗

Casp8∗ + Bid
𝑘+51󴀕󴀬
𝑘−51

Casp8∗.Bid 𝑘52󳨀→ tBid

Casp8∗ + Casp3 𝑘
+
14󴀕󴀬
𝑘−14

Casp8∗.Casp3 𝑘15󳨀󳨀→ Casp8∗ + Casp3∗ 𝑘16󳨀→ Apoptosis

Intrinsic pathway

Secretome + DNA
𝑘21󳨀→ DNAdamage

DNAdamage + ATR
𝑘22󳨀→ ATR∗

ATR∗ + p53 𝑘
+
23󴀕󴀬
𝑘−23

ATR∗.p53 𝑘24󳨀→ p53∗

p53∗ + Bax
𝑘+25󴀕󴀬
𝑘−25

p53∗.Bax 𝑘26󳨀→ Bax.Bak

tBid + Bax
𝑘+55󴀕󴀬
𝑘−55

tBid.Bax 𝑘56󳨀→ Bax.Bak

Bcl2 + p53∗ 𝑘
+
27󴀕󴀬
𝑘−27

p53∗.Bcl2

Bcl2 + Bax
𝑘+28󴀕󴀬
𝑘−28

Bcl2.Bax

Bax.Bak + Cytcmit
𝑘29󳨀→ Bax.Bak + Cytc

Cytc + Casp9 𝑘
+
30󴀕󴀬
𝑘−30

Cytc.Casp9 𝑘31󳨀→ Casp9∗

Casp9∗ + Casp3 𝑘
+
32󴀕󴀬
𝑘−32

Casp9∗.Casp3 𝑘33󳨀→ Casp9∗ + Casp3∗ 𝑘34󳨀→ Apoptosis

Perforin pathway

Secretome + granB
𝑘41󳨀→ granB∗

granB∗ + Casp10 𝑘
+
42󴀕󴀬
𝑘−42

granB∗.Casp10 𝑘43󳨀→ Casp10∗

granB∗ + Bid
𝑘+53󴀕󴀬
𝑘−53

granB∗.Bid 𝑘54󳨀→ tBid

Casp10∗ + Casp3 𝑘
+
44󴀕󴀬
𝑘−44

Casp10∗.Casp3 𝑘45󳨀→ Casp10∗ + Casp3∗ 𝑘46󳨀→ Apoptosis

A∗: the activated state of protein A; A ⋅ B: the compound of proteins A and B; 𝑘+: forward rate constant of reaction; 𝑘−: reverse rate constant of reaction;
Cytcmit : cytochrome c in mitochondria; Cytc: the released cytochrome c.

2.2.2. Matrix-Degradative Enzyme (MDE) Concentration.
The equation for MDE concentration 𝑚(x, 𝑡) is very much
similar to the reaction-diffusion equation for nutrient con-
centration discussed above with the exception that active
MDE is produced by cells and decays at a constant rate.

𝜕𝑚
𝜕𝑡 = 𝐷𝑚∇

2𝑚 +
𝑁(𝑡)

∑
𝑘=1

𝜇𝑒−|x−x𝑘|2/𝜖2 − 𝛿𝑚𝑚. (3)

Here the parameters 𝐷𝑚, 𝛿𝑚, and 𝜇 are the MDE diffusion
coefficient, decay rate, and single cell MDE production rate,
respectively.

2.2.3. Extracellular Matrix (ECM) Density. Cells adhere to
the extracellular matrix (ECM) and require the ECM for
certain types of cell movement. In this model, we assume
that ECM consists of only macromolecules, such as laminin,
fibronectin, and collagen, and does not contain any other

cells. These macromolecules are known to be important for
cell adhesion, spreading, and motility and they are bound
to the surrounding tissue. Moreover, tumor invasion and
metastatic process depend on the cell’s ability to degrade the
ECM [40–42]. The tumor cells produce MDE which degrade
the ECM locally upon contact and the degradation process is
modeled by the following equation:

𝜕𝑓
𝜕𝑡 = −𝛿𝑓𝑚𝑓, (4)

where 𝛿𝑓 is the degradation rate,𝑚 is theMDEconcentration,
and 𝑓 is the ECM density.

2.2.4. Growth Inhibitor Concentration. Growth inhibitory
factors, such as waste products and lactate, are released by
necrotic cells into the medium and diffuse outward from
the center of the tumor mass. The production and diffusion
of inhibitory factors are computed similarly as in MDE
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Table 2: The system of ordinary differential equations for the biochemical kinetics of the apoptosis signaling pathways. Blocks A, B, and C
list the equations involved in extrinsic, intrinsic, and perforin pathways, respectively, and block D contains the equations used in all three
pathways.

A

𝑑[FasL∗]/𝑑𝑡 = 𝑘11[Secretome][FasL] − 𝑘+12[FasL∗][Casp8] + 𝑘−12[FasL∗.Casp8]
𝑑[Casp8]/𝑑𝑡 = −𝑘+12[FasL∗][Casp8] + 𝑘−12[FasL∗.Casp8]
𝑑[FasL∗.Casp8]/𝑑𝑡 = 𝑘+12[FasL∗][Casp8] − 𝑘−12[FasL∗.Casp8] − 𝑘13[FasL∗.Casp8]
𝑑[Casp8∗]/𝑑𝑡 = 𝑘13[FasL∗.Casp8] − 𝑘+14[Casp8∗][Casp3] + 𝑘−14[Casp8∗.Casp3] + 𝑘15[Casp8∗.Casp3] − 𝑘16[Casp8∗][Casp3∗]

−𝑘+51[Casp8∗][Bid] + 𝑘−51[Casp8∗.Bid]
𝑑[Casp8∗.Bid]/𝑑𝑡 = 𝑘+51[Casp8∗][Bid] − 𝑘−51[Casp8∗.Bid] − 𝑘52[Casp8∗.Bid]
𝑑[Casp8∗.Casp3]/𝑑𝑡 = 𝑘+14[Casp8∗][Casp3] − 𝑘−14[Casp8∗.Casp3] − 𝑘15[Casp8∗.Casp3]

B

𝑑[DNAdamage]/𝑑𝑡 = 𝑘21[Secretome][DNA] − 𝑘22[DNAdamage][ATR]
𝑑[ATR∗]/𝑑𝑡 = 𝑘22[DNAdamage][ATR] − 𝑘+23[ATR∗][p53] + 𝑘−23[ATR∗.p53]
𝑑[p53]/𝑑𝑡 = −𝑘+23[ATR∗][p53] + 𝑘−23[ATR∗.p53]
𝑑[ATR∗.p53]/𝑑𝑡 = 𝑘+23[ATR∗][p53] − 𝑘−23[ATR∗.p53] − 𝑘24[ATR∗.p53]
𝑑[p53∗]/𝑑𝑡 = 𝑘24[ATR∗.p53] − 𝑘+25[p53∗][Bax] + 𝑘−25[p53∗.Bax] + 𝑘−27[p53∗.BCl2] − 𝑘+27[BCl2][p53∗]
𝑑[Bax]/𝑑𝑡 = −𝑘+25[p53∗][Bax] + 𝑘−25[p53∗.Bax] − 𝑘+28[BCl2][Bax] + 𝑘−28[BCl2.Bax]

−𝑘+55[tBid][Bax] + 𝑘−55[tBid.Bax]
𝑑[p53∗.Bax]/𝑑𝑡 = 𝑘+25[p53∗][Bax] − 𝑘−25[p53∗.Bax] − 𝑘26[p53∗.Bax]
𝑑[Bax.Bak]/𝑑𝑡 = 𝑘26[p53∗.Bax] + 𝑘56[tBid.Bax]
𝑑[tBid.Bax]/𝑑𝑡 = 𝑘+55[tBid][Bax] − 𝑘−55[tBid.Bax] − 𝑘56[tBid.Bax]
𝑑[BCl2]/𝑑𝑡 = −𝑘+27[BCl2][p53∗] + 𝑘−27[p53∗.BCl2] − 𝑘+28[BCl2][Bax] + 𝑘−28[BCl2.Bax]
𝑑[p53∗.BCl2]/𝑑𝑡 = 𝑘+27[BCl2][p53∗] − 𝑘−27[p53∗.BCl2]
𝑑[BCl2.Bax]/𝑑𝑡 = 𝑘+28[BCl2][Bax] − 𝑘−28[BCl2.Bax]
𝑑[Cytcmit]/𝑑𝑡 = −𝑘29[Bax.Bak][Cytcmit]
𝑑[Cytc]/𝑑𝑡 = 𝑘29[Bax.Bak][Cytcmit] − 𝑘+30[Cytc][Casp9] + 𝑘−30[Cytc.Casp9]
𝑑[Casp9]/𝑑𝑡 = −𝑘+30[Cytc][Casp9] + 𝑘−30[Cytc.Casp9]
𝑑[Cytc.Casp9]/𝑑𝑡 = 𝑘+30[Cytc][Casp9] − 𝑘−30[Cytc.Casp9] − 𝑘31[Cytc.Casp9]
𝑑[Casp9∗]/𝑑𝑡 = 𝑘31[Cytc.Casp9] − 𝑘+32[Casp9∗][Casp3] + 𝑘−32[Casp9∗.Casp3] + 𝑘33[Casp9∗.Casp3] − 𝑘34[Casp9∗][Casp3∗]
𝑑[Casp9∗.Casp3]/𝑑𝑡 = 𝑘+32[Casp9∗][Casp3] − 𝑘−32[Casp9∗.Casp3] − 𝑘33[Casp9∗.Casp3]

C

𝑑[granB∗]/𝑑𝑡 = 𝑘41[Secretome][granB] − 𝑘+42[granB∗][Casp10] + 𝑘−42[granB∗.Casp10] − 𝑘+53[granB∗][Bid] + 𝑘−53[granB∗.Bid]
𝑑[granB∗.Bid]/𝑑𝑡 = 𝑘+53[granB∗][Bid] − 𝑘−53[granB∗.Bid] − 𝑘54[granB∗.Bid]
𝑑[Casp10]/𝑑𝑡 = −𝑘+42[granB∗][Casp10] + 𝑘−42[granB∗.Casp10]
𝑑[granB∗.Casp10]/𝑑𝑡 = 𝑘+42[granB∗][Casp10] − 𝑘−42[granB∗.Casp10] − 𝑘43[granB∗.Casp10]
𝑑[Casp10∗]/𝑑𝑡 = 𝑘43[granB∗.Casp10] − 𝑘+44[Casp10∗][Casp3] + 𝑘−44[Casp10∗.Casp3] + 𝑘45[Casp10∗.Casp3] − 𝑘46[Casp10∗][Casp3∗]
𝑑[Casp10∗.Casp3]/𝑑𝑡 = 𝑘+44[Casp10∗][Casp3] − 𝑘−44[Casp10∗.Casp3] − 𝑘45[Casp10∗.Casp3]

D

𝑑[Bid]/𝑑𝑡 = −𝑘+51[Casp8∗][Bid] + 𝑘−51[Casp8∗.Bid] − 𝑘+53[granB∗][Bid] + 𝑘−53[granB∗.Bid]
𝑑[tBid]/𝑑𝑡 = 𝑘52[Casp8∗.Bid] + 𝑘54[granB∗.Bid] − 𝑘+55[tBid][Bax] + 𝑘−55[tBid.Bax]
𝑑[Casp3]/𝑑𝑡 = −𝑘+14[Casp8∗][Casp3] + 𝑘−14[Casp8∗.Casp3] − 𝑘+32[Casp9∗][Casp3] + 𝑘−32[Casp9∗.Casp3]

−𝑘+44[Casp10∗][Casp3] + 𝑘−44[Casp10∗.Casp3]
𝑑[Casp3∗]/𝑑𝑡 = 𝑘15[Casp8∗.Casp3] − 𝑘16[Casp8∗][Casp3∗] + 𝑘33[Casp9∗.Casp3] − 𝑘34[Casp9∗][Casp3∗]

+𝑘45[Casp10∗.Casp3] − 𝑘46[Casp10∗][Casp3∗]
𝑑[Apop]/𝑑𝑡 = 𝑘16[Casp8∗][Casp3∗] + 𝑘34[Casp9∗][Casp3∗] + 𝑘46[Casp10∗][Casp3∗]

concentration (3), except that the production is computed
over necrotic cells only.

𝜕𝑤
𝜕𝑡 = 𝐷𝑤∇

2𝑤 +
𝑁̂(𝑡)

∑
𝑘=1

𝛼𝑒−|x−x𝑘|2/𝜖2 , (5)

where 𝑁̂(𝑡) is the total number of necrotic cells at time 𝑡 and𝛼
is the production rate of growth inhibitor by asingle necrotic

cell. As growth inhibitor diffuses outward from the tumor,
it will eventually reach viable cells in the outer rim. When
the accumulated growth inhibitor reaches a certain threshold
value𝑇3, viable cells undergo proliferation arrest and become
quiescent even though the cells’ local nutrient concentration
is still sufficiently high.

Our simulation uses parameter values that are derived
from experiments as much as possible. We estimate parame-
ter values whose data are not available to achieve best possible
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Table 3: Reaction rate constants for biochemical kinetics used in the simulation.

Extrinsic pathway Intrinsic pathway Perforin pathway
𝑘11 0.5 𝜇M−1s−1 𝑘21 0.5 𝜇M−1s−1 𝑘+28 1 𝜇M−1s−1 𝑘41† 0.5 𝜇M−1s−1
𝑘+12 1 𝜇M−1s−1 𝑘22 0.5 𝜇M−1s−1 𝑘−28 1 s−1 𝑘+42† 1 𝜇M−1s−1
𝑘−12 1 s−1 𝑘+23 1 𝜇M−1s−1 𝑘29 10 𝜇M−1s−1 𝑘−42† 1 s−1
𝑘13 1 s−1 𝑘−23 1 s−1 𝑘+30 1 𝜇M−1s−1 𝑘43† 1 s−1
𝑘+14 1 𝜇M−1s−1 𝑘24 1 s−1 𝑘−30 1 s−1 𝑘+44† 1 𝜇M−1s−1
𝑘−14 1 s−1 𝑘+25 1 𝜇M−1s−1 𝑘31 1 s−1 𝑘−44† 1 s−1
𝑘15 1 s−1 𝑘−25 1 s−1 𝑘+32 10 𝜇M−1s−1 𝑘45† 1 s−1
𝑘16 1 𝜇M−1s−1 𝑘26 1 s−1 𝑘−32 0.5 s−1 𝑘46† 1 𝜇M−1s−1
𝑘+51† 1 𝜇M−1s−1 𝑘+27 1 𝜇M−1s−1 𝑘33 0.1 s−1 𝑘+53† 1 𝜇M−1s−1
𝑘−51† 1 s−1 𝑘−27 1 s−1 𝑘34 1 𝜇M−1s−1 𝑘−53† 1 s−1
𝑘52† 1 s−1 𝑘+55† 1 𝜇M−1s−1 𝑘56† 1 s−1 𝑘54† 1 s−1

𝑘−55† 1 s−1
†, estimated parameters. All other values are taken from [24]. The superscript “+” indicates forward rate constant and “−” reverse rate constant. The units for
reaction rate constants are 𝜇M−1s−1 for bimolecular reactions and s−1 for monomolecular reactions.

Table 4: Initial values of apoptosis proteins used in the simulation.

FasL [0, 1] FasL∗ 0 Casp9 [0, 1] Casp9∗ 0
Casp8 [0, 1] Casp8∗ 0 granB [0, 1] granB∗ 0
Casp3 [0, 1] Casp3∗ 0 Casp10 [0, 1] Casp10∗ 0
Apop 0 FasL∗.Casp8 0 Casp8∗.Casp3 0
Bid [0, 1] tBid 0 ATR∗.p53 0 p53∗.Bax 0
DNA [0, 1] DNAdamage 0 Bax.Bak 0 p53∗.BCl2 0
ATR [0, 1] ATR∗ 0 BCl2.Bax 0 Cytc.Casp9 0
p53 [0, 1] p53∗ 0 Casp9∗.Casp3 0 granB∗.Casp10 0
Bax [0, 1] BCl2 [0, 1] Casp10∗.Casp3 0 Casp8∗.Bid 0
Cytcmit [0, 1] Cytc 0 tBid.Bax 0 granB∗.Bid 0
All values are in nondimensional form. The value [0, 1] means a uniformly random number between 0 and 1. A∗: the activated state of protein A; A ⋅ B: the
compound of proteins A and B; Cytcmit: cytochrome c in mitochondria; Cytc: the released cytochrome c.

Table 5: Parameter values used in the extracellular components of the model.

Symbol Parameter Value Ref.
𝐷𝑢 Nutrient (oxygen) diffusion coefficient 0.00197mm2/s [32]
𝛾𝑢 Single cell oxygen consumption rate 2.69 × 10−17M/cells/s [33]
𝛿𝑢 Nutrient (oxygen) decay rate 0∗ Est.
𝜖 Degree of localized nutrient consumption 0.1 Est.
𝐷𝑚 MDE diffusion coefficient 10−7mm2/s [34]
𝜇 Single cell MDE production rate 1∗ [19]
𝛿𝑚 MDE decay rate 0∗ [19]
𝛿𝑓 ECM degradation rate 50∗ [19]
𝐷𝑤 Inhibitor (lactate) diffusion coefficient 1.67 × 10−6 mm2/s [16]
𝛼 Inhibitory factor production rate 2%/h/cm3 [16]
𝑇1, 𝑇2 Nutrient threshold for necrosis and quiescent states 0.3, 0.4∗ Est.
𝑇3 Growth inhibitor threshold 20∗ Est.
∗: nondimensionalized value.

agreement with experimental results. The list of parameters
used in (2)–(5) and their references are listed in Table 5.

2.3. Cellular Scale: Motility and Phenotypic Switching. In our
two-dimensional agent-based model, each tumor cell has a
fixed radius 𝑟 with individual cell data consisting of cell
position, viability status, nutrient consumption rate, and cell
proliferation clock. These individual data are stored and
updated at each time step. The discrete component of the

model regulates individual cell processes such as cell growth
and proliferation, as well as cellular adhesion and interactions
that play important roles in cell migration.

2.3.1. Cell Migration. Every tumor cell is treated as an
autonomous agent that updates its position according to the
discrete equation:

x𝑘 (𝑡 + Δ𝑡) = x𝑘 (𝑡) + VV𝑘 (𝑡) Δ𝑡, (6)
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Table 6: Parameter values used in the discrete component of the simulation.

Symbol Parameter Value Ref.
𝑟 Tumor cell radius 5–50 𝜇m [35]
𝐶𝐴/𝐶𝑅 Attraction to repulsion coefficient ratio 0.3∗ [17]
𝐿𝐴, 𝐿𝑅 Attraction and repulsion length scales 0.5, 0.1∗ [17]
𝜉 Haptotaxis coefficient 2600 cm2/s/M [19]
𝑇 Duration of cell cycle 0.8–1.0 days (HeLa cell) [36]
∗: nondimensionalized value.

where Δ𝑡 is the time step, x𝑘(𝑡) is the position of cell 𝑘
at time 𝑡, V is the step length, and V𝑘(𝑡) is the motility
direction of cell 𝑘 at time 𝑡. Each cell is subject to competing
forces that determine its direction of motion within the
microenvironment. In this model we consider two of such
forces: intercellular adhesion and cell-ECM adhesion, which
is sometimes referred to as haptotaxis. The direction of
movement V(𝑡) is their weighted average:

V (𝑡) = 𝑑𝐼V𝐼 (𝑡) + 𝑑𝐻V𝐻 (𝑡) . (7)

Here the subscripts 𝐼 and𝐻 denote the intercellular adhesion
and haptotaxis, respectively, and 𝑑 is the weight of the
velocity due to each biasing agent. Since there are no exact
known macroscopic forces that govern cellular adhesion and
haptotaxis, we implement some force formulas that have
been conventionally used in biophysical models as described
below.

The intercellular forces take into account both cell-cell
adhesion and repulsion. This pairwise interaction between
two interacting bodies is modeled via the potential function
𝑈 as defined in [17, 43]

𝑈𝑘,𝑗 = 𝐶𝐴𝑒−|x𝑘−x𝑗|/𝑙𝐴 − 𝐶𝑅𝑒−|x𝑘−x𝑗|/𝑙𝑅 . (8)

The first term of the above equation gives the adhesion
term and the latter specifies the repulsion term between
two distinct cells 𝑘 and 𝑗. It also assumes only pairwise
interactions and ignores 𝑁-body interactions for 𝑁 > 2.
The parameters 𝐶𝐴, 𝐶𝑅 define the adhesion and repulsion
strengths, respectively, and 𝑙𝐴, 𝑙𝑅 their effective length scales
[44].The velocity direction due to cell-cell adhesion forces for
cell 𝑘 is determined by the sum of the interaction potential
gradients from all other cells as follows:

V𝑘𝐼 =
𝑁(𝑡)

∑
𝑗=1,𝑗 ̸=𝑘

∇𝑈𝑘,𝑗, (9)

where 𝑈𝑘,𝑗 is the potential force between cells 𝑘 and 𝑗.
Haptotaxis is defined as a directed migratory response of

cells to gradient of fixed nondiffusible chemicals. Studies have
been done to characterize such directed movement in tumor
cells [42, 45, 46] and it was found that migrating cells choose
pathways with the highest availability of ECM proteins,
such as fibronectin. In our model, haptotaxis movement is
specifically defined to be the upwardmovement of cells along
the gradients of bound extracellular matrix:

V𝑘𝐻 = 𝜉∇𝑓 (x𝑘) (10)

with 𝜉 denoting the haptotaxis coefficient.

2.3.2. Cell Proliferation. Cell proliferation cycle consists of
the growth phase and division phase. DNA synthesis occurs
during the growth phase, while cytokinesis takes place during
division phase. A cell divides after both have been completed.
Five checks are performed on cells prior to performing
mitosis:

(1) Viability Status. Only viable cells have a chance to
perform mitosis. This is based on the reasoning that
cellular energy is prioritized for basal metabolism
needed for cell survival, and hence cell growth slows
down or even stops when it senses nutrient shortage.

(2) Proliferation Age. A cell must reach a certain age to
ensure it has enough time to complete all stages of
the cell cycle. In our model, each cell is assigned a cell
clockwith a randomphase, which ticks to amaximum
time𝑇 that corresponds to the duration of a cell cycle.
When the cell clock reaches 𝑇, a cell matures and the
next check (space availability check) is performed.

(3) Space Availability. Mitosis is allowed if there is suf-
ficient space around the parent cell for the two new
daughter cells to occupy. To check this condition,
we adopt a method used in [17] by examining the
cell’s repulsion term from the interaction potential
equation (8). Cell division is allowed only if the total
repulsion force of the cell falls below a predefined
constant. Otherwise, the cell enters quiescent state.

(4) Growth Inhibitor Level. Viable mature cells whose
local concentration of growth inhibitor is above a
threshold value cannot proliferate and they become
quiescent.

(5) Cell Shedding.The last check on cell shedding is based
on experimental observation that mitotic cells are
lost from tumor spheroid surface at a constant rate
per spheroid surface, that is, 20.9 ± 1.0 cells per sq
mm of spheroid surface per hour [36]. For simulation
purpose, we let a mitotic cell on the outermost part
shed away from the tumor with 20% probability.

When all conditions are met and a cell does not shed,
mitosis is performed. Cell division is modeled by having one
daughter cell replace the parent cell, and the second daughter
cell takes a small random offset from the first cell’s position.

The list of parameters used in the discrete part (cellular
level) of the model is listed in Table 6.
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Figure 2: Flowchart showing the integration ofmolecular, cellular, and extracellular scales into a sequence of events executed at each iteration.
Themolecular level processes are shown in yellow, extracellular level process is shown in blue, and cellular level processes are shown in green.

3. Results

We implement the model proposed above in an off-lattice
two-dimensional setting. The off-lattice agent-based model
is chosen to reduce geometric constraint and artificiality,
while two-dimensional algorithm implementation reduces its
computational costs. Each cell is equipped with its individual
cellular properties, for example, cellular phenotype (viability
status), age, and its apoptosis signaling pathways. The cell
moves according to its local interaction with other cells
(adhesion and repulsion) and its surrounding extracellular
matrix (haptotaxis).

The integration of the molecular, cellular, and extracellu-
lar time scales and the sequence of steps computed by a cell
at each iteration are illustrated in the flowchart in Figure 2.
In the flowchart, the molecular level processes are colored in
yellow, the extracellular process in blue, and the cellular level
processes in green.

We run several sets of simulations for various purposes.
The first set of simulations is done to test the accuracy of our
proposed apoptotic signaling model at the molecular level
(Tables 1 and 2).The second set of simulations tests themodel
at cellular and extracellular levels. Here we implement the
algorithm defined by (2)–(10) without the apoptosis signaling
network and compare the simulation result with experi-
mental result on tumor spheroid growth. In the last set of

simulations,we integrate the apoptotic signaling network into
tumor growth simulation to predict the effect of secretome in
tumor spheroid growth.

3.1. Apoptosis Signaling Network Simulation

3.1.1. Baseline Result. Following the laboratory experiment
performed by Sandra et al. [6], we place a monolayer consist-
ing of 2 ⋅ 105 cells in a nutrient-free secretome-conditioned
medium. These cells are spread uniformly across the simula-
tion domain, initially viable with their initial apoptosis level
set to 0.The secretome concentration is homogeneous across
the domain; hence all cells in one particular simulation detect
the same level of secretome concentration. Each individual
cell computes its biochemical kinetics equations of apoptotic
signaling pathways in Table 2 to determine its apoptosis level
over time.

In experiments, a feasible way to measure the effect of
secretome in inducing apoptosis is by counting the number of
apoptotic cells under different secretome concentration over
time. To compare the simulation result with these experi-
mental data, we need to first determine a threshold value 𝐴
that sets the cell to become apoptotic once its apoptosis level
passes this threshold value. Since this value is not available
in literature, we estimate it through repeated simulations.
We test a sequence of values for 𝐴 in the increment of 0.05
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Figure 3: Fraction of apoptotic cells obtained from simulations (dotted lines) and from experimental data (solid lines) for 24 and 48 hours.

starting from 0.05 up to 1. That is, let 𝐴𝑘 = 0.05𝑘, 𝑘 =
1, 2, . . . , 20. For each𝐴𝑘, we run the simulation and compute
the sum of the square errors 𝐸𝑘. The error is defined to be the
difference between experimental data and simulation result
for each secretome concentration (0.2%, 2%, and 20%) under
24- and 48-hour treatments:

𝐸𝑘 =
2

∑
𝑖=1

3

∑
𝑗=1

(𝑆𝑖𝑗 − 𝐷𝑖𝑗)2 , (11)

where 𝑗 = 1, 2, 3 indicates secretome concentration of 0.2, 2
and 20%, respectively, 𝑖 = 1, 2 represents the treatment time
of 24 and 48 hours, 𝑆𝑖𝑗 is the percentage of the apoptotic
cells under 𝑗 secretome concentration during 𝑖 treatment
time obtained from simulation, and𝐷𝑖𝑗 is the corresponding
experimental data. The value of𝐴𝑘 that gives the least square
error 𝐸𝑘 is then taken to be the apoptosis threshold 𝐴. The
apoptosis threshold we found is 𝐴 = 0.7. This value can be
refined further by taking increment that is smaller than 0.05
for 𝐴𝑘.

We run the simulations with secretome concentration
varied from 0.2%, 2%, and 20% under 24- and 48-hour
treatments, giving a total of six simulation scenarios. We
run each simulation scenario 100 times using the apoptosis
threshold value 𝐴 = 0.7. The mean and standard deviation
are computed and they are plotted as simulation data point
and error bar in Figure 3(b).

This figure shows a fairly good qualitative and quantita-
tive agreement. The apoptosis level monotonically increases
as secretome concentration increases. It also increases as
period of treatment increases. By comparing the two charts

on Figure 3 we can see that the fraction of apoptotic cells
produced by the simulation is accurate to within 2.35% for 24
hours and 1.5% for 48 hours treatment for all three secretome
concentration levels. This agreement indicates the accuracy
and predictive potential of our proposed apoptosis signaling
model.

3.1.2. Analysis of Individual Pathway and Cross-Talk Effect.
One advantage of having a computer simulated model is
that we could measure biological system properties that are
hard to quantify in laboratory experiments. One example is
quantifying the contribution of each pathway in inducing
apoptosis. For this purpose only, on those proteins described
in Table 4 as randombetween [0, 1], we intentionally set them
equal to 1, while the others stay at 0.This removes the random
effect from the initial conditions.The apoptosis (Apop) value
obtained from computing all biochemical kinetics equations
in Table 2 gives the total apoptosis level from these three
pathways combined. To measure the contribution of an
individual pathway, we set the other two pathways inactive
by assigning their proteins’ initial values to 0. For instance, by
setting the initial values of FasL, Casp8, granB, and Casp10 to
0 and computing only those equations in blocks B and D of
Table 2, we turn off the extrinsic and perforin pathways and
hence obtain the apoptosis level contributed by the intrinsic
pathway only. In a similar manner, one can measure the
apoptosis level produced by extrinsic and perforin pathways
separately. Figure 4 shows the percent contribution of each
signaling pathway under different secretome concentration
for short term (48 hours) and long term (800 hours) treat-
ment.
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Figure 4: Contribution of individual pathways to the total apoptosis level (in percent). “Combined”: all three pathways are activated;
“Extrinsic”: only extrinsic pathway is active; “Intrinsic”: only intrinsic pathway is active; “Perforin”: only perforin pathway is active.
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Table 7: Percentage of apoptosis level contributed by each pathway for 𝑡 = 48 hours.

Concentration Total Extrinsic Intrinsic Perforin Cross-talk effect
0.2% 100% 0.64% 8.94% 2.08% 88.34%
2% 100% 3.55% 21.78% 9.04% 65.63%
20% 100% 35.01% 27.89% 59.00% <0
All of these values come from Figures 4(a), 4(b), and 4(c).

We observe the following: First, the apoptosis level
contributed by each individual pathway is strictly positive
(between 0 and 100%), indicating that all three pathways
play roles in cellular apoptosis. Second, in low secretome
concentration (0.2% and 2%) the intrinsic pathway gives the
highest contribution to the total apoptosis level; see Figures
4(a), 4(b), 4(d), and 4(e). At high secretome concentration
(20%), the perforin pathway contributes the highest; see Fig-
ures 4(c) and 4(f). This is the case for both 48- and 800-hour
treatment period. Third, the contribution from the intrinsic
pathway eventually saturates at the level that is very close to
the total apoptosis level from all three combined pathways
regardless of the secretome concentration (Figures 4(d), 4(e),
and 4(f)). This suggests that intrinsic pathway alone can
eventually produce the same level of apoptosis, indicating its
effectiveness. Lastly, for low secretome concentration (0.2%
and 2%) during 48-hour treatment, we notice that the sum
of the apoptosis levels from three individual pathways is
much less than 100% (Figures 4(a) and 4(b)). This indicates
that there is a cross-talk effect between these pathways that
gives higher apoptosis level when all three pathways are
active. This cross-talk effect seems to decrease as secretome
concentration increases, as shown in Table 7, and also as
treatment period increases (Figures 4(d), 4(e), and 4(f)). In
all cases, the apoptosis level from a single pathway is always
less than the apoptosis level generated when several pathways
are activated simultaneously.

3.1.3. Sensitivity Analysis. Sensitivity analysis is performed to
determine which parameters are most sensitive and whether
the system is stable under small perturbations to these sen-
sitive parameter values. We measure the percentage change
in the apoptosis level when reaction rate constants and initial
value of apoptosis proteins are increased or decreased by 10%
from their original values. Figure 5 shows that the reaction
rate constant 𝑘33 and the initial value of caspase 3 protein are
themost sensitive parameters in themodel.The change in the
initial value of caspase 3 by 10% affects the apoptosis level by
7.4%, while the change in reaction rate constant 𝑘33 by 10%
causes less than 1.75% change in apoptosis level.This analysis
demonstrates the overall robustness of the signaling pathway
model.

3.2. Avascular Tumor Growth Patterns without Secretome
Treatment. In the second set of simulations, we employ (2)–
(10) and their corresponding parameter values at the cellular
and extracellular levels to model tumor growth without the
presence of secretome. In comparison to tumor spheroid that
is commonly used as a model system, the two-dimensional

simulation results presented here could be interpreted as
the cross section through the center of a three-dimensional
tumor spheroid.

Our simulation domain is a square with length 1mm. To
implement the extracellular scale, we divide the domain into
grids with uniform size 𝑑𝑥 = 𝑑𝑦 = 0.005. Equations (2)–(5)
are solved numerically by using the finite difference method
[47]. Homogeneous Neumann boundary conditions for the
PDEs are applied by assuming zero flux along the domain
boundary. The choice for this type of boundary condition is
based on the assumption that the nutrient (oxygen), MDE,
extracellular matrix, and growth inhibitor remain within this
domain. At the cellular scale, each cell is equipped with a
proliferation clock that functions as a periodic timer to keep
track of the cell’s proliferation. In this set of simulation,
the algorithm executes all steps shown in the flowchart
in Figure 2, except those processes at the molecular level
(colored in yellow).

The simulation captures tumor development froma single
cell at 𝑡 = 0 up to more than 10,000 cells at 𝑡 = 20
days. It initially starts with a single viable tumor cell with
its cellular parameters set according to values in Table 6. The
cell is placed in the center of simulation domain. In our
simulation, cell typically divides every 10 iterations, which
is equivalent to 0.8 days. This is the average doubling time
for HeLa cells in suspension [36]. Hence, one time step in
our simulation corresponds to 2 hours. At each iteration,
we first solve the reaction-diffusion equations (2)–(5) for the
microenvironmental chemicals for 2 hours to obtain their
current concentrations. From its local nutrient concentration,
cell determines whether it stays viable, or becomes quiescent
or necrotic. Next, the viable cell checks its proliferation clock
to determine if it has acquired certain growth and has aged
enough to proliferate. If it has not, the cell computes its
intercellular forces to determine its direction ofmovement for
the next iteration. On the other hand, if a cell has matured, it
performs a sequence of checks (age, space, inhibitory factor
concentration, and cell shedding) as described in Section 2.3.
At this point, a viable cell can either divide into two cells,
gets shed away from the surface of the spheroid, or becomes
quiescent. From the flowchart, we can see that quiescent state
is reversible, meaning that a quiescent cell can still become
viable, while necrotic state is irreversible.

Our simulations are able to produce avascular tumor
growth pattern as observed in the spheroid experiment, as
well as a quantitative agreement in the growth rate with the
growth rate given by classical Gompertz model. Figure 6(a)
shows avascular tumor evolution patterns. All cells are viable
(colored in green) during the first 8 days as the nutrient can
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Figure 5: Sensitivity analyses of reaction rate constants (a) and initial conditions of apoptosis proteins (b).

still diffuse through the entire tumor enabling the cells to
maintain their viability. However, as the number of cells is
growing, the total nutrient uptake becomes higher than its
diffusion rate.The center core becomes nutrient deprived and
after day 8, quiescent cells (colored in blue) start to appear.
The appearance of necrotic core (colored in red) follows
shortly after day 10. The tumor morphology consisting of
three layers of viable, quiescent, and necrotic regions is main-
tained as the tumor diameter increases over time. Figure 6(b)
shows the distributions of nutrient, fibronectin, MDE, and
growth inhibitory factors at 𝑡 = 20 days. Figure 6(c) shows
the size of viable and quiescent rim thickness as well as
the diameter of the necrotic core during tumor evolution.
Starting on day 9, the size of viable rim (shown in green)
drops and the thickness of quiescent rim (shown in blue)
and necrotic core radius (shown in red) start to increase.
From day 10 onward, the necrotic core radius grows as the
tumor continues to grow. On the other hand, the thickness of
viable and quiescent rims seem to stabilize at approximately
0.04mm as the proliferation rate of the viable cells on the
outer layer is balanced out with the rate of nutrient depletion

on the inner part of spheroid that causes viable cells to
become quiescent.

We further test themodel quantitatively by comparing the
growth kinetics of tumor in our simulation with the classical
Gompertz model:

𝑉 (𝑡) = 𝑉0 exp [𝐴𝐵 (1 − exp (−𝐵𝑡))] , (12)

where𝑉0 is the initial volume in mm3 and𝑉(𝑡) is the volume
at time 𝑡 (in days).The parameters𝐴 and𝐵 denote the growth
and retardation parameters. Since our simulation result only
shows two-dimensional cross section through the center of
the tumor, we compute an estimate of tumor spheroid volume
by the relation 𝑉 = (4/3)𝜋(𝑑/2)3, where diameter 𝑑 is
measured by taking the longest distance between any two
cells in the tumor. Using the least square method, we found
the parameters 𝐴 ≈ 1.13 and 𝐵 ≈ 0.11. See Figure 6(d).
These estimates are comparable with the numbers obtained
by Sasaki et al. in their spheroid experiments consisting of
HeLa cells alone [36], where they found that 𝐴 ≈ 1.23 and
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Figure 6: Continued.
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Figure 6: Simulation result of avascular tumor development without secretome. (a)The evolution of tumor growth patterns at 𝑡 = 5, 9, 11, 20
days. Red: necrotic cells; blue: quiescent cells; green: viable cells. (b) The distribution of microenvironmental factors (nutrient, fibronectin,
MDE, and growth inhibitory factors) at 𝑡 = 20 days. (c) The thickness of viable and quiescent rims in comparison with the necrotic core and
tumor radii during the first 20 days. ⧫: tumor radius; ∙: thickness of viable rim; ◼: thickness of quiescent rim; {: necrotic core radius. (d) The
volume as function of time fitted with Gompertz model. The circles are the simulation result and the solid curve is Gompertz curve with
parameters 𝐴 = 1.13 and 𝐵 = 0.11. These parameter values are found using the least square technique.

0.9 at lower and higher cell density, respectively, and 𝐵 ≈ 0.1
in both densities.

3.3. Tumor Growth under Secretome Treatment. In the next
simulation, we integrate the molecular level (apoptosis sig-
naling model) into the tumor growth model. Each cell is now
additionally equipped with its apoptosis signaling pathway
and their proteins are set according to values in Table 4.
Given the preset amount of secretome concentration, each
viable or quiescent cell undergoes a cascade of molecular
events described by the system of ODEs in the apoptosis
signaling pathways (Table 2).The cell’s current apoptosis level
is determined by solving the system. We set the apoptosis
threshold value to be equal to 𝐴 = 0.7 as done previously.

We run the simulations with secretome concentrations
of 0% (no secretome), 0.2%, 2%, and 20%. Tumor diameter
during the first 50 days of the development is then measured
and the volume is estimated by applying the formula 𝑉 =
(4/3)𝜋(𝑑/2)3, where 𝑑 is the diameter of the tumor. Figure 7
shows that secretome affects tumor growth in concentration
dependentmanner. During the first 10 days, there is no signif-
icant difference in volume between the untreated tumors and
those treated with secretome. Starting day 11, the difference
becomes more prominent with tumor treated with 20%
secretome only grows up to 0.128mm3, while the untreated
tumor grows up to 0.30mm3 at the end of 50-day period (see
Figure 7(a)). This shows that 20% secretome concentration
can effectively suppress tumor growth by approximately 57%.

We also calculate the number of live cells during the first
50 days. Both viable and quiescent cells are considered as
live cells since quiescent cells can still return to viable state.
Figure 7(b) shows that tumor treated with 20% secretome
concentration has the lowest number of live cells (4404
cells), followed by tumor with 2% secretome concentration
(4860 cells), 0.2% (6741 cells), and the one without secretome
treatment has 8143 live cells.

4. Discussion

Understanding the mechanism of apoptosis signaling path-
ways is important in predicting tumor growth under
apoptosis-inducing substances, such as MSC-derived secre-
tome. To achieve this goal, we develop a multiscale model
that integrates apoptosis signaling pathways with cellular
interaction and extracellular microenvironmental dynamics.
With this model, we run three sets of simulations to test each
level of the model against known experimental and literature
data and gain further insight into the underlying processes of
the system.

The first set of simulations is run to test the apoptosis
signaling pathway model at the molecular level. The sim-
ulation shows that higher level of secretome concentration
or longer period of treatment causes higher number of
cells to undergo apoptosis. This result is supported by the
observations of Sandra et al. [6] in their experiments with
HeLa cancer cells and shows a good quantitative agreement
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Figure 7: Simulation result of avascular tumor development with various concentrations of secretome up to 𝑡 = 50 days. (a) Comparison
of tumor volume treated without secretome (green) and with 0.2% secretome (black), 2% secretome (red), and 20% secretome (blue). (b)
Comparison of the number of live cells in untreated tumors and those treated with 0.2%, 2%, and 20% secretome.

with their data. We compare the apoptosis level obtained
by a single pathway and the one obtained when all three
pathways are running concurrently. Our simulation shows
that, among three signaling pathways, the intrinsic pathway
gives the greatest contribution to the apoptosis level in low
secretome concentrations (e.g., 0.2% and 2%), while perforin
pathway contributes the highest when the secretome con-
centration is fairly high (e.g., 20%). Moreover, the intrinsic
pathway alone can produce apoptosis level that approaches
the apoptosis level produced when all three pathways are
active simultaneously. Even though this result suggests the
effectiveness of the intrinsic pathway in inducing apoptosis,
further experimental studies and model analysis are needed
to confirm this. The sensitivity analysis reveals sensitive
parameters in the signaling pathwaymodel and confirms that
the model is relatively robust and stable under fluctuations of
these parameters.

In the second set of simulations, we test our algo-
rithm for the cellular interaction and the PDE model for
the microenvironmental dynamics. The apoptosis signaling
pathways are omitted in these simulations so that we can
analyze the avascular growth without secretome treatment.
The simulation is able to reproduce the concentric pattern of
necrotic, quiescent, and viable regions of tumor cells during
avascular growth as observed in tumor spheroid experiments.
Using parameter values of HeLa cancer cells, our simulation
result of tumor volume very much agrees with the classical
Gompertz model in the experiments by Sasaki et al. [36].

In the last set of simulations, we integrate the apoptosis
signaling model into the working model of avascular tumor
and analyze the growth under secretome treatment. Figure 7
shows the correlation between secretome concentration and
reduction in tumor volume as well as in the number of live

cells. The results indicate the effectiveness of secretome in
suppressing growth of avascular tumor.

With this result, our model provides an initial tool to
predict the effect of MSC secretome in tumor growth both
in cell culture and also in tumor spheroid experiment. Even
though the model is comprehensive and encompassing, it
still has several limitations. The first limitation is due to data
unavailability of some parameter values. Hence, our simu-
lations use estimated values that are not yet experimentally
tested. Although this may not change the result that much,
as verified by the sensitivity analysis, future studies can be
done to obtain these parameter values by fitting the model
to experimental data. The other limitation comes from the
fact that it is a two-dimensional model and only captures
tumor growth during avascular stage. For futurework, wewill
extend themodel to three dimensions for better accuracy and
also simulate angiogenesis to study the effect of secretome
during vascular growth.
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