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1. Introduction

One of the key traits of many-body quantum systems is that the full knowledge
of their global configurations does not imply full knowledge of their constituents. The
impossibility of reconstructing the local wave functions |ψ1〉, |ψ2〉 (pure states) of two
interacting quantum particles from the wave function of the whole system, |ψ12〉 6= |ψ1〉 ⊗
|ψ2〉, is due to the existence of entanglement [1]. Investigating open quantum systems,
whose (mixed) states are described by density matrices ρ12 = ∑i pi|ψi〉12〈ψi|, revealed that
the boundary between the classical and quantum worlds is more blurred than we thought.
There exists a genuinely quantum kind of correlation, quantum discord, which manifests
even in the absence of entanglement, i.e., in separable density matrices ρ12 = ∑i piρ1,i ⊗
ρ2,i [2,3]. This discovery triggered theoretical and experimental studies to understand
the physical meaning of quantum discord, and the potential use of it as a resource for
quantum technologies [4]. Relying on the known interplay between the geometrical and
physical properties of mixed states [5,6], a stream of works employed information geometry
techniques to construct quantifiers of quantum discord [7–12]. In particular, two of the
most popular ones are the Local Quantum Uncertainty (LQU) and the Interferometric
Power (IP) [13,14]. A merit of these two measures is that they admit an analytical form
for N qubit states across the 1 vs N − 1 qubit partition. They also have a clear-cut physical
interpretation. The lack of certainty about quantum measurement outcomes is due to
the fact that density matrices are changed by quantum operations. The LQU evaluates
the minimum uncertainty about the outcome of a local quantum measurement, when
performed on a bipartite system. It has been proven that two-particle density matrices
display quantum discord if, and only if, they are not “classical-quantum” states—that is,
they are not (a mixture of) eigenvalues of local observables, ρ12 6= ∑i pi|i〉1〈i| ⊗ ρ2,i, or
ρ12 6= ∑i piρ1,i ⊗ |i〉2〈i|, in which {|i〉} is an orthonormal basis. Indeed, this is the only case
in which one can identify a local measurement that does not change a bipartite quantum
state, whose spectral decomposition reads A1 = ∑i λi|i〉1〈i|, or A2 = ∑i λi|i〉2〈i|. The
LQU was built as the minimum of the Wigner–Yanase skew information, a well-known
information geometry measure [15], between a density matrix and a finite-dimensional
observable (Hermitian operator). It quantifies how much a density matrix ρ12 is different

Entropy 2021, 23, 263. https://doi.org/10.3390/e23030263 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-3701-4214
https://doi.org/10.3390/e23030263
https://doi.org/10.3390/e23030263
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23030263
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23030263?type=check_update&version=2


Entropy 2021, 23, 263 2 of 13

from being a zero-discord state. The IP was concocted by following a similar line of thinking.
Quantum discord implies a non-classical sensitivity to local perturbations. This feature
of quantum particles, while apparently a limitation, translates into an advantage in the
context of quantum metrology [16]. It has been theoretically proven and experimentally
demonstrated that quantum systems sharing quantum discord are more sensitive probes for
interferometric phase estimation. The merit of such measurement protocols is the quantum
Fisher information of the state under scrutiny with respect to a local Hamiltonian (in
Information Geometry, the QFI is known as the SLD or Bures–Uhlmann metric). The latter
generates a unitary evolution that imprints information about a physical parameter on the
quantum probe. The IP is the minimum quantum Fisher information of all the possible
local Hamiltonians, which is zero if, and only if, the probe states are classically correlated.

Here, we polish and extend the mathematical formalization of information-geome-
tric quantum correlation measures. We build a class of parent quantities of the LQU
(and consequently of the IP) in terms of the the metric adjusted skew informations [17].
In Sections 2 and 3, we review the definition and main properties of operator means. In
Sections 4–6, we discuss information-geometric quantities that capture complementar-
ity between quantum states and observables. In particular, we focus on the quantum
f -covariances and the quantum Fisher information. They quantify the inherent uncertainty
about quantum measurement outcomes. After recalling the definition of metric adjusted
skew information (Section 7), we build a new quantum discord measure, the metric ad-
justed local quantum uncertainty ( f -LQU), in Section 8. Finally, we are able to show that
LQU and IP are just two particular members of this family, allowing a unified treatment of
their fundamental properties.

2. Means for Positive Numbers

We use the notation R+ = (0,+∞).

Definition 1. A bivariate mean [18] is a function m : R+ ×R+ → R+ such that:

1. m(x, x) = x;
2. m(x, y) = m(y, x);
3. x < y ⇒ x < m(x, y) < y;
4. x < x′ and y < y′ ⇒ m(x, y) < m(x′, y′);
5. m is continuous;
6. m is positively homogeneous; that is m(tx, ty) = t ·m(x, y) for t > 0.

We use the notationMnu for the set of bivariate means described above.

Definition 2. Let Fnu denote the class of functions f : R+ → R+ such that:

1. f is continuous;
2. f is monotone increasing;
3. f (1) = 1;
4. t f (t−1) = f (t).

The following result is straightforward.

Proposition 1. There is a bijection f 7→ m f betwen Fnu andMnu given by

m f (x, y) = y f (y−1x) and in reverse f (t) = m(1, t)

for positive numbers x, y and t.

In Table 1, we have some examples of means.
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Table 1. Means and associated functions.

Name f m f

arithmetic 1 + x
2

x + y
2

WYD, β ∈ (0, 1) xβ + x1−β

2
xβy1−β + x1−βyβ

2
geometric

√
x

√
xy

harmonic 2x
x + 1

2
x−1 + y−1

logarithmic x− 1
log x

x− y
log x− log y

3. Means for Positive Operators in the Sense of Kubo-Ando

The celebrated Kubo–Ando theory of operator means [18–20] may be viewed as the
operator version of the results of Section 2.

Definition 3. A bivariate mean m for pairs of positive definite operators is a function

(A, B)→ m(A, B),

defined in and with values in positive definite operators on a Hilbert space that satisfies mutatis
mutandis conditions (1) to (5) in Definition 1. In addition, the transformer inequality

Cm(A, B)C∗ ≤ m(CAC∗, CBC∗),

should also hold for positive definite A, B, and arbitrary invertible C.

Note that the transformer inequality replaces condition (6) in Definition 1. We denote
the set of matrix means byMop.

Example 1. The arithmetic, geometric and harmonic operator means are defined, respectively,
by setting

A∇B = 1
2 (A + B)

A#B = A1/2(A−1/2BA−1/2)1/2 A1/2

A!B = 2(A−1 + B−1)−1.

We recall that a function f : (0, ∞)→ R is said to be operator monotone (increasing) if

A ≤ B ⇒ f (A) ≤ f (B)

for positive definite matrices of arbitrary order. It then follows that the inequality also
holds for positive operators on an arbitrary Hilbert space. An operator monotone function
f is said to be symmetric if f (t) = t f (t−1) for t > 0 and normalized if f (1) = 1.

Definition 4. Fop is the class of functions f : R+ → R+ such that:

1. f is operator monotone increasing;
2. t f (t−1) = f (t) t > 0;
3. f (1) = 1.

Remark 1. In Fop the functions

1 + x
2

and
2x

1 + x
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are, respectively, the biggest and the smallest element.

The fundamental result, due to Kubo and Ando, is the following.

Theorem 1. There is a bijection f 7→ m f betweenMop and Fop given by the formula

m f (A, B) = A1/2 f (A−1/2BA−1/2)A1/2.

Following Remark 1, we have the inequalities

2
A−1 + B−1 ≤ m f (A, B) ≤ A + B

2

which are valid for any f ∈ Fop , cf. [20] (Theorem 4.5).

Remark 2. The functions in Fop are (operator) concave, which makes the operator case quite
different from the numerical (commutative) case. For example, there are convex functions in Fnu ,
cf. [21].

If ρ is a density matrix (a quantum state) and A is a self-adjoint matrix (a quantum
observable), then the expectation of A in the state ρ is defined by setting

Eρ(A) = Tr(ρA).

4. Quantum f -Covariance

The notion of quantum f -covariance was introduced by Petz; see [22,23]. Any Kubo–
Ando function m f (x, y) = y f (y−1x) for x, y > 0 has a continuous extension to [0,+∞)×
[0,+∞), given by

m f (0, y) = f (0)y, m f (x, 0) = f (0)x, m f (0, 0) = 0, x, y > 0.

The operator m f (Lρ, Rρ) is well-defined by the spectral theorem for any state; see [24]
(Proposition 11.1 page 11). To self-adjoint A, we set A0 = A− (TrρA)I, where I is the
identity operator. Note that

TrρA0 = TrρA− (TrρA)Trρ = 0,

if ρ is a state.

Definition 5. Given a state ρ, a function f ∈ Fop and self-adjoint A, B, we define the quantum
f -covariance by setting

Cov f
ρ(A, B) = TrB0 m f (Lρ, Rρ)A0

and the corresponding quantum f -variance by Var f
ρ(A) = Cov f

ρ(A, A).

The f -covariance is a positive semi-definite sesquilinear form and

f ≤ g ⇒ Var f
ρ(A) ≤ Varg

ρ(A). (1)

Note that for the standard covariance, we have Covρ(A, B) = CovSLD
ρ (A, B), where

the SLD or Bures–Uhlmann metric is the one associated with the function (1 + x)/2 (see
the end of Section 5).

5. Quantum Fisher Information

The theory of quantum Fisher information is due to Petz, and we recall the basic
results. If N is a differentiable manifold, we denote by TρN the tangent space to N at the
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point ρ ∈ N . Let Mn (resp. Mn,sa) be the set of all complex n× n matrices (respectively, of
all complex self-adjoint n× n matrices). The set of faithful states is defined as

D1
n = {ρ ∈ Mn,sa | Tr ρ = 1, ρ > 0}.

Recall that there exists a natural identification of TρD1
n with the space of self-adjoint

traceless matrices; namely, for any ρ ∈ D1
n

TρD1
n = {A ∈ Mn | A = A∗ , Tr A = 0}.

A stochastic map is a completely positive and trace-preserving operator T : Mn → Mm .
A monotone metric is a family of Riemannian metrics g = {gn} on {D1

n}, n ∈ N, such that
the inequality

gm
T(ρ)(TX, TX) ≤ gn

ρ (X, X)

holds for every stochastic map T : Mn → Mm, every faithful state ρ ∈ D1
n, and every

X ∈ TρD1
n . Usually, monotone metrics are normalized in such a way that [A, ρ] = 0

implies gρ(A, A) = Tr(ρ−1 A2). A monotone metric is also called (an example of) quantum
Fisher information (QFI). This notation is inspired by Chentsov’s uniqueness theorem for
commutative monotone metrics [25].

Define Lρ(A) = ρA and Rρ(A) = Aρ, and observe that Lρ and Rρ are commuting
positive superoperators on Mn. For any f ∈ Fop, one may also define the positive super-
operator m f (Lρ, Rρ). The fundamental theorem of monotone metrics may be stated in the
following way; see [26].

Theorem 2. There exists a bijective correspondence between symmetric monotone metrics (some-
times called quantum Fisher informations) on D1

n and functions f ∈ Fop . The correspondence is
given by the formula

〈A, B〉ρ, f = TrA m f (Lρ, Rρ)
−1(B)

for positive definite matrices A and B.

Remark 3. The reader should be aware that, in the physics literature, the name Quantum Fisher
Information is used to denote a specific monotone metric, namely the one associated to the function
f (x) = (1 + x)/2, which is also known as the Symmetric Logarithmic Derivative metric or the
Bures–Uhlmann metric.

6. The f→ f̃ correspondence

We introduce a technical tool which is useful for establishing some fundamental rela-
tions between quantum covariance, quantum Fisher information and the metric adjusted
skew information.

Definition 6. For f ∈ Fop we define f (0) = limx→0 f (x). It is meaningful since f is increasing.
We say that a function f ∈ Fop is regular if f (0) 6= 0, and non-regular if f (0) = 0, cf. [17,27].

Definition 7. A quantum Fisher information is extendable if its radial limit exists, and it is a
Riemannian metric on the real projective space generated by the pure states.

For the definition of the radial limit, see [27], where the following fundamental result
is proved.

Theorem 3. An operator monotone function f ∈ Fop is regular, if and only if 〈·, ·〉ρ, f is extendable.

Remark 4. The reader should be aware that there is no negative connotation associated with the
qualification “non-regular”. For example, a very important quantum Fisher information in quantum
physics [28], namely the Kubo–Mori metric, generated by the function f (x) = (x− 1)/ log x, is
non-regular.
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We introduce the sets of regular and non-regular functions

F r
op := { f ∈ Fop | f (0) 6= 0} and F n

op := { f ∈ Fop | f (0) = 0}.

Trivially, Fop = F r
op ∪ F n

op .

Definition 8. We introduce to a function f ∈ F r
op, the transform f̃ , given by

f̃ (x) =
1
2

[
(x + 1)− (x− 1)2 f (0)

f (x)

]
x > 0.

We may also write f̃ = G( f ), cf. [19,24].

The following result is taken from [19] (Theorem 5.1).

Theorem 4. The correspondence f → f̃ is a bijection between F r
op and F n

op .

In Table 2, we have some examples (where 0 < β < 1).

Table 2. Examples of f − f̃ correspondence.

f f̃

1 + x
2

2x
x + 1

(
√

x + 1)2

4

√
x

β(1− β)
(x− 1)2

(xβ − 1)(x1−β − 1)
xβ + x1−β

2

Proposition 2. If ρ is a pure state, then Var f
ρ(A) = 2 m f (1, 0) ·Varρ(A), cf. [29].

Corollary 1. If ρ is a pure state and f is non-regular, then Var f
ρ(A) = 0.

Proof. If f is non-regular m f (1, 0) = 0.

7. Metric Adjusted Skew Information

By using the general form of the quantum Fisher information, it is possible to greatly
generalize the Wigner–Yanase information measure. To a function f ∈ Fop, the so-called
Morosova function c f (x, y) is defined by setting

c f (x, y) =
1

y f (xy−1)
= m f (x, y)−1 x, y > 0. (2)

The corresponding monotone symmetric metric Kρ is given by

K f
ρ (A, B) = TrA∗c f

(
Lρ, Rρ

)
B, (3)

where Lρ and Rρ denote left and right multiplication with ρ. Note that K f
ρ (A) is increasing

in c f , and thus decreasing in f . Furthermore, if f is regular, the notion of metric adjusted
skew information [17] (Definition 1.2) is defined by setting

I f
ρ (A) = I f (ρ, A) =

f (0)
2

K f
ρ

(
i[ρ, A∗], i[ρ, A]

)
, (4)
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where ρ > 0. We use the second notation, I f (ρ, A), when the expression of the state takes
up too much space. We also tacitly extended the metric adjusted skew information to
arbitrary (not necessarily self-adjoint) operators A. It is convex [17] (Theorem 3.7) in the
state variable ρ, and

0 ≤ I f
ρ (A) ≤ Varρ(A) (5)

with equality if ρ is pure [17] (Theorem 3.8); see the summary with interpretations in [30]
(Theorem 1.2). Furthermore, the notion of unbounded metric adjusted skew information
for non-regular functions in Fop is introduced in [30] (Theorem 5.1). For a regular function
f ∈ Fop, the metric adjusted skew information may be written as

I f
ρ (A) = TrρA2 − TrA m f̃ (Lρ, Rρ)A,

cf. [31] (Equation (7)). We thus obtain that the metric adjusted skew information is
decreasing in the transform f̃ for arbitrary self-adjoint A, that is

f̃ ≤ g̃ ⇒ I f
ρ (A) ≥ Ig

ρ (A) for f , g ∈ F r
op . (6)

Therefore, we have the following result.

Proposition 3. Setting fSLD(x) = (1 + x)/2 we obtain f̃SLD = 2x/(1 + x) and therefore

Ig
ρ (A) ≤ I fSLD

ρ (A) ∀g ∈ F r
op .

We may also introduce the transforms

f̌ =
f (0)
f (t)

and č(x, y) = y−1 f̌ (xy−1)

and obtain
I f
ρ (A) =

1
2

Tri[ρ, A∗]č
(

Lρ, Rρ

)
i[ρ, A],

cf. [31] (Equation (10)). It follows that the metric adjusted skew information is increasing
in f̌ for arbitrary A. It can be derived from [24] (Proposition 6.3, page 11), that the metric
adjusted skew information can be expressed as the difference

I f
ρ (A) = Varρ(A)−Var f̃

ρ(A)

with extension to the sesquilinear form

I f
ρ (A, B) = Covρ(A, B)−Cov f̃

ρ(A, B).

7.1. Information Inequalities

A function f : R+ → R+ is in Fop if and only if it allows a representation of the form

f (t) =
1 + t

2
exp

∫ 1

0

(λ2 − 1)(1− t)2

(λ + t)(1 + λt)(1 + λ)2 h f (λ)dλ, (7)

where the weight function h f : [0, 1]→ [0, 1] is measurable. The equivalence class contain-
ing h f is uniquely determined by f , cf. [31] (Theorem 2.1). This representation gives rise to
an order relation on the set Fop .

Definition 9. Let f , g ∈ Fop . We say that f is majorized by g and write f � g, if the function

ϕ(t) =
t + 1

2
f (t)
g(t)

t > 0
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is in Fop .

The partial order relation � is stronger that the usual order relation ≤, and it renders
(Fop ,�) into a lattice with

fmin(t) =
2t

t + 1
and fmax(t) =

t + 1
2

(8)

as, respectively, the minimal element and maximal element. Furthermore,

f � g if and only if h f ≥ hg almost everywhere, (9)

cf. [31] (Theorem 2.4). The restriction of � to the regular part of Fop induces a partial order
relation � on the set of metric adjusted skew informations.

Proposition 4. The restriction of the order relation � renders the regular part of Fop into a lattice.
In addition, if one of two functions f , g in Fop is non-regular, then the minorant f ∧ g is also
non-regular.

Proof. Take f ∈ Fop with representative function h f , as given in (7). It is easily derived
that f is regular if and only if the weight function h f satisfies the integrability condition

∫ 1

0

h f (λ)

λ
dλ < ∞. (10)

Take regular functions f , g ∈ Fop . We know that
(
Fop ,�

)
is a lattice [31] (bottom of page

141), and that the representative function in (7) for the minorant f ∧ g is given by

h f∧g = max{h f , hg} ≤ h f + hg .

The inequality above shows that the weight function h f∧g also satisfies the integrability
condition (10), which implies that f ∧ g is regular. Since

h f∨g = min{h f , hg} ≤ h f

it also follows that the majorant is regular. We now take functions f , g ∈ Fop with repre-
sentative functions h f and hg and assume that f is non-regular. Since

h f∧g = max{h f , hg} and thus h f ≤ h f∧g

we obtain that also the minorant f ∧ g is non-regular.

7.2. The Wigner–Yanase–Dyson Skew Informations

The Wigner–Yanase–Dyson skew information (with parameter p) is defined by setting

Ip(ρ, A) = −1
2

Tr[ρp, A[[ρ1−p, A], 0 < p < 1.

This is an example of a metric adjusted skew information and reduces to the Wigner–Yanase
skew information for p = 1/2 . The representing function fp in F r

op of Ip(ρ, A) is given by

fp(t) = p(1− p) · (t− 1)2

(tp − 1)(t1−p − 1)
0 < p < 1,

that is, Ip(ρ, A) = I
fp
ρ (A). The weight-functions hp(λ) in Equation (7) corresponding to the

representing functions fp, are given by

hp(λ) =
1
π

arctan
(λp + λ1−p) sin pπ

1− λ− (λp − λ1−p) cos pπ
0 < λ < 1.
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It is non-trivial that the Wigner–Yanase–Dyson skew information Ip(ρ, A) is increasing in
the parameter p for 0 < p ≤ 1/2 and decreasing in p for 1/2 ≤ p < 1 with respect to the
order relation �, cf. [31] (Theorem 2.8). The Wigner–Yanase skew information is thus the
maximal element among the Wigner–Yanase–Dyson skew informations with respect to the
order relation � .

7.3. The Monotonous Bridge

The family of metrics with representing functions

fα(t) = tα

(
1 + t

2

)1−2α

t > 0,

decrease monotonously (with respect to �) from the largest monotone symmetric metric
down to the Bures metric for α, increasing from 0 to 1. They correspond the the constant
weight functions hα(λ) = α in Equation (7). However, the only regular metric in this
bridge is the Bures metric (α = 0). It is, however, possible to construct a variant bridge by
choosing the weight functions

hp(λ) =

{
0, λ < 1− p

p, λ ≥ 1− p
0 ≤ p ≤ 1

in Equation (7) instead of the constant weight functions. It is non-trivial that these weight
functions provide a monotonously decreasing bridge (with respect to �) of monotone
symmetric metrics between the smallest and the largest (monotone symmetric) metrics.
The benefit of this variant bridge is that all the constituent metrics are regular, except for
p = 1.

8. Metric Adjusted Local Quantum Uncertainty

We consider a bipartite systemH = H1 ⊗H2 of two finite dimensional Hilbert spaces.

Definition 10. Let f ∈ Fop be regular and take a vector Λ ∈ Rd. We define the Metric Adjusted
Local Quantum Uncertainty ( f -LQU) by setting

UΛ, f
1 (ρ12) = inf{I f

ρ12(K1 ⊗ 12) | K1 has spectrum Λ}, (11)

where ρ12 is a bipartite state, and K1 is the partial trace of an observable K onH.

The infimum in the above definition is thus taken over local observables K1 ⊗ 12 ∈
B(H1 ⊗H2), such that K1 is unitarily equivalent with the diagonal matrix diag(Λ).

Remark 5. The metric adjusted LQU has been studied in the literature for specific choices of f .

• If f (x) = fWY(x) =
(

1+
√

x
2

)2
, then UΛ, f

1 coincides with the LQU introduced in [13]
(Equation (2)).

• If f (x) = fSLD(x) = 1+x
2 , then UΛ, f

1 coincides with the Interferometric Power (IP) intro-
duced in [14].

Proposition 5. For f , g ∈ F r
op with g̃ ≤ f̃ , we have the inequality UΛ, f

1 (ρ12) ≤ U
Λ,g
1 (ρ12).

This implies that the Interferometric Power is the biggest among the Metric Adjusted LQU; see
Proposition 3.

Proof. Let K̃1 be the local observable with spectrum Λ minimizing the metric adjusted
skew information. Then,

UΛ, f
1 (ρ12) = I f

ρ12

(
K̃1 ⊗ 12

)
≥ Ig

ρ12

(
K̃1 ⊗ 12

)
≥ UΛ,g

1 (ρ12),
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where we used the inequality in (6).

Corollary 2. Let g1 and g2 be regular functions in Fop and set f = g̃1 ∧ g̃2 with respect to the
lattice structure in Fop . Then, there is a regular function g in Fop, such that g̃ = f = g̃1 ∧ g̃2 and

max
{
UΛ,g1

1 (ρ12), U
Λ,g2
1 (ρ12)

}
≤ UΛ,g

1 (ρ12)

for arbitrary ρ12 .

Proof. The functions g̃1 and g̃2 are non-regular by Theorem 4. By Proposition 4, we thus
obtain that the minorant f is also non-regular. Therefore, from the correspondence in
Theorem 4, there is a (unique) regular function g in Fop such that g̃ = f . The assertion then
follows by Proposition 5.

Following [10], we prove that the metric adjusted LQU is a measure of non-classical
correlations, i.e., it meets the criteria which identify discord-like quantifiers; see [4].

Theorem 5. If the state ρ12 is classical-quantum in the sense of [32], then the metric adjusted LQU
vanishes; that is, UΛ, f

1 (ρ12) = 0. Conversely, if the coordinates of Λ are mutually different (thus
rendering the operator K1 non-degenerate) and UΛ

1 (ρ12) = 0, then ρ12 is classical-quantum.

Proof. We note that the metric adjusted skew information I f
ρ12(A) for a faithful state ρ12 is

vanishing if and only if ρ12 and A commute. If ρ12 is classical-quantum, then

P1(ρ12) = ∑
i
(P1,i ⊗ 12)ρ12(P1,i ⊗ 12) = ρ12

for some von Neumann measurement P1 given by a resolution (P1,i) of the identity 11 in
terms of one-dimensional projections. We may choose K1 diagonal with respect to this
resolution, so K1 ⊗ 12 and ρ12 commute, and thus UΛ, f

1 (ρ12) = 0.

If, on the other hand, the Metric Adjusted Local Quantum Uncertainty UΛ, f
1 (ρ12) = 0,

then there exists a local observable K1 ⊗ 12 such that [ρ12, K1 ⊗ 12] = 0. Then, by the
spectral theorem

K1 = ∑
i

λiP1,i = ∑
i

λi|i〉1〈i|

for a resolution (P1,i) of the identity 11 in terms of one-dimensional projections, and since

ρ12(K1 ⊗ 12) = (K1 ⊗ 12)ρ12,

we obtain, by multiplying with P1,i⊗ 12 from the left and P1,j⊗ 12 from the right, the identity

λj(P1,i ⊗ 12)ρ12(P1,j ⊗ 12) = λi(P1,i ⊗ 12)ρ12(P1,j ⊗ 12).

If K1 is non-degenerate, it thus follows that

(P1,i ⊗ 12)ρ12(P1,j ⊗ 12) = 0 for i 6= j.

By summing overall j differently from i, we obtain

(P1,i ⊗ 12)ρ12((11 − P1,i)⊗ 12) = 0,

thus
(P1,i ⊗ 12)ρ12 = (P1,i ⊗ 12)ρ12(P1,i ⊗ 12),
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so P1,i ⊗ 12 and ρ12 commute. It follows that

P1(ρ12) = ∑
i
(P1,i ⊗ 12)ρ12(P1,i ⊗ 12) = ρ12 ,

so ρ12 is left invariant under the von Neumann measurement P1 given by (P1,i). Therefore,
ρ12 is classical-quantum.

Recall that Luo and Zhang [33] proved that a state ρ12 is classical-quantum if and only
if there is a resolution (P1,i) of the identity 11 such that

ρ12 = ∑
i

piP1,i ⊗ ρ2,i ,

where ρ2,i is a state onH2 and pi ≥ 0 for each i, and the sum ∑i pi = 1. By [30] (Lemma 3.1),
the inequality

I f
ρ12(K1 ⊗ 12) ≥ I f

ρ1(K1)

is valid for any local observable K1 , where ρ1 = Tr2 ρ12 . Consequently, we obtain that

UΛ, f
1 (ρ12) ≥ inf

K1
I f
ρ1(K1) = inf

σ1
I f
σ1

(
K1
)
, (12)

where the infimum is taken over states σ1 onH1 that are unitarily equivalent with ρ1.

Theorem 6. The metric adjusted LQU is invariant under local unitary transformations.

Proof. For the metric adjusted skew information and local unitary transformations, we have

UΛ, f
1
(
(U1 ⊗U2)ρ12(U1 ⊗U2)

†) = infK1 I f ((U1 ⊗U2)ρ12(U1 ⊗U2)
†, K1 ⊗ 12

)
= infK1 I f (ρ12, (U1 ⊗U2)

†(K1 ⊗ 12)(U1 ⊗U2)
)

= infK1 I f (ρ12, (U†
1 K1U1 ⊗ 12

)
= U∆, f

1 (ρ12),

where we used the definition in (11).

Theorem 7. The metric adjusted LQU is contractive under completely positive trace-preserving
maps on the non-measured subsystem.

Proof. A completely positive trace preserving map Φ2 on system 2 is obtained as an
amplification followed by a partial trace (Stinespring dilation); that is,

(11 ⊗Φ2)ρ12 =
1
d3

Tr3
(
(11 ⊗U23)(ρ12 ⊗ 13)(11 ⊗U23)

†),
where d3 is the dimension of the Hilbert space of the ancillary system 3. The metric adjusted
skew information is additive under the aggregation of isolated systems; that is,

I f (ρ⊗ σ, A⊗ 12 + 11 ⊗ B) = I f (ρ, A) + I f (σ, B)

and trivially I f
ρ (A + I) = I f

ρ (A), where I is the identity operator [17]. Therefore,

UΛ, f
1 (ρ12) = I f (ρ12, K̃1 ⊗ 12

)
= I f (ρ12 ⊗ 1

d3
13, K̃1 ⊗ 123 + 112 ⊗ 13

)
= I f (ρ12 ⊗ 1

d3
13, K̃1 ⊗ 123

)
,

where K̃1 is the local observable minimizing the metric adjusted skew information. The met-
ric adjusted skew information is invariant under unitary transformations and contractive
under partial traces. Therefore,
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UΛ, f
1 (ρ12) = I f ((11 ⊗U23)(ρ12 ⊗ 1

d3
13
)
(11 ⊗U†

23), K̃1 ⊗ 123
)

≥ I f (Tr3
{
(11 ⊗U23)(ρ12 ⊗ 1

d3
13)(11 ⊗U†

23)
}

, K̃1 ⊗ 12
)

= I f ((11 ⊗Φ2)ρ12, K̃1 ⊗ 12
)

≥ UΛ, f
1
(
(11 ⊗Φ2)ρ12

)
,

where we again used [30] (Lemma 3.1).

Theorem 8. The metric adjusted LQU reduces to an entanglement monotone for pure states.

Proof. The metric adjusted f -LQU coincides with the standard variance on pure states;
that is,

I f
ρ (A) = Varρ(A) = TrρA2 − (TrρA)2

whenever ρ is pure [17] (Theorem 3.8). However, in [13] it has been proven that the
minimum local variance is an entanglement monotone for pure states.

9. Conclusions

In this work, we built a unifying information-geometric framework to quantify quan-
tum correlations in terms of metric adjusted skew information. We extended the physically
meaningful definition of LQU to a more general class of information measures. Crucially,
metric adjusted quantum correlation quantifiers enjoy, by construction, a set of desirable
properties which make them robust information measures.

An important open question is whether information geometry methods may help
characterize many-body quantum correlations. In general, the very concept of multipartite
statistical dependence is not fully grasped in the quantum scenario. In particular, we
do not have axiomatically consistent and operationally meaningful measures of genuine
multipartite quantum discord. Unfortunately, the LQU and IP cannot be straightforwardly
generalized to capture joint properties of more than two quantum particles. A promising
starting point could be to translate into the entropic multipartite correlation measures
developed in [34] into information-geometry language. We plan to investigate this issue in
future studies.
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