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Abstract. Acute myeloid leukemia (AML) is a disease of 
the hematopoietic progenitor cells associated with hetero-
geneous clonal proliferation. Vascular endothelial growth 
factor (VEGF) and its receptors play important roles in 
the regulation of angiogenesis during physiological and 
pathological processes. It is thought that AML cells have 
an autocrine VEGF pathway that contributes to the devel-
opment and progression of AML. In addition, growing 
evidence has suggested that numerous microRNAs are 
involved in AML. The present study aimed to investigate the 
relationship between VEGF dysregulation and microRNA 
profiles in AML cells and patients. VEGF‑overexpressing 
and VEGF‑knockdown leukemia cells were constructed 
and changes in the patterns of microRNA expression were 
analyzed using a microRNA array. Subsequently, mono-
nuclear cells from the blood of patients with AML showing 
high or low expression levels of VEGF were obtained and 
were used to assess the patterns of microRNA expression by 
reverse transcription‑quantitative polymerase chain reaction. 
The results of the present study suggested that downregula-
tion of VEGF markedly altered the profile of microRNAs 
in AML cells, while upregulation of VEGF did not. Exami-
nation of clinical samples from patients with AML showed 
that several microRNAs were closely associated with the 
expression level of VEGF, including miR‑20a, miR‑93, 
miR‑16‑5p, miR‑17‑5p, miR‑124‑5p and miR‑17‑3p. These 
results suggested that VEGF may be a pivotal protein that 
can both receive and initiate signals in leukemia cells.

Introduction

Vascular endothelial growth factor (VEGF) and its receptors 
play important roles in regulating angiogenesis during physi-
ological or pathological processes such as tumorigenesis (1,2). 
Angiogenesis has been shown to promote the growth of solid 
and hematological tumors (1). VEGF, which is a glycoprotein, 
has five isotypes, including VEGF‑A, VEGF‑B, VEGF‑C, 
VEGF‑D and placental growth factor. VEGF‑A is typically 
referred to as VEGF (3). VEGF receptors (VEGFRs) consist 
of three structurally similar tyrosine kinase receptor proteins 
termed VEGFR1 [also called Fms‑related tyrosine kinase 
(FTL) 1], VEGFR2 (also called kinase insert domain receptor) 
and VEGF3 (also called FLT4) (2). VEGF is the ligand of 
VEGFR1 and VEGFR2, which, upon binding to VEGF, 
induce the proliferation of endothelial cells via the Ras‑ or 
protein kinase C‑activated mitogen‑activated protein kinase 
signaling pathway to promote angiogenesis (2). The active 
form of VEGF is a homodimer that is capable of binding to 
VEGFRs (1).

Acute myeloid leukemia (AML), which is a disease of the 
hematopoietic progenitor cells characterized by heterogeneous 
clonal proliferation, is the most common myeloid malignancy 
in adults. The age of onset is late in life, and the median age 
is 70 years (4). Although several advances in the molecular 
understanding of AML have been achieved, additional studies 
are required in order to cure or conquer this disease (4,5). 
Commonly, VEGF is expressed at higher levels in AML cells, 
and autocrine regulation of VEGF affects the clonal prolif-
eration of AML cells (6). Compared with healthy individuals, 
85% of AML patients showed upregulation of VEGF in bone 
marrow biopsy specimens (7). In addition, VEGFRs have been 
shown to be recurrently upregulated in AML (8). AML cells 
may possess a VEGF autocrine pathway, and its type I receptor 
(VEGFR1) may be involved in cellular proliferation of the M3 
subtype of AML (9,10).

MicroRNAs consist of a set of 19‑25‑nucleotide 
single‑stranded RNA molecules that are involved in the 
transcription and translation of genes associated with growth, 
development and pathological processes such as cancer (11). 
Increasingly, evidence has suggested that there is a close asso-
ciation between AML and microRNAs (12‑15). MicroRNAs 
may have a role in the regulation of the cellular biology and 
molecular genetics of AML, since upregulation of miR‑155, 
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miR‑10a, miR‑10b and miR‑191 has commonly been observed 
in AML cells (15).

Although significant progress has been made, the functions 
of VEGF and microRNAs in the development and progression 
of AML, and the association between VEGF and microRNAs, 
are unclear. Therefore, the present study aimed to determine 
the association between VEGF overexpression and microRNA 
profiles in AML cells and patients.

Materials and methods

Construction of lentiviral vectors and stable cell lines. Poly-
merase chain reaction (PCR) was used to obtain the VEGF gene 
expression sequence (NM_001171626), which was inserted 
into a LV5 vector (Shanghai GenePharma, Co., Ltd., Shanghai, 
China) using the Not I/Nsi I restriction enzymes to construct 
the LV‑VEGF expression vector, as described previously (15). 
LV‑NC served as the control vector. The VEGF‑specific 
short hairpin (sh)RNA sequence, TTC​TCC​GAA​CGT​GTC​
ACGT, was obtained from Shanghai GenePharma, Co., Ltd. 
Following infection of the AML cell lines, K562, HL‑60 and 
U937 (Type Culture Collection of the Chinese Academy of 
Sciences, Shanghai, China) with the lentiviral vectors or 
VEGF‑specific shRNA, infected cells were selected using 
purimycin (Sigma‑Aldrich; Merck Millipore, Darmstadt, 
Germany) and untransfected cells were removed 48 h later, as 
described previously (16). 

RNA extraction and reverse transcription‑quantitative PCR 
(RT‑qPCR). Total RNA was extracted from the cells using 
TRIzol (Thermo Fisher Scientific, Inc., Waltham, MA, USA), 
as described previously (17). Total RNA was dissolved in dieth-
ylpyrocarbonate water and the optical density was measured at 
260 and 280 nm using a NanoDrop 2000 spectrophotometer 
(Thermo Fisher Scientific, Inc.). The PrimeScript™ RT reagent 
kit with gDNA Eraser (Perfect Real Time) (Takara Biotech-
nology Co., Ltd., Dalian, China) was used for cDNA production 
from RNA, according to the manufacturer's protocol  (18). 
The SYBR® Premix Ex Taq™ II (Tli RNaseH Plus) (Takara 
Biotechnology Co., Ltd.) kit was used for qPCR on a StepOne-
Plus™ Real‑Time PCR instrument (Thermo Fisher Scientific, 
Inc.). The cycling conditions were 95˚C for 5 min, followed by 
40 cycles at 95˚C for 10 sec and 60˚C for 34 sec. The primers 
were as follows: VEGF forward, 5'‑CGC​AGC​TAC​TGC​CAT​
CCA​AT‑3' and reverse, 5'‑GTG​AGG​TTT​GAT​CCG​CAT​AAT​
CT‑3'; and GAPDH forward, 3'‑ACC​CAG​AAG​ACT​GTG​GAT​
GG‑5'; and reverse, 3'‑TCT​AGA​CGG​CAG​GTC​AGG​TC‑5'. The 
relative expression of the gene was calculated using the 2‑ΔΔCq 
method (19), with GAPDH as an internal control gene.

Western blot analysis. After reaching 80‑90% confluence, 
the cells in culture plates were lysed using radioimmunopre-
cipitation assay buffer (Beyotime Institute of Biotechnology, 
Haimen, China) supplemented with 1  mM phenylmethyl-
sulfonyl fluoride protease inhibitor (Beyotime Institute of 
Biotechnology). The concentrations of proteins were deter-
mined using the bicinchoninic acid assay kit (Beyotime 
Institute of Biotechnology). The proteins were boiled following 
addition of the sample loading buffer and the denatured 
proteins were separated by 10% SDS‑PAGE and transferred 

onto polyvinylidene difluoride membranes, which were 
blocked with 5% bovine serum albumin (Beyotime Institute 
of Biotechnology), as previously described (20). Subsequently, 
the membranes were incubated with primary antibodies 
against VEGF (cat. no. ab106041; 1:1,000 dilution; Abcam, 
Cambridge, MA, USA) and β‑actin (cat. no. ab106045; 1:5,000 
dilution; Abcam), followed by incubation with the secondary 
antibody (cat. no. ab6721; 1:5,000 dilution; Abcam). The bands 
of proteins were visualized using enhanced chemiluminesence 
(EMD Millipore, Billerica, MA, USA) and detected with the 
ChemiDoc MP imager (Bio‑Rad Laboratories, Inc., Hercules, 
CA, USA).

microRNA array. Total RNA was extracted from cells 
showing upregulation or downregulation of VEGF using 
the mirVana PARIS miRNA isolation kit (Ambion; Thermo 
Fisher Scientific, Inc.), according to the manufacturer's 
protocol. After quantitation of the RNA using the Nano-
Drop 2000c spectrophotometer (Thermo Fisher Scientific, 
Inc.), microRNA expression profiling was performed using 
the Exiqon A/S Technology Platform (Exiqon A/S, Vedbaek, 
Denmark). MicroRNAs were labeled using the miRCURY™ 
Hy3™/Hy5™ Power kit and hybridized onto the miRCURY™ 
LNA (v.18.0) (Exiqon A/S). After washing with the washing 
buffer in the kit, the slides were scanned using the Axon 
GenePix 4000B Microarray Scanner, and the data were 
analyzed using GenePix Pro 6.0 software (Molecular Devices, 
LLC, Sunnyvale, CA, USA) (21,22).

Analysis of clinical samples and miRNAs. The protocol of 
this study was approved by the Ethics Committee of the First 
Affiliated Hospital of Zhejiang University School of Medicine. 
Written informed consent was obtained from all patients. In this 
study, 45 bone marrow samples from patients with AML were 
collected at our hospital from 2013‑2014, in strict accordance 
with the approved protocol. The information of the patients 
in this experiment is summarized in Table  I. Total RNA, 
including small RNAs, was isolated using the mirVana PARIS 
miRNA isolation kit from blood mononuclear cells isolated 
using Ficoll‑Paque PLUS (GE Healthcare, Milwaukee, WI, 
USA), as described previously (23). RT‑qPCR for the analysis 
of microRNAs was performed using the miScript SYBR Green 
PCR kit (Qiagen GmbH, Hilden, Germany). c‑Abl served as 

Table I. Characteristics of acute myeloid leukemia patients.

Characteristic	 Number of patients

Total	 45
Male	 25
Female	 20
FAB subtype
  m0	   1
  m2	 20
  m3	 12
  m5b	 12

FAB subtype, French–American–British classification system.
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the internal control gene. The relative expression levels of 
microRNAs were calculated using the 2‑ΔΔCq method  (19). 
Furthermore, the mRNA expression levels of VEGF in the bone 
marrow samples were determined by RT‑qPCR. The expres-
sion levels of VEGF were subsequently ranked from maximum 
to minimum and then divided into high and low groups. 

Statistical analysis. SPSS 19.0 software (SPSS Inc., Chicago, 
IL, USA) was used for statistical analysis. One‑way analysis of 
variance was performed for the comparisons of three groups 
and Student's t‑test for two groups. P<0.05 was considered to 
indicate a statistically significant difference. 

Results

Construction of AML cells with stable expression of VEGF and 
knockdown of VEGF. To confirm that cells with stable knock-
down and overexpression of VEGF were obtained, we extracted 
total protein for western blotting and total RNA for RT‑qPCR. 
The RT‑qPCR analysis showed that the mRNA expression 
levels of VEGF were significantly higher in K562‑VEGFa‑O, 
HL‑60‑VEGFa‑O and U937‑VEGFa‑O cells compared 
with the control cells (K562‑NC‑LV, HL‑60‑NC‑LV and 
U937‑NC‑LV) (P<0.01), and that those of K562‑VEGF‑shRNA, 
HL‑60‑VEGF‑shRNA and U937‑VEGF‑shRNA cells were 
significantly lower compared with the control cells (P<0.01; 
Fig. 1A). In addition, the results of western blotting confirmed 
that the VEGF protein had a pattern of expression that resem-
bled that of its mRNA (Fig. 1B).

VEGF changes the microRNA profile of leukemia cells. 
For the detection of microRNA profiles, total RNA was 

extracted from the cells for microarray analysis. Genes 
that were screened using the microarray needed to meet 
the criteria of ≥2‑fold increase or decrease in expression 
in the cells with overexpression or knockdown of VEGF 
compared with the controls. Overexpression of VEGF in 
leukemia cells (K562‑VEGFa‑O, HL‑60‑VEGFa‑O and 
U937‑VEGFa‑O), despite being upregulated by 3‑fold, had 
little effect on microRNA expression; only four microRNAs 
were identified as being altered in expression, including 
has‑miR‑1273f and has‑miR‑4679, which were upregulated, 
and eb‑miR‑BART10‑3p and has‑miR‑3925‑3p, which were 
downregulated (Fig. 2A).

In K562‑VEGF‑shRNA, HL‑60‑VEGF‑shRNA and 
U937‑VEGF‑shRNA cells, microRNA profiling showed a 
significant change compared with control cells (K562‑NC‑LV, 
HL‑60‑NC‑LV and U937‑NC‑LV). Among several microRNAs 
that showed a 5‑fold change in expression, hsv2‑miR‑H12, 
has‑miR‑124‑5p, has‑miR‑3924 and has‑miR‑4514 were 
upregulated, and 33 microRNAs, including has‑miR‑20a, were 
downregulated (Fig. 2B).

Expression of microRNAs associated with VEGF expression 
in human samples from AML patients. In the present study, 
several microRNAs showed changes in their levels of expres-
sion following overexpression or silencing of the expression 
of the VEGF gene. To confirm these results, bone marrow 
samples from 45 patients with AML were used to analyze the 
expression levels of microRNAs identified in the microarray 
and VEGF. Subsequently, the expression levels of VEGF were 
defined into low and high groups. The results indicated a posi-
tive association between VEGF expression and the expression 
of six microRNAs, including miR‑20a, miR‑93, miR‑16‑5p, 

Figure 1. Relative mRNA expression levels of VEGF in leukemia cells. VEGF overexpression and knockdown were achieved in the three cell lines, as con-
firmed by reverse transcription‑polymerase chain reaction and western blotting. The background expression of VEGF was at a high level in leukemia cells and 
genetic manipulation resulted in significantly altered expression of VEGF in the cells (*P<0.01). VEGFa‑O, overexpression of VEGF gene; VEGFa‑shRNA, 
knockdown of VEGF; NC‑LV, controls.
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miR‑17‑5p, miR‑17b‑3p and miR‑124‑5p. In addition, a nega-
tive association was observed between VEGF expression and 
the expression of miR‑17b‑3p (Fig. 3).

Discussion

Elevated expression of the VEGF gene is commonly observed 
in major types of cancer, including AML, and is essential 
for angiogenesis, which supplies nutrients, oxygen and other 

factors for the rapid proliferation and growth of malignan-
cies (2‑4,6,8). VEGF could play important roles in various 
physical events of malignant cells using autocrine or paracrine 
pathways  (24‑30). VEGF and its receptors are commonly 
upregulated in bone marrow precursor cells and leukemia 
progenitor cells and influence the secretion of various factors 
from bone marrow cells  (31). Furthermore, the autocrine 
pathway of VEGF may have effects on the survival of hema-
topoietic stem cells, and VEGFR‑1 and VEGFR‑2 have also 

Figure 3. Expression levels of miR‑20a, miR‑93, miR‑16‑5p, miR‑17, miR‑124‑5p and miR‑17b‑3p in AML patients with high or low expression of VEGF. 
The expression levels of VEGF in the bone marrow samples were determined by reverse transcription‑quantitative polymerase chain reaction, and were then 
ranked from maximum to minimum and divided into two high and low groups. microRNA expression levels were analyzed and compared. VEGF, vascular 
endothelial growth factor. 

  A

  B

Figure 2. microRNA expression profiles of leukemia cells with different expression levels of VEGF. Changes in the microRNA expression profiles of 
(A) VEGF‑overexpressing leukemia cells and (B) VEGF‑knockdown leukemia cells, as compared with the control cells. All microRNAs shown in the figure 
have ≥2‑fold change in expression compared with the control cells. VEGF, vascular endothelial growth factor.
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been shown to contribute to this process (31). Therefore, VEGF 
performs essential functions in the initiation and development 
of solid and hematological tumors.

In the present study, a microRNA microarray was used to 
detect the influence of VEGF on hundreds of microRNAs in 
leukemia cells. It was observed that overexpression of VEGF 
had a limited impact on leukemia cells, but that silencing 
of VEGF significantly altered the microRNA profiles of 
leukemia cells. At least seven microRNAs (miR‑20a, miR‑93, 
miR‑16‑5p, miR‑17, miR‑124‑5p and miR‑17b‑3p) were identi-
fied in the peripheral blood samples of AML patients, of which 
six were positively associated, and one (miR‑17b‑3p) was 
negatively associated, with VEGF expression.

Among the microRNAs identified, miR‑17 and miR‑20a 
belong to the miR‑17‑92 cluster, which includes six members 
(miR‑17, miR‑18a, miR‑19a, miR‑20a, miR‑19b and miR‑92a), 
all of which are spliced from a single pre‑RNA (32). This cluster 
of miRNAs is overexpressed in a variety of cancers, including 
hematopoietic and solid tumors (33,34). miR‑93 is encoded by 
the polycistronic miR‑106b‑25 cluster, which contains miR‑106, 
miR‑93 and miR‑25 (33). The miR‑106b‑25 cluster is a paralog of 
the miR‑17‑92 cluster and both exert similar functions in devel-
opment and tumorigenesis (35,36). In previous studies, miR‑93 
could promote angiogenesis, causing endothelial cells to spread 
and promoting tube formation by suppressing the expression of 
integrin‑β8 in brain and breast cancers (37,38). Unlike miR‑17, 
miR‑20 and miR‑93, miR‑124‑5p may predominantly have 
an anticancer effect (39,40). These reports are not completely 
consistent with the results of the present study, which showed 
that a lower level of VEGF was associated with downregulation 
of miR‑124‑5p. miR‑17‑3p, whose precursor is microRNA‑17, is 
a passenger strand microRNA that is able to target and repress 
the expression of TIMP metallopeptidase inhibitor 3, phospha-
tase and tensin homolog deleted on chromosome 10, GalNT7 
and vimentin, all of which are known to promote the prolifera-
tion and metastasis of cancer cells (41,42). These reports are in 
agreement with the results of the present study.

Previous studies have determined that AML and other 
subtypes of leukemia show elevated expression of VEGF and its 
receptors (4,9,43‑45). The results of the present study suggested 
that knockdown of VEGF could induce large changes in the 
expression of microRNAs, likely because VEGF signaling 
has an important role in the development and progression of 
AML cells. The differences in the results of the microarray 
and clinical samples may be due to the differences between the 
immortal cell lines and AML cells in patients, which empha-
sizes the requirement for further clinical examinations.

In conclusion, the present study demonstrated that auto-
crine or paracrine expression of VEGF by AML cells directly 
or indirectly affected AML cells themselves or neighboring 
cells. The changes in the microRNA expression profile of 
leukemia cells following downregulation of VEGF suggests 
that several targets for anti‑AML therapy may exist in the 
VEGF‑microRNA axis. Additional related studies are required 
in the future to address this.
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