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A B S T R A C T   

Stroke is an example of a complex and multi-factorial disease involving multiple organs, timescales, and disease 
mechanisms. To deal with this complexity, and to realize Precision Medicine of stroke, mathematical models are 
needed. Such approaches include: 1) machine learning, 2) bioinformatic network models, and 3) mechanistic 
models. Since these three approaches have complementary strengths and weaknesses, a hybrid modelling 
approach combining them would be the most beneficial. However, no concrete approach ready to be imple
mented for a specific disease has been presented to date. In this paper, we both review the strengths and 
weaknesses of the three approaches, and propose a roadmap for hybrid modelling in the case of stroke care. We 
focus on two main tasks needed for the clinical setting: a) For stroke risk calculation, we propose a new two-step 
approach, where non-linear mixed effects models and bioinformatic network models yield biomarkers which are 
used as input to a machine learning model and b) For simulation of care scenarios, we propose a new four-step 
approach, which revolves around iterations between simulations of the mechanistic models and imputations of 
non-modelled or non-measured variables. We illustrate and discuss the different approaches in the context of 
Precision Medicine for stroke.   

1. Background 

1.1. The challenge of big data in diseases like stroke warrants the 
development of new Precision Medicine technologies 

The healthcare sector has, like many other parts of society, entered 
the age of big data. Currently, the standard practice for a physician 
diagnosing a patient is to look at a handful of biomarkers, interview the 
patient, and then use his/her experience and clinical guidelines, to 
decide what to do next (Fig. 1A). Notably, this strategy may soon be 
augmented by the advent of modern measurement and data storage 
technologies, since the amount of data available from a patient visit can 
easily become so large that it cannot be inspected manually, even less 
analysed. Moreover, we now have access to large clinical studies, with 

millions of similar patients examined and followed over time, which all 
serve as important background information. Finally, the patient may 
also have access to his/her own sensor technologies in a variety of 
wearables generating huge amounts of data. To ignore the new data and 
knowledge now available to a physician is not an acceptable solution. 
Therefore, new technologies, which can make use of and integrate all 
these data and knowledge types, are urgently needed. 

The use of this vast amount of data for highly individualised pre
dictions is called Precision Medicine (PM). PM is a form of healthcare 
that relies on data, algorithms, and precise molecular tools to offer 
individualised care for patients. These tools give insight into mecha
nisms of disease, treatment, and prevention. By treating the patient as an 
individual, the attending physician can adapt treatment to variations in 
pathophysiology, genome, and anatomy. PM has the potential to 
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improve outcomes and to reduce healthcare costs. It has for example 
already been successfully used in oncology, to find genetic mutations, 
and the approach is now being considered in a variety of different fields 
(Hinman et al., 2017; Rostanski and Marshall, 2016). 

Stroke is a suitable candidate for PM, for all phases of stroke care – 
prevention, acute treatment, and rehabilitation. Stroke is characterized 
by a complex pathophysiology, comprising several medical and envi
ronmental factors, and involving multiple organs, timescales, and 

control mechanisms (Rostanski and Marshall, 2016), for which more 
pathophysiological data relevant for stroke have now become available. 
Depending on the phase of stroke care, different types of data, like 
clinical, imaging and psychometric data are available for ischemic 
stroke, the most common form of stroke. Additionally, given its high 
prevalence, a lot of data are routinely acquired and can be made 
available. A PM approach can therefore integrate these data and thereby 
offer better and personalized care, decision making, and risk calculation 

Fig. 1. The challenge of big data in clinical practice and clinical data analysis: (A) Today, the physicians manage by conventional inspection and reasoning around 
data, based on experience and clinical guidelines. Tomorrow, this simple approach will no longer be a feasible solution to properly analyse all data. (B) Overview of 
the three main types of modelling approaches and the kinds of data they can analyse. (C) Illustration of the amount of data and physiological understanding that are 
typically used by the different modelling approaches in B. Incorporating physiological understanding, if it exists, in the modelling process can be used to restrict the 
learning problem and thus limit the amount of data needed. Methods to analyse data for which physiological understanding is lacking, or is not used, usually require 
larger amounts of data. 
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(Hinman et al., 2017; Dzau and Ginsburg, 2016). 

2. Three types of data, and three corresponding types of 
modelling approaches 

The available data relevant for stroke care come in different forms 
and can be subdivided according to the method by which they can be 
analysed (Fig. 1B). We here distinguish between three such classes of 
methods. (I) One set of analysis approaches is known as machine 
learning (ML), that can generate predictions from mechanistically not 
understood data without requiring explicit prior domain knowledge 
(Kelleher et al., 2015). (II) Another set of analysis tools belongs to the 
fields of omics analysis and bioinformatics. Omics refers to large bio
logical data that, as an example, describe complete genetic (e.g. single 
nucleotide variants) or molecular (e.g. proteins and mRNA) profiles of 
an organism. These types of data can be analysed using graph theory, or 
biological networks, in order to systematically analyse the relation be
tween factors that are found to individually have small effects, e.g. 
clusters of genes that together show a significantly changed expression 
pattern (Gustafsson et al., 2014; Kim and Tagkopoulos, 2018; Rappoport 
and Shamir, 2018). (III) A final example of analytical tools is mecha
nistic modelling, used to analyse time-resolved data. The underlying 
biological system is often modelled by ordinary differential equations 
(ODEs), e.g. models describing glucose- and insulin interplay on the 
whole-body level (Dalla Man et al., 2007). Another example is blood 
pressures and flows, which can be described by either zero-dimensional 
Differential-Algebraic Equations (DAEs), or partial differential equa
tions (PDEs) (Casas et al., 2017, 2018; Frey et al., 2020). Generally, data 
can also represent intracellular concentrations of metabolites and pro
teins, which may be described by ODE models that are based on meta
bolic and signalling pathways (Brännmark et al., 2013, 2017; Nyman 
et al., 2014). The ODE and PDE models can then be simulated to produce 
data similar to the data produced by the real mechanisms it describes. 

Each of the three approaches (Fig. 1B) has its strengths and weak
nesses. (I) ML approaches can build models that map between inputs and 
outputs without knowing anything about the physiological mechanisms 
in that mapping. Some weaknesses include that the development of ML 
models relevant for PM, such as artificial neural networks (ANNs), 
usually require large amounts of training data. Furthermore, these 
methods do not use or contribute to physiological understanding, and 
the developed ML models may be biased in regard to what data that was 
chosen to train the model (i.e. sample bias). (II) The strengths of bio
informatics approaches are that they can develop quasi- 
phenomenological models in cases where too few samples have been 
collected to use more data-heavy ML approaches. This is done by 
combining the raw data with prior knowledge describing for instance 
tentative networks of interactions. However, bioinformatics approaches 
normally aim to develop coarse-grained models that may contain several 
false positive predictions, and such approaches are thus not to be 
considered as fully mechanistic. (III) The mechanisms incorporated in 
mechanistic models mathematically describe the underlying biochem
ical interactions and how the experimentally observed dynamics could 
have been produced. Systematic hypothesis testing and model refine
ment ultimately result in a high-quality system understanding, but this 
highly time-consuming approach is only possible in cases where prior 
domain knowledge and the right type of data are available. Note that 
these large-scale bioinformatic networks differ from other networks 
models, such as deep ANNs, in that nodes in bioinformatic network 
models represent actual physical connections between physical entities, 
for instance genes or proteins, while the nodes in the middle layers of 
ANNs usually do not represent physiological entities in that sense. 

2.1. The need for hybrid modelling 

The above comparison between ML models, bioinformatics models, 
and mechanistic models quickly reveals that they have complementary 

strengths and weaknesses. In other words, different types of data require 
different types of analysis methods. The strongest possible models would 
therefore arguably be hybrid models, since they can combine the 
strengths of the different modelling approaches, and can make use of all 
types of data. 

Some hybrid model approaches have been proposed for biomedical 
applications. One of those proposals came from the Discipulus network, 
which produced a roadmap for how “Digital Patients” - in silico repre
sentations of individuals - can be developed (Díaz et al., 2020; Viceconti 
et al., 2016). This roadmap outlines many useful ideas ranging from data 
integration and handling, to modelling approaches, and even to clinical 
applications. However, the network did not develop any concrete 
models, even though some existing non-hybrid models for stroke are 
mentioned in the roadmap. There are also some specific hybrid models 
developed for biological applications, summarized in e.g. these reviews 
(Doyle et al., 2013; Stéphanou et al., 2016). From these reviews, at least 
three conclusions can be drawn: i) hybrid models are still rare, but their 
incidence has been rapidly increasing over the last couple of years 
(Stéphanou et al., 2016); ii) there is no consensus regarding nomen
clature, but some basic options for how the models can be combined 
(Fig. 6A) are emerging; iii) there are no fully developed hybrid models 
that combine mechanistic multi-level models with ML and bioinfor
matics in a clinically useful way, and especially none for stroke. 

2.2. Purpose and outline of review 

There is thus a strong need to develop the field of hybrid modelling. 
Herein, we present a roadmap for how hybrid models could be devel
oped. Whereas it could be noted that the methodologies and strategies 
are general, and therefore could be applied to other diseases as well, we 
primarily illustrate their usage for stroke care. Specifically, we propose a 
hybrid methodology which can be used to a) calculate risk factors, and 
b) simulate different disease scenarios (e.g. the progression based on 
different interventions, or no intervention). The next section provides a 
slightly more in-depth review of the three different modelling ap
proaches (Figs. 2-4), a closer look at their different strengths and 
weaknesses, and some state-of-the-art models relevant for stroke 
(Figs. 4-5). We also propose a specific combination of some models for 
this purpose. Thereafter, we propose a two-step approach for the 
calculation of risk scores (Fig. 6B), and a four-step approach for simu
lation of scenarios (Fig. 6C). Finally, we discuss the implications of the 
proposed hybrid approach and outline some of the remaining 
challenges. 

3. Review: Existing modelling methodologies and concepts 

3.1. Machine learning and heterogenous, large-scale data 

ML is the subfield of Artificial Intelligence focused on developing 
algorithms that induce models from data without requiring explicit prior 
domain knowledge (Kelleher et al., 2015; Lip et al., 2010). The two main 
classes of ML are supervised and unsupervised learning. In the case of 
supervised learning, pairs of inputs and outputs are known, and the 
learned model provides a mapping of inputs to outputs (Fig. 2). In the 
case of unsupervised learning, input data is not predefined, and instead, 
the underlying structure of the data is searched for by the algorithm 
(Alpaydin, 2009). The in- and outputs of ML models are usually labelled 
as either discrete or continuous. Discrete labels, or classes, can for 
example be whether a patient has a certain disease or not, and the 
prediction of whether a patient belongs to such a class is done by a 
classification model. In contrast, continuous labels (such as abundance 
of a specific mRNA21), can be predicted by regression models. 

The field incorporates many kinds of approaches, with different 
needs regarding the amount of data amount and the required physio
logical understanding. For the purpose of using hybrid modelling for 
PM, approaches that do benefit a lot of data are usually preferred, e.g. 
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since there exists a lot of relevant and heterogenous data (individual and 
populational) lacking physiological understanding that can be used to 
constrict the learning. For calculating of risk scores, supervised learning 
can be used. 

There are numerous supervised learning methods available in 
biomedicine, with different amounts of data needed (Breiman, 2001; 
Margolin et al., 2006). Here, we give a short explanation on two popular 
supervised learning methods for predictive model generation in 
biomedicine, on separate sides of the amount of data needed: support 
vector machines (SVMs) and ANNs (Warwick, 2013). 

Both SVMs and ANNs map between known inputs and outputs 
(Alpaydin, 2009). For model training, a set of data with known classi
fication is given to the algorithms. The final model assigns new data into 
one of the different classes. ANNs require larger datasets to do this 
mapping than SVMs. The basic idea of SVMs is to identify a discrimi
nating line that separates entities belonging to different classes (Kelleher 
et al., 2015). ANNs are structured as interconnected networks of nodes 
(Wasserman, 1993). When training to data, ANNs update weights 
describing the strength of interaction between the nodes, to describe 
input–output relationship in the best possible way (Warwick, 2013). 
ANNs have recently gained in popularity through the specific subtype 
known as deep ANNs, also called deep learning models, which are ANNs 
with two or more intermediary layers of nodes (Kelleher, 2019). Such 
deep ANNs have for instance been able to classify images on the same 
level as a highly trained radiologist (Becker et al., 2017), and are 
recurrently proposed to advance the field of PM (Grapov et al., 2018; 
Ching et al., 2018). 

4. Strengths and weaknesses 

A key benefit of ML approaches is that they normally do not require 
understanding of the processes involved, i.e. they do not need any prior 
domain knowledge; they are therefore sometimes referred to as 
phenomenological models. Phenomenological models primarily learn 
patterns between the phenomena recorded in the training data. In other 
words, these methods are, by themselves, purely data-driven, and can 
generate e.g. a network or statistical mapping from inputs to outputs 
from the data directly. The fact that they are data-driven means that they 
can find patterns not yet found by humans, and they can also make use of 
data that is not yet mechanistically understood. 

One of the drawbacks of these approaches is that they often require, 
or at least hugely benefit from, large number of datapoints, to be able to 
extract information without using a priori knowledge. Dealing with large 
amounts of data is not only complicated due to difficulties in amassing 
such data, but also due to difficulties in properly understanding such 
large amounts of data. Importantly, the user must understand the data 
enough to be able to properly trust it. This data quality check can to 
some extent be done by saving some data for cross-validation: if the data 
can be correctly predicted, that argues for the existence of useful in
formation and a sufficient quality in the data. Another critical parameter 
characterizing the size of the data is the number of features, i.e. patient 
variables. As measurement technologies evolve, we can measure an 
increasing number of patient variables in routine examinations and 
clinical studies. This ever-increasing number of features limits our 
ability to extract relevant personalized information from big data, even 

Fig. 2. ML approaches exemplified by supervised learning in the form of an ANN. The network is trained to predict outputs from a set of input data by changing the 
weights of the network depending on differences between model output and data. Input data typically consists of patient characteristics, such as images and 
medications. Output data often consists of outcome, e.g. whether the patient has suffered a stroke or not within a specific time period. If the ANN is used for 
imputation, the output data instead consists of a patient variable. 
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using ML methodologies (Zhou et al., 2017). One main reason behind 
this limitation is that ML models require more training samples than the 
number of parameters to be learned, further increasing the amount of 
data needed. Another reason is that more features make it more difficult 
to incorporate multiple patients into one disease class, since they also 
get more dissimilar with increased number of features (Barbour, 2019). 
This fact that the number of features often scales badly with the 
complexity of the model is known as the curse of dimensionality 
(Bellman, 1984). 

Another drawback with ML models is the need to set hyper
parameters – parameters that cannot be learned from data, and instead 
must be set before the learning process begins. These include for 
example the number of layers and neurons of a deep ANN, or the kernel 
parameters in SVMs. To identify the optimal hyperparameters for a 
specific learning task, a systematic search for the optimal hyper
parameters is performed, often using a so-called grid search. Doing a 
grid search can be computationally expensive, particularly using deep 
ANNs (Kelleher, 2019). There is at present no strong principles to inform 
these decisions, and instead, one must rely on heuristic rules. 

One last drawback with ML models are that they on their own do not 
make use of or add to the available physiological knowledge about the 
system, i.e. they lack explainability. Giving physiological reasons for 
predictions and decisions is highly important in the clinical context of 
stroke, where motivation is crucial for creating trust for both patient and 
medical practitioners. Explainability can also aid in improving gener
alisation by using domain knowledge to constrain the learning problem. 
While there are several ongoing developments to help improve the 
interpretability of ML approaches, i.e. ability to show how a prediction 
was reached (Medicine TLR, 2018; Voosen, 2017), there are still few 
examples available for explainability in stroke (Zihni et al., 2019). 
Finally, another way of improving both interpretability and 

explainability of ML approaches is the hybrid modelling approach, 
proposed herein, by combining ML models with more explainable model 
types, such as mechanistic models. 

Given these strengths and weaknesses, we want to highlight two 
tasks where ML can be relevant for stroke care, and especially in a hybrid 
modelling context: 1) imputation of missing data, and 2) risk calcula
tion. We will now explain in more detail how ML can be applied for these 
two tasks. 

4.1. Useful ML abilities in hybrid modelling of stroke: Imputation and risk 
calculation 

Missing data are commonplace in clinical data sets (Wood, 2004; 
Burnett et al., 2011), and is especially problematic when applying data- 
driven methods such as ML (Livne et al., 2017, 2018; Obermeyer and 
Emanuel, 2016; Zitnik et al., 2019). One reason for this challenge is the 
fact that ML approaches are, as discussed above, dependent on the 
quality of data. Usually, missing data are handled by simply discarding 
features or patients with missing data. However, discarding patients can 
lead to biased results, and further diminishing the size of clinical data
sets which may already be too small (Liu and Gopalakrishnan, 2017; 
Demissie et al., 2003). Similarly, discarding features might lead to 
missing important risk factors. Therefore, a more robust method for 
handling missing data is needed. Such methods are centred on imputa
tion of the missing data. 

Imputation of missing data can be done using various ML ap
proaches, by estimating non-measured variables with likely values. The 
simplest, but still commonly used, imputation methods use population 
average values, or sampling (hot-deck imputation). More advanced 
methods commonly used on clinical datasets include expectation 
maximization (King et al., 2001) and multiple imputation by chained 

Fig. 3. Biomarker discovery from high throughput biological data using bioinformatic network models. These networks to some extent describe real biological 
interaction networks between the involved molecules in a disease aetiology. In the figure, such a network is exemplified as a network describing protein interactions 
and their abundance inside, in the membrane of, and outside cells. As can be seen, the resulting network has an internal structure: it contains hubs and clusters whose 
degree of abundance can be associated with a certain disease or treatment susceptibility. 
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equations (Azur et al., 2011). ML approaches for imputation could also 
develop specific models (such as Hopfield Networks, or Energy Based 
Models) for how to map the measured variables to the non-measured 
variables, by considering the measured variables as inputs, and the 
non-measured variables as outputs. Which imputation method should be 
used ultimately depends on the dataset, and different methods will in
fluence the performance of data-driven predictive models differently 
(Kossen et al., 2019). 

Another aspect of ML methods that is useful for hybrid modelling of 
stroke is the ability to calculate risk assessment. Risk assessments are 
done routinely in the clinic, mainly to assess and choose an appropriate 
treatment or preventative measure. In stroke care, it could be the risk of 
having a stroke, the risk of a bad outcome after acute stroke, the chance 
of improving function by following a certain treatment, etc. Both 
discrete and continuous supervised ML can be used to produce such risk 
assessments. These risks can also have an accompanying uncertainty, 
depending on e.g. the quality of data. Finally, the predictive quality of 
the model is assessed, for example by using a Receiver Operating 
Characteristic (ROC) curve, which measures how well the model bal
ances false positives and false negatives. 

4.2. Examples of ML for stroke 

ML is, in the context of stroke care, most frequently used for image 
analysis. For example, ML has been used to predict the location of the 
final infarct on a voxel-by-voxel basis, which is important for predicting 
the outcome of the stroke (Livne et al., 2018; Nielsen et al., 2018). It is 
also within image analysis that the only commercial applications of ML 

for stroke treatment are found: For example, Viz.ai© detects large vessel 
occlusions by using deep ANNs, and Infervision© estimates volume, 
stroke type, and stroke location using an ML-based decision support 
system. 

For predicting the risk of having a stroke or another cardiovascular 
event in the future, there are no commercial examples, but there are 
several reported in the literature, and a few already used in the clinic. 
For assessing the risk of stroke or other cardiovascular diseases, clinics 
currently simple engines based on e.g. linear regression are used, such as 
the Framingham risk score (D’Agostino et al., 2008; Seshadri et al., 
2010) and SCORE (Conroy et al., 2003). More advanced models that 
have been proposed include different kinds of ANNs (Quesada et al., 
2019; Zarkogianni et al., 2018; Huang et al., 2018; Shanmugam et al., 
2019), the Bayesian network type and Naïve Bayes (Quesada et al., 
2019; Li et al., 2016), decision trees (Li et al., 2016; Hung et al., 2017), 
and random survival forests (Ambale-Venkatesh et al., 2017; Jamthikar 
et al., 2019; Al-Mallah et al., 2017). Some have predicted stroke for 
specific subgroups, either because of a group’s increased risk, or because 
of difficulties of detecting the risk in those groups (Zarkogianni et al., 
2018; Li et al., 2016). Some of the above studies are based on fairly large 
prospective cohorts, of 5000 participants and up (Shanmugam et al., 
2019; Ambale-Venkatesh et al., 2017; Al-Mallah et al., 2017). Features 
used for these models include the same ones used routinely in clinic, 
such as high blood pressure, smoking, diabetes, age, and history of 
stroke (Quesada et al., 2019). Other studies also use more unconven
tional features, such as ECG signals (Shanmugam et al., 2019), claims 
data (Hung et al., 2017), and other types of heterogenous data (Zarko
gianni et al., 2018; Huang et al., 2018; Li et al., 2016; Ambale-Venkatesh 

Fig. 4. Overview of the components and structure of multi-time scale, multi-level, and mechanistic models. Here, we exemplify the structure of these kinds of models 
by an interconnected model describing whole-body weight regulation (Hall et al., 2011), glucose and insulin homeostasis (Dalla Man et al., 2007), and intracellular 
insulin signalling in fat cells (Brännmark et al., 2013; Nyman et al., 2011). This combined model can simulate what happens on a time-scale of minutes, hours, and 
months, and with an uncertainty (light blue) dependent on its fit to data. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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et al., 2017; Jamthikar et al., 2019), and some assess how many features 
to optimally include in different ways (Huang et al., 2018; Ambale- 
Venkatesh et al., 2017). Although some sort of combination of 
different ML models (e.g. ensemble strategies) exists (Zarkogianni et al., 
2018; Shanmugam et al., 2019), hybrid modelling approaches using 
other types of models are still uncommon. For a more comprehensive 
review of ML for stroke care, see (Mouridsen et al., 2020). 

4.3. Bioinformatic network models and omics 

The field of bioinformatics aims to analyse and interpret high- 
throughput biological datasets – omics datasets – using mathematical 
and statistical methods (Yang et al., 2017). Common types of omics 
datasets include (Tseng et al., 2015): complete genomes - genomics; 
proteomes - proteomics; gene expression - transcriptomics; and - small 
molecule metabolites - metabolomics (Sidorov et al., 2019). Such omics 
measurements provide a snapshot of the physiology of a sample from a 
human body, and can be analysed using ML approaches. However, more 
often, such omics datasets are used to infer models representing the 
underlying structure of biological interactions, in the forms of networks. 

The basic data structure of a network is a graph. The nodes in the 
graph represents biochemical species (e.g. genes or proteins), and the 
connections between them, usually referred to as edges, represent the 
interactions between the nodes (Barabási and Oltvai, 2004). Often, these 
graphs are either constructed using curated databases, reverse- 
engineered from omics data, or combinations thereof. There are multi
ple curated databases, such as TRRUST for gene regulation (Han et al., 
2018), PhosphoSitePlus for phosphoproteomic regulation (Hornbeck 
et al., 2014), and STRING for protein–protein interaction networks 
(Szklarczyk et al., 2019). However, the information in these databases 
may be based on weakly defined associations, such as two variables 
often co-occurring in the same texts, obtained from text mining 
(Harmston et al., 2010). In contrast, network inference from data has the 
ability to capture biological features that are unique to a certain data 
sample (Zou and Hastie, 2005). Note that these large-scale bioinformatic 
networks differ from other networks models, such as deep ANNs, in that 
nodes in bioinformatic models represent actual physical connections 
between e.g. genes, while the nodes in ANNs usually do not represent 
physiological entities in that sense, and require a lot of data to be 
powerful. 

These networks have been shown to have a skewness among their 
interactors to a few numbers of genes, so-called hubs. Similarly, the 
networks typically show co-localisation of interactors to certain areas 
corresponding to gene network modules. These facts have been used by 
translational bioinformatics researchers to focus the identification to 
hubs and modules and test their relevance to diseases (Gustafsson et al., 
2014; Barabási and Oltvai, 2004). The derived modules and genes 
contain many genes which then can be validated by genomic concor
dance. Such genomic concordances are said to be found if the module 
derived from gene expression and protein interactions are enriched with 
disease-associated single nucleotide polymorphisms (SNPs) from 
Genome-Wide Association Studies (GWAS). Apart from enrichment- 
based validations, candidate groups of genes are supported by clinical 

and functional studies. These validation and network approaches were 
applied e.g. in (Gustafsson et al., 2014; Magnusson and Gustafsson, 
2019). 

5. Strengths and weaknesses 

The main advantages of the biological network approach are its 
direct use of prior domain knowledge, and that the automatic inference 
from large data sets results in a useful network overview with direct 
biological interpretation (Fig. 3). Another advantage with the network 
and bioinformatics approach is that the identification of hubs and 
clusters may serve as more robust and sensitive biomarkers, compared to 
e.g. individual genes. For instance, it may be that all genes in a hub are 
changed too little to be significant when considered individually, but 
where the clustering of the genes in such a hub allows for detection of 
the changes anyway, since sufficiently many of them change in a way 
that is consistent with model predictions of such changes. In the same 
way, non-consistent changes in a cluster may remove biologically 
meaningless noise in individual genes. 

Current network methodologies also have important shortcomings. 
For example, most network models contain numerous false positives, are 
biased towards some well-studied genes, and are estimated to miss as 
much as 80% of all true interactions (Menche et al., 2015). A last and 
important shortcoming is the steady-state approximation of an adaptive 
system, which can be a major concern for systems with mixed slow and 
fast temporal processes. One alternative that solves this problem is the 
development of mechanistic models, as discussed in Section 2.3. 

Bioinformatic network models can be developed based on personal 
data, and can as such be used to assess an individual’s predisposition of 
having a stroke and his/her susceptibility to a treatment. We will now 
describe the application of bioinformatic network models for stroke care 
further. 

5.1. Useful abilities of network models in hybrid modelling of stroke: New 
biomarkers and risk scores 

A person’s predisposition to stroke is rarely caused by one gene, but 
rather by a combinations of genes (Markus, 2010; Barabási et al., 2011; 
van der Wijst et al., 2018), with varying risks depending on the specific 
stroke subtype (Floßmann et al., 2004). It is also believed that there are 
different genetic predispositions for stroke and many subtypes of stroke 
with different genetic makeups (van der Wijst et al., 2018; Markus, 
2012). Which genetic variation is underlying a stroke influences drug 
metabolism, and so affects drug efficacy and potential side-effects (Feero 
et al., 2011). Furthermore, genetic variations causing inter-individual 
variation in drug responses are also affected by environmental expo
sure, and affected by which cell types are involved in the subtype (van 
der Wijst et al., 2018). Personalizing bioinformatic network models can 
therefore be essential in assessing an individualized stroke risk. 

Using patient-specific omics data, a patient-specific genetic, tran
scriptomic, proteomic or metabolomic network can be developed. The 
personalised network can be compared with healthy and diseased ones, 
to identify risk of having a stroke or adverse outcomes of a stroke. For 

Fig. 5. Abilities of mechanistic models. (A) The basic principle by which biomarkers can be calculated from data using mechanistic models, here illustrated by 
modelling of vessels around the aorta using a standard Windkessel model and 4D flow MRI data (Casas et al., 2017, 2018). Here, only a part of the model is shown, 
the one describing blood flow in the abdominal aorta. The general parameters are taken from literature. The personalized parameters received by training of the 
entire model can then be interpreted as personalized values of biomarkers. In the illustration, these biomarkers are the resistance (Rda), inertance (Lda), and 
capacitance (Cda) of the abdominal aorta, and the viscoelastic resistance (Rdav) of Cda. All of these are mechanistic and interpretable biomarkers, not available in the 
raw data, but whose values can be estimated using the mechanistic model. (B) Overview of some of the most important sub-models that could form the basis of a 
stroke simulation model, with agreements between simulations (-,–) and data (dots) in most of the main processes leading up to a stroke. (a) A model for adipose 
tissue meal response (at t = 0) in healthy controls (-) and type 2 diabetes patients (–)12; (b) Liver models describing liver uptake of a contrast agent injected at t = 0, in 
patients ranging from healthy controls-) to advanced fibrosis–)94; (c) The kidney water extraction response following administration of an SGLT2 inhibition drug at t 
= 095; (d) Blood flow in aorta for normal healthy subjects (-) and for subjects perturbed with Dobutamine (–)10; (e) Thrombus formation in an in vitro vessel initiated 
at t = 096; (f) The Blood Oxygen Level Dependent signal in response to brain activity (Sten et al., 2017). These models are currently isolated from each other, but 
could become a part of an interconnected stroke simulation model. Such interconnected simulations should still be different from patient to patient. 
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Fig. 6. Hybrid modelling (A) The three main approaches to hybrid modelling most often adopted today. Note that the denomination of these approaches has not yet 
converged, and that other coexisting names for these and related approaches have been proposed (Stéphanou et al., 2016). For instance, sequential modelling is 
sometimes referred to as iterative or staged hybrid modelling, depending on if the feedback from M2 to M1 is included. (B) Schematic outline of our approach for 
hybrid modelling, when calculating risk scores of the patient at the time of examination. (C) Outline of our approach to simulation of scenarios, using our new 
hybrid models. 
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treatment susceptibility, a personal network could also be describing the 
cellular dysfunction underlying the stroke, to see if a drug or combina
tion of drugs actually induce detectable change in the network activity 
(Barabási et al., 2011; van der Wijst et al., 2018). Furthermore, network 
modelling can be used to find driver genes, findings that can be used for 
targeted stroke treatment (van der Wijst et al., 2018). 

5.2. Examples of bioinformatic network models for stroke 

Using omics data together with network modelling has led to 
improved prognostic stratification in stroke (Goldenberg et al., 2014), 
and discovery of several important metabolite-stroke associations 
(Sidorov et al., 2019). For example, a study by Muñoz et al. used a 
clinical proteomics approach to identify candidate biomarkers, for both 
stroke diagnosis and stroke rehabilitation (Muñoz et al., 2018). This 
demonstrated a fundamental role of fibrinogen plasmatic levels on pa
tient admission to the stroke rehabilitative care. Specifically, these levels 
correlated with a gain in activities of daily living at discharge from 
rehabilitative care (Muñoz et al., 2018). 

Genetic risk prediction has been used for targeted disease prevention 
in subgroups of individuals at extremely high risk for disease before any 
symptoms manifest. For example, GWAS have been very successful in 
identifying novel genetic variants associated with various common 
complex diseases (Visscher et al., 2017). The MEGAstroke consortium 
has collected 29 cohorts with a total of 67,162 individuals with 
ischaemic stroke and 454,450 controls. By meta-analysing the results of 
the GWAS, they added 22 new stroke risk loci to the previously known 
10 genes (Malik et al., 2018). This was further updated with the dis
covery of three more risk loci in 2019 (Malik et al., 2018), bringing the 
total number of genes associated with stroke to 35. Creating genomic 
risk scoresGRS) based on the associated variants has only shown modest 
results for stroke compared to established risk factors (Rutten-Jacobs 
et al., 2018). However, a more advanced meta-scoring approach, 
incorporating GWAS summary statistics for stroke and its aetiological 
subtypes together with GWAS summary statistics for risk factors and co- 
morbidities of ischemic stroke proved more successful (Abraham et al., 
2019). The metaGRS was validated in UK biobank where the individuals 
in the top 0.25% of the metaGRS had a three-fold higher risk of stroke. 
Genetic risk prediction has also been used in a personalised manner. For 
example, a study by Wong et al. analysed gene expression in the blood of 
post-stroke patients to distinguish the cause of stroke, and then used the 
resulting networks to predict stroke aetiology and outcome (Wong et al., 
2015). 

5.3. Mechanistic models and dynamic data 

A mechanistic model is essentially a computational implementation 
of a mechanistic hypothesis, and thus enables that hypothesis to be 
quantitatively tested (Kitano, 2002). Mechanistic models thereby also 
use domain theory to constrain the learning problem, to decrease 
computational power, and to increase generalizability and interpret
ability of the model. The entire model structure describes a specific 
mechanistic hypothesis of how a system functions. The unknown 
parameter values in the model are then estimated by fitting the model to 
available estimation data, within physiologically realistic ranges. If the 
model cannot produce an acceptable agreement with the estimation 
data, it and the underlying mechanistic hypotheses are rejected. This 
question is formally tested using statistical tests, such as a chi-squared 
test (Cedersund and Roll, 2009). A model that can agree with estima
tion data is then analysed to find predictions with uncertainties. Well- 
determined predictions, sometimes called core-predictions (Cedersund, 
2012), are interesting because they describe features that must be ful
filled in the model, and they can also be used to design new experiments, 
and to test the model by comparing the predictions with new validation 
data. In this way, mechanistic modelling can aid experimental hypoth
esis testing: to draw conclusions from existing data and design new 

experiments. 
Another usage of mechanistic modelling is to combine validated 

models for sub-systems, e.g. organs, with each other in larger models. 
The resulting interconnected model with crosstalk between many organs 
can be simulated on both short and long timescales. An example of what 
such a model can do is seen in Fig. 4. On the long-term timescale 
(months), the model can describe slow processes like weight-loss. On the 
shorter timescale (hours), the model can describe how a meal is diges
ted, by e.g. looking at the time-varying glucose uptake in one of the 
organs. On the shortest timescale (minutes), one can look at how 
intracellular processes, such as protein signalling phosphorylation 
events, happen within seconds or minutes after a hormone has reached a 
target cell. 

As of now, most mechanistic models are trained and validated on 
population data, but the interconnected model can also be trained and 
validated on individual data, thus personalising it. Example of such 
personalised models exist, e.g. models for prediction of variations in 
glucose meal responses (Kovatchev et al., 2009). It is also possible to 
connect or translate the behaviours in such an interconnected model 
with a corresponding model for mice, by establishing a scaling between 
them. Scaling between mice and human models enables knowledge 
gained from experiments done on living mice models to translate 
properly to human functions (Alskär et al., 2017). For brevity, such 
mechanistic, multi-level, multi-timescale, and multi-species can be 
called M4 models. 

6. Strengths and weaknesses 

The benefits and weaknesses of mechanistic models are almost 
exactly the inverse of that of ML and bioinformatic network models. 
Some of the most important benefits are that it is possible to input 
physiological knowledge; that one can work with small informative 
datasets; and that model predictions can always be traced back to the 
exact generating mechanism in the system. Another important benefit is 
that mechanistic models can be reused, and easily expanded in new 
contexts, as new data and applications become available. 

Some of the most important weaknesses of mechanistic modelling 
are that they themselves are usually not statistical in nature, i.e. they 
usually do not naturally produce such things as risk scores. Similarly, 
uncertainty in structural prior information is seldom formally repre
sented in mechanistic models. Furthermore, most systems biology 
mechanistic models are so-called mean value models, and advanced 
patient-specific modelling requires the expansion of purely mechanistic 
modelling to also include phenomenological covariates, as is done in 
nonlinear mixed-effects modelling (Jonsson et al., 2000; Karlsson et al., 
2015). The latter method is one of the hybrid modelling approaches 
discussed further below. 

Just as for ML and network models, mechanistic models have useful 
abilities in a hybrid modelling of stroke: 1) predicting the time-evolution 
of key biomarkers in a patient-specific manner, and 2) predicting the 
time-evolutions of these biomarkers for different scenarios, e.g. different 
treatments. 

Useful abilities of mechanistic models in hybrid modelling of stroke: 
personalised predictions of new mechanistic biomarkers and simulations 
of scenarios. 

The basic principle by which new biomarkers can be obtained from 
the combination of a mechanistic model and mechanistically understood 
data is depicted in Fig. 5A. The example is taken from (Casas et al., 
2017), but the principle is general. The data in this example is sampled 
by a 4D flow Magnetic Resonance Imaging (MRI) technique. From this 
sampled data, the flows through each point in space can be determined 
at all time-points. These point-based estimates can be aggregated, and 
the various black planes in Fig. 5 indicate areas in the vessel system 
where a quantification of the flow is made. Each such quantification 
leads to a time-series of the flows. The magnitude of the spatially 
dependent flow is depicted in the top left graph in Fig. 5A, and the 
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quantified time-series through the plane F5 is depicted in brown time- 
series in the middle of Fig. 5A. Once data, such as these, have been ac
quired, they are then used to estimate the parameters in the mechanistic 
model. 

The mechanistic model in this example is a zero-dimensional ODE 
model that describes how the blood flow propagates from each 
compartment in the model to the next, based on various physical 
properties of the vessels, such as volume, stiffness, and compliance. This 
type of model is based on an analogy between blood flows and electrical 
circuits, and so-called Windkessel models (Fig. 5A). The model is fitted 
to individual time-series data to generate patient-specific parameters, 
and a personalized model. In the fitting process, a cost function quan
tifies the distance between the experimental data (Fig. 5A, brown 
dashed line) and the simulations (blue solid line), for each tested 
parameter combination, and a standard numerical optimization algo
rithm uses this cost function to estimate the optimal model parameters 
(Cedersund et al., 2016). The uncertainty of the obtained patient- 
specific parameter values can be obtained using e.g. MCMC sampling 
or profile likelihood methods (Cedersund, 2012; Cedersund et al., 2016). 

Values that are obtained using mechanistic models are not values 
inherently available in the raw data: the prior information of physical 
processes encoded by the mechanistic model and the inference ma
chinery are required, in combination with the raw data, to obtain these 
values. In this example, the predicted physical properties of the vessels 
(compliance, stiffness, volumes, etc) are new biomarkers, which provide 
additional information about the patient. They are useful when one e.g. 
seeks to calculate the risk that the patient will suffer a stroke: the stiffer 
the vessels, and the smaller the effective volumes, the higher risk for the 
patient to suffer a cardiovascular event. 

Finally, mechanistic models that have been personalized can be used 
to simulate different scenarios, such as a new treatment or a prevention 
measure, to see their predicted effect. This way of simulating different 
scenarios is useful for designing new interventions and/or understand
ing why an intervention is performing poorly on a certain patient. 

6.1. Examples of mechanistic models relevant for stroke 

For stroke prevention, there is no complete model that simulates all 
the different processes involved in the ethiology leading up to a stroke. 
Nevertheless, most of the underlying processes have been modelled (Fig 
5B). These processes include e.g. dysfunctional glucose homeostasis, 
diabetes, and complications of dyslipidemia such as non-alcoholic fatty 
liver disease and liver fibrosis (Fig 5B, a-b) (Brännmark et al., 2013; 
Conroy et al., 2003; Forsgren et al., 2019); impacts on the vasculature, 
including blood-pressure and volume regulations, e.g. in response to 
diabetes drugs inhibiting Sodium-Glucose Transport 2SGLT2 (Fig 5B, c- 
d) (Casas et al., 2018; Hallow et al., 2018); and the final thrombosis (Fig 
5B, e) (Taylor et al., 2016) which leads to thromboembolisms in the 
vasculature of the brain (Fig 5B, f), described by models of the neuro
vascular coupling (Sten et al., 2017) or network/multi-level models 
describing the electrophysiology of the brain (Newton et al., 2018; 
Hagen et al., 2016; Nair et al., 2014). The stroke itself can me modelled 
as spreading depression, where near complete depolarization of neurons 
throughout the brain, as in (Newton et al., 2018). Another relevant 
modelling endeavour is that of aging, which effects all stages of pro
gression towards a stroke (Borgqvist et al., 2020). These models could be 
interconnected into a single simulation model, which also simulates the 
cross-talk between all of these processes. 

For stroke treatment, there are models for prediction of clinical 
outcome. Livne et. al has developed a biophysiological model of brain 
perfusion that integrates individual patient-specific imaging data and 
boundary conditions (e.g. blood pressure, intracranial pressure) (Livne 
et al., 2017). This model computes flow volumes, velocities, and 
perfusion pressures for different brain areas. This is the first brain cir
culation model that integrates individual stroke patient neuroimaging 
data and enables simulation of brain blood flow and perfusion based on 

vascular pathology such as stenosis and occlusion. The model also allows 
incorporating vessel segments into the model to examine their effect in 
the cerebral vasculature and/or to supplement missing medical data/ 
information. Importantly, this model is based on routine clinical imag
ing. Thus, this technology can provide individual data for a PM 
approach, without the necessity of additional time-consuming and even 
potentially harmful approaches used today in perfusion imaging. 

6.2. General schemes for hybrid modelling 

We have now seen three different modelling approaches – machine 
learning, bioinformatic network models and mechanistic models – each 
with their own weaknesses and strengths. Let us end this review part, by 
looking at some of the main schemes available for combinations of 
different types of models, i.e. hybrid modelling (Fig. 6A). The first op
tion is parallel models, where there is no cross-talk between the con
stituent models. The second option is called sequential hybrid 
modelling, which is done if the output of one of the two models serves as 
input to the other model. This approach is sometimes also called a staged 
hybrid model. Sequential modelling can also be done in a reciprocal 
manner, where the output to the second model serves as the input to the 
first model, for each step in the model simulations. Such models are also 
called iterative hybrid models. Finally, the last option for hybrid 
modelling is called blended modelling, in which the two models have 
been fully merged with each other, into a combined model. 

6.3. Proposed hybrid modelling approaches 

Using the general hybrid modelling schemes, we will now describe 
how we propose to combine ML, bioinformatic network models, and 
multi-level mechanistic modelling for stroke care. We mainly use pre
ventative care as a possible example, but we believe that the algorithm 
could be used for acute and rehabilitative stroke care as well. These 
hybrid approaches constitute a roadmap for hybrid modelling within 
stroke care. We propose two different approaches to obtain two of the 
main tasks needed for clinical usage: a) calculation of risk factors, and b) 
simulation of scenarios. 

6.4. Prediction of risk factors and outcomes 

Our proposed hybrid modelling approach for calculating risk scores 
and outcomes is outlined in Fig. 6B. As can be seen, we propose to use 
two types of hybrid modelling schemes: blended and sequential 
(compare with Fig. 6A). 

In Step 1, blended hybrid modelling is achieved by introducing a 
statistical and phenomenological component into mechanistic models. 
Specifically, we propose using a modelling methodology called 
Nonlinear Mixed-Effects Modelling (NLME). With NLME models, there is 
the possibility to introduce covariates into otherwise normal nonlinear 
mechanistic ODE models. These covariates impact the value of the pa
rameters in a phenomenological fashion, as illustrated by the following 
two examples: 

Say that some parameters in the mechanistic blood flow model 
(Fig. 5A) are dependent on gender. The data used for parameter esti
mation would then be subdivided into two parts: one for males and one 
for females. Each gender would get a specific distribution of the 
parameter where the covariate is specified as having an effect. 

Age impacts the mechanistic parameters (e.g. the compliance), but 
say that we do not yet understand all the mechanisms involved in 
this dependency. In that case, the age should be introduced as a covar
iate. How the covariate is impacting the parameter is then postulated as 
a phenomenological formula (e.g. saturated dependency if it reaches a 
maximum, or a step-wise if there is a sudden jump in an affect at a 
specific age). 

NLME models describe the distribution of each parameter across the 
population. This distribution is normally described by a covariance 
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matrix, which specifies the width of the distribution and how each 
parameter is correlated with the other parameters. In practice, this 
covariance matrix is obtained at the same time as the other parameters 
for each individual patient, by formulating a joint likelihood function in 
the estimation step, and by introducing the additional assumption that 
the parameter values across the population should follow a certain 
predefined type (e.g normal or log-normal distribution). This additional 
assumption implies that the parameters will be more well-determined in 
the case of non-informative data (where the data for an individual pa
tient is insufficient to have well-determined values for all parameters), 
as demonstrated in e.g. (Karlsson et al., 2015). 

In Step 2, Sequential hybrid modelling, all the new biomarkers are 
combined in an ultimate risk score. These biomarkers could have been 
obtained using either NLME combined with the mechanistic models 
(Step 1), and/or using the bioinformatic network modelling (Fig. 3). 
Apart from these biomarkers, there are all the biomarkers and data that 
have not yet been used, or that still may have useful information 
(Fig. 6B). All these data and biomarkers are then combined into a clas
sical ML model, such as an ANN (see Section 2.1), which calculates a 
risk. As an example, for preventative care, the ML algorithm can be 
trained on large prospective clinical studies where both all or many of 
the biomarkers are measured, and where patient outcome is available. 
The main outcome of interest is then whether the patient will suffer a 
stroke within the next pre-defined time-period. 

6.5. Simulation of scenarios 

The second type of usage for our hybrid modelling we propose is for 
simulation of individual patient scenarios. Our strategy for how these 
simulations will be done is outlined in Fig. 6C. As can be seen, there are 
four major steps involved. 

Step 1: Set up a personalized M4 model. All available data for the pa
tient is identified. The rest of the information that can be used to further 
personalize the M4 model are imputed by a ML model based on large 
cross-sectional data. For instance, for one patient with known age and 
gender, 4D flow MRI data and some metabolic plasma levels are avail
able, while blood pressure and fatty acid levels are not, and these are 
thus imputed. In Fig. 6C, the available data are represented by red dots, 
and the imputed variables as blue dots. The measured and imputed data 
are then fed to the NLME and M4-model. To simulate the M4-model, it 
also needs parameters that are specific to the model and that usually are 
not, or even cannot, be measured directly, such as different mass flow 
velocities or levels of insulin sensitivity. In Fig. 6C, these values are 
symbolized by dots in blue inside the M4-model. Some such parameters 
can be trained from the available data (as in Fig. 5A). Other parameters 
can be taken from literature. These approaches imply an uncertainty in 
the chosen values, meaning that many sets of parameters will be avail
able for the same patient. Note that the resulting M4-model is 
personalized. 

Step 2: Simulation of scenarios. The personalized M4-model is used to 
investigate different scenarios. Such scenarios could be introducing 
different medications or alterations in diet. These simulations are read 
out, and the relevant biomarkers and other interesting model properties 
are analysed. Predicted biomarkers can go into the outcome calcula
tions, but there are many other variables that could be interesting and 
useful to investigate. For example, if the model predicts a decrease in 
inflammation and body fat upon a change in diet, one would then like to 
know why these positive effects, which will lower the risk of having a 
stroke, are seen. That question can be answered by inspecting more 
detailed simulations, which reveal e.g. the precise mechanisms and 
processes involved in responding to the diet, and how these mechanisms 
come into play for this patient. 

Step 3: Set up ML model for risk calculation. Data for a timepoint in the 
future is fed to the ML risk calculation model. This data includes values 
from relevant biomarkers simulated by the M4-model in step 2, new 
imputed values, static or otherwise known measured values (such as 

age), and corresponding information from bioinformatic network 
models. 

Step 4: Risk calculation. A risk for a specific outcome is calculated, for 
each interesting timepoint in the simulated scenario. This could be the 
last timepoint, or several intermediate ones as well. These risk calcula
tions are done in the same as in Fig. 6B. After this, Steps 2, 3, and 4 could 
be repeated to identify the corresponding risk for scenarios, which al
lows us to infer for instance how the risk of suffering a stroke changes 
given different simulated scenarios. Given models for acute treatment or 
rehabilitation of stroke, one can in the same way see how other statis
tical properties, such as the likelihood of improving a particular func
tion, is expected to change upon different treatments. 

Using these four steps, one obtains a personalized model for a pa
tient, also in the case of non-complete data; the model can in such cases 
be used to simulate various scenarios, and to physiologically answer 
why the obtained results are predicted; and the model can anyway 
calculate the updated risk at each timepoint in the simulated scenarios. 
In this usage, all different types of data and knowledge are combined. 
This combination of data and knowledge is only possible with the usage 
of a hybrid modelling scheme, such as the ones outlined here. 

There are other functions that could be incorporated into a hybrid 
modelling scheme that were not discussed here. For example, ML models 
could be used to choose between different mechanistic models. Some 
biological systems act according to different mechanisms in different 
individuals, sometimes depending on if they have a disease, and some
times arbitrarily, and thus there can exist several models for the same 
system. ML methods could then be used to either find the best model for 
a particular patient from existing ones, or maybe even to develop models 
semi-automatically as in (King et al., 2004, 2009). ML can also be used 
for feature selection, as in e.g. (Li et al., 2016), delimiting the features 
used for the risk calculation, and they can be used for extracting relevant 
information from images. 

7. Summary 

In this review, we have outlined how ML, bioinformatic networks, 
and mechanistic models can be combined to be helpful in stroke care. 
The background section outlines why hybrid modelling is such a bene
ficial idea. In Section 2, we reviewed existing modelling approaches: ML 
(Fig. 2), bioinformatic networks ML (Fig. 3), multi-level mechanistic 
models (Figs. 4-5), and available hybrid combinations (Fig. 6A). In 
Section 3, we outlined how combining these three modelling approaches 
can be done to predict outcome (Fig. 6B). The main idea is to do initial 
analysis of mechanistically understood data and covariates using NLME 
approaches (which constitutes a blended hybrid modelling approach), to 
analyse omics data using bioinformatic network models (also leading to 
predictions of new biomarkers), and then combine all of the new and old 
biomarkers in a ML model, which gives the ultimate risk calculation. 
Finally, in Fig. 6C, we outlined a four-step approach to how one can use 
hybrid modelling to simulate scenarios: to answer the question of why, 
from a physiological stand-point, the predicted scenarios are believed to 
be the outcome, and to estimate the risk at each timepoint in such 
simulated scenarios. For the case of stroke care, this outlined approach 
could for example be used to calculate someone’s risk for having a 
stroke, given nonmodifiable risk factors (e.g. age, sex), other conditions 
related to stroke risk (e.g. diabetes, hypertension), and current life-style 
(e.g. smoking, diet). Depending on how high the estimated risk is, the 
approach can then be used to evaluate what intervention (e.g. antico
agulant or treating hypertension) would be most effective, given that 
persons predispositions, genetic or other, by comparing what interven
tion decreases the risk the most. The physiological reasoning behind the 
estimated risks made by the model can be scrutinized by looking at the 
simulated scenarios, what biomarkers have evolved and how (e.g. blood 
pressure or plasma glucose levels). 

With these new type of hybrid models, it will be possible to develop 
digital twins, i.e. personalized models. These digital twins can be useful 
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in healthcare for a wide variety of uses: to aid doctor-patient commu
nication and pedagogics, to help motivate patients to follow prescribed 
treatments, to inspire people to do more preventive or restorative 
measures, and to help the doctor devise a personalized diagnosis or 
treatment plan. In this manuscript, we have outlined a concrete meth
odological basis for such digital twin developments. Looking forward in 
time, it is clear that while the parts necessary for hybrid modelling 
already exists, as in the different models and modelling techniques 
applied in the way we suggest here, their combination and validation on 
data still must be done. New clinical studies to validate the crosstalk 
between the different aspects of the models are ongoing, and will be 
done during the next couple of years. After that, the digital-twin models 
need to be embedded in eHealth apps and products, which also need to 
be validated for clinical usage. In practice, this means that a digital twin 
for stroke care may be between 5 and 10 years away. 
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