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Abstract

Transposable elements (TEs) have been associated with many, frequently detrimental, biological roles. Consequently, the
regulations of TEs, e.g. via DNA-methylation and histone modifications, are considered critical for maintaining genomic
integrity and other functions. Still, the high-throughput study of TEs is usually limited to the family or consensus-sequence
level because of alignment problems prompted by high-sequence similarities and short read lengths. To entirely
comprehend the effects and reasons of TE expression, however, it is necessary to assess the TE expression at the level of
individual instances. Our simulation study demonstrates that sequence similarities and short read lengths do not rule out
the accurate assessment of (differential) expression of TEs at the instance-level. With only slight modifications to existing
methods, TE expression analysis works surprisingly well for conventional paired-end sequencing data. We find that
SalmonTE and Telescope can accurately tally a considerable amount of TE instances, allowing for differential expression
recovery in model and non-model organisms.
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Introduction
The expression of transposable elements (TEs) has been repeat-
edly associated with various disorders including neurodegener-
ative [1, 2] and age-dependent diseases [3] or cancer [4, 5]. From
an evolutionary perspective, however, expressed and reinserted
TEs may play an advantageous role for the development of new
genes by limiting gene conversion [6]. Likewise, it is suggested
that TEs contribute to the heterogeneity and complexity of the
brain [7]. While the activity of individual TEs is influenced by
epigenomic factors such as DNA-methylation in vertebrates [8],
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a detailed understanding of the regulatory mechanisms is still
missing. The major difference between TEs and other genomic
features such as exons or lncRNAs is their high repetitiveness.
Specifically, TE families contain long stretches of sequence that
occur multiple times across the genome. Consequently, read
aligners often face the challenge to correctly align TE reads to
their locus of origin; i.e. the locus where the transcript read by
the sequencer originated from. To deal with this multi-mapping
read problem specialized tools have been developed in the past
years.
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Table 1. Overview of compared TE expression methods adapted from Lanciano et al. [31]. EM- Expectation maximization; TE- transposable
element

Tool Level Used alignment tool Multi-mapper handling Used references Ref.

SalmonTE Family Salmon EM-Algorithm Consensus of families [13]
Telescope Instance Free Choice EM-Algorithm Reference genome [12]
TEtranscripts Family Free Choice EM-Algorithm Reference genome [15]
SQuIRE Instance STAR EM-Algorithm Reference genome [11]
TEtools Family Bowtie/Bowtie2 Random assignment TE pseudogenome [14]

The first important step to investigate this critically under-
studied part of genome regulation is the accurate and precise
measurement of the expression of individual TE copies (TE
instances). In this study, we systematically compare methods
with regard to their ability to detect and quantify the expres-
sion of individual TE instances from simulated high-throughput
sequencing data of three species (Mus musculus, house mouse;
Homo sapiens, human; and Nothobranchius furzeri, turquoise killi-
fish). Our analysis of the vertebrate model-organisms mice and
human is complemented by the short-lived killifish N. furzeri, as
it is quickly becoming an important model organism in aging
research [9]. With an estimated TE content of 42.1%, its genome
contains a considerable amount of TEs [10] and could be an
interesting organism to study the regulation of TEs during aging.
In contrast to the other two reference genomes used here, the
assembly still is in a comparably early phase. Thus it provides
TE expression benchmarks for genomes of lower quality.

Major obstacles for TE detection and quantification are the
technical read length limitation of most RNA sequencing (RNA-
Seq) experiments and the high sequence similarity of TEs. Since
most TEs are too long for many sequencers to be read at once or
already underwent RNA processing prior to library construction,
many reads are expected to map to multiple instances of a TE,
i.e. a TE family. In addition, low quality genomes render the
analysis of repetitive elements particularly hard, as TEs may be
misplaced or absent in the reference. Therefore, the analysis
of TE expression has frequently been restricted to TE families,
which often means that a consensus sequence per family is
calculated and used as a reference. Consequently, the detection
and analysis of individual TEs with pathological or physiological
relevance remains a critical challenge for the investigation of
sizable parts of genomes across all kingdoms of life. Notably,
family-level investigations are also obfuscated when family
members are not coordinately up- or down-regulated. Only
recently, tools such as SQuIRE [11] and Telescope [12] became
available to tackle TE expression analysis on instance-level.

Here, we investigate to which extent existing methods
implemented in SalmonTE [13], TEtools [14], TEtranscripts [15],
SQuIRE and Telescope (see Table 1) can be used to quantify
locus-specific TE expression. We simulated RNA-Seq data for
M. musculus, H. sapiens, and the non-model organism N. furzeri,
because as it allows benchmarking of tool performances. In
contrast to real data, exact expression values and expression
differences are known and thus serve as a gold standard in
all evaluations. To this end, we modified the three methods
originally designed for family-level analyses to obtain expres-
sion estimates for individual TEs. Using DESeq2 [16], a tool
to estimate differential expression from count data of high-
throughput sequencing reads, we additionally investigate the
ability to recover differentially expressed TEs (DETEs) based
on the tools’ alignments. Furthermore, our analysis provides
insights into the relation of Kimura distances [17] and the
ability to investigate expression levels of individual TE orders as

defined by RepeatMasker [18]. In summary, our study provides
a comprehensive assessment of the possibilities of DETE detec-
tion. This is an important step towards a better understanding
of mechanisms underlying TE regulation in health, disease and
aging.

Methods
The workflow of the tool evaluation is shown in Figure 1 and
all in-house scripts, used in the following section, can be found
at GitHub (simulation, evaluation and scripts: https://github.co
m/Hoffmann-Lab/TEdetectionEvaluation). Additionally, all com-
mand line calls are listed in Supplemental File 6.

Generation of repeat reference library

We used the repeat annotation of RepeatMasker of M. musculus
(mm10, based on Repeat Library 20140131 downloaded in
January 2020, https://www.repeatmasker.org/genomes/mm10/
RepeatMasker-rm405-db20140131/mm10.fa.align.gz), H. sapiens
(hg38, based on Repeat Library 20140131 downloaded in
January 2020, https://repeatmasker.org/genomes/hg38/Repea
tMasker-rm405-db20140131/hg38.fa.align.gz) and N. furzeri
(Nfu_20150522 downloaded in January 2020, https://nfingb.leibni
z-fli.de/data/raw/notho4/Nfu_20150522.dispersed_repeats.Nf-
RepLib.20141117.align.gz), along with the reference genome of
M. musculus mm10 (v102 downloaded in January 2021 from ftp://
ftp.ensembl.org/pub/release-102/fasta/mus_musculus/dna/), H.
sapiens hg38 (v102 downloaded in January 2021 from ftp://ftp.e
nsembl.org/pub/release-102/fasta/homo_sapiens/dna/) and N.
furzeri Nfu_20150522 (downloaded from https://nfingb.leibni
z-fli.de/data/raw/notho4/Nfu_20150522.softmasked_genome.
fa.gz) [10] to generate a reference sequence library of TEs
in FASTA format for each organism. Specifically, coordinates
of TEs from the RepeatMasker annotation were converted
into BED format and used to generate a reference library of
nucleotide sequences for each annotated TE by using bedtools
getfasta (v2.29.2–41-g4ebba703) [19]. Genomic position, Kimura
distance, strand and TE categories are tracked for each instance
throughout the evaluation pipeline via unique TE identifiers
(TE ids, in the format chr|start|end|TE-repclass|TE-family|TE-
subfamily|score|KimuraDistance). All following steps are based
on these generated reference libraries.

Simulation of short read RNA-Seq data

In this study, we consider single-end (50 and 100 bp read length)
as well as paired-end (100 bp read length) sequencing exper-
iments. For either experimental setup, two distinct sets with
five replicates each are generated. Throughout this study, the
first set is considered a control (Set 1), while the second set
contains 5% uniformly randomly drawn DETEs (Set 2; 2.5% up-
and down-regulated, respectively). As a basis for our simulation,
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Figure 1. Workflow of tool evaluation. A count matrix for 100.000 randomly selected TEs was simulated, which was used to simulate reads with polyester. The tools

SalmonTE∗, SQuIRE, Telescope, TEtools∗ and TEtranscripts (∗ marks adapted tools) were applied to estimated counts per TE. The tool-specific estimated counts were

compared with the ground truth (Expression detection & quantification). The ground truth of DETEs of the simulated TEs was determined with DESeq2 and compared

to the tool-specific DESeq2 results (DETE detection). TE – Transposable element; DETEs – differentially expressed TEs.

we uniformly randomly drew 100,000 TEs, i.e. LINE, SINE, LTR
or DNA elements, with at least 100 bp in length and a known
Kimura distance from the reference library.

Polyester (v1.22.0) from the Bioconductor universe (v3.10) [20]
was used to simulate RNA-Seq data in FASTQ format. It allows
simulating GC-biases and sequencing errors based on Illumina
sequencing error profiles that are provided with the polyester
package. A mean read coverage of 20-fold per TE was simulated
and the fragment length for the paired-end data was drawn from
a Gaussian distribution with a mean of 250 bp (SD = 25 bp; default
settings, see Supplemental methods). The number of simulated
reads per TE and sample is stored in a count matrix, which serves
as a reference in the evaluation process. This matrix was also
used as input for DESeq2 (v1.26.0), to identify those TEs that
can be detected as differentially expressed with a perfect read
assignment.

An additional simulation was done for M. musculus using
an in-house script implementing an alternative GC-bias
unaware simulation strategy using quality values of real
experiments to introduce sequencing errors (see Supplement
methods).

Tool adaption, invocation and filtering of results

As described above, TEtools (v1.0.0), SalmonTE (v0.4) and TEtran-
scripts (v2.2.1) use different strategies to estimate TE expression
at family-level (Table 1). We adapted the tools in order to eval-
uate their performance at the level of individual TEs instances
and compare them with the dedicated instance-specific tools

Telescope (v1.0.3) and SQuIRE (v0.9.9.92). As we did not change
the algorithm of the tools, which are responsible for the assign-
ment of multi-mapping reads, we do not expect an interfering of
the outcomes.

By default, TEtools aligns reads to the instance-specific ref-
erence sequences and aggregates individual read counts after-
wards to a family read count using a translation file. To suppress
the aggregation step, we substituted the ids of TE families with
ids of TE instances. Similarly, TEtranscripts uses an annotation
file mapping TEs to their respective families. Again, we sub-
stituted the family names by TE ids to avoid the aggregation
process. Since TEtranscripts and Telescope require precomputed
alignments, simulated sequencing data was aligned with STAR
(v2.7.6a) [21] according to the recommendation of TEtranscripts.
Conversely, SalmonTE ships with an index for M. musculus and
H. sapiens based on consensus sequences for each family. For our
evaluation, we created an instance-specific index with Salmon
(v0.9.1) [22] for each species instead, based on our repeat ref-
erence libraries. In the following, modified tools are referred to
with an appended asterisk (∗).

SQuIRE requires RepeatMasker’s ‘.out’ file format. To provide
such a file, we translated the downloaded ‘.align’ files into the
‘.out’ format via an in-house script. This mapping is bijective,
as the coordinates of each annotated TE are unique. From this,
SQuIRE generates its own annotation file in BED format with
SQuIRE-specific TE ids.

SQuIREs TE ids differ to ours, so that we cannot compare the
results to the simulated counts by a simple merging process.
However, both TE ids contain the genomic coordinates of the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab417#supplementary-data
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Figure 2. Comparison of TE expression detection in the M. musculus dataset. Mean F-scores were calculated across the ten replicates per tool and are given per setup

(single-end 100 bp in light grey; paired-end 100 bp in dark grey) for (A) all TEs, (B) TEs with Kimura distance < 5, (C) orders of all TEs, and (D) orders of TEs with Kimura

distance < 5. Note that in (D), DNA transposons are not shown, because no instance with a Kimura distance < 5 was present in the simulated data (see Supplemental

File 1). TE — Transposable element.

respective TE. These coordinates are unique for each TE and
allow to find the corresponding instances in both count tables;
i.e. there is a one-to-one relationship of the entries in the count
tables.

Except for the modifications described above, all tools were
run with default settings. Subsequently, the outputs were parsed
and aggregated across all samples with an in-house script to
obtain instance-specific read count tables for each tool, which
were used for all downstream comparisons. We removed all TEs
with 10 or less reads summed up over all 10 samples. This cut-
off was chosen as it translates to more than one read per TE
and sample on average. Removing low count genes allows the
mean–variance relationship in the data to be estimated with
greater reliability and also reduces the number of statistical tests
that need to be carried out in downstream analyses looking at
differential expression [23].

Evaluation of the results

Expression detection and quantification

Throughout this study, a TE is considered to be detected by a
given tool in a particular replicate if the reported read count
is equal to or larger than five. This step is common praxis
to eliminate noise produced by occasional misalignments of
individual reads [24]. Using this binary measure we are able to
categorize the results for each TE as true positive (TP), false
positive (FP), and false negative (FN). Using these, the recall (sen-
sitivity), precision, and F-score are calculated. Additionally, mean
F-scores were separately calculated for TEs grouped by Kimura
distances (binned with step sizes of 5) and by TE orders. Both
distances and orders are given by the RepeatMasker annotation
(Figure 2).

Furthermore, based on the count data generated by each tool
we calculated the mean expression levels per TE i and Set

baseMeani =
∑j

1 nij

j

,where nij (Read counts ∈ Kixj) is the count of TE i in replicate j and
compare them to the mean expression levels of the simulated
TEs. Based on these base means, the coefficient of determination
(r2) was calculated from simulated and recovered read counts
for true positives only (r2(TP)). For visualization (Figure 3, Sup-
plemental Figs 4–7), the logarithm of the mean expression levels
was calculated and set to 0 if the original value was 0.

DETE detection

DETEs generated in our simulation may escape the detection
by DESeq2 due to low expression, low expression fold changes
and/or high dispersion. Additionally, DESeq2 might identify
DETEs that were not simulated as such. To distill the set of DETEs
that are detected by DESeq2 using the counts of an ideal aligner,
we first ran DESeq2 on the simulated counts directly. Using
the DESeq2 output, the subset of TEs detected as differentially
expressed was used for further analysis as our ground truth.
In this setup, a perfect aligner would have the power of 1.
Subsequently, we ran DESeq2 with the count tables generated by
all tools tested in this study. Afterwards, we evaluated the tools
by comparing the output to the ground truth. The evaluation is
based on true positive rates (TPRs) and the false discovery rates
(FDRs) and is calculated as follows: (1) sort the DESeq2 result
table in ascending order by the adjusted p-value; (2) count TPs
and FPs in a cumulative manner; (3) use the cumulative values
to calculate a TPR and FDR for each instance.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab417#supplementary-data
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Locus-specific expression analysis of transposable elements 5

Figure 3. Comparison of recovered and simulated TE read counts of Set 2 of M. musculus. Scatter plots for simulated and recovered read counts for each tool (row)

and sequencing setup (column; single-end: light-grey, paired-end: dark-grey). Dashed diagonal lines represent the perfect recovery (data points above: overestimation,

points below: underestimation); dashed horizontal / vertical lines indicate the detection cut-offs to distinguish TP (upper right area), FP (upper left), and FN (lower right)

at an expression value of 5. For each tool and setup, a coefficient of determination for TPs (r2(TP)) is given (colored boxes) as well as counts of TEs considered as TP,

FP, and FN (boxes in respective areas). TNs are here filtered out due to their high number. Note that data points lying on the horizontal dashed line are counted to the

upper categories (TP or FP) and those on the vertical are counted either to FN or TP, due to usage of the R-package ggpmisc (v0.4.0) [25]. FN — false negative; FP — false

positive; TE—transposable element; TP—true positive.

Ranking

The tools are ranked for each part of the evaluation (detection
and quantification of TE expression, detection of differential TE
expression), based on different categories within the evaluation
parts (see Supplemental methods).

Results
The following results are based on the 100-bp polyester-based
data sets, if not stated explicitly otherwise. The results of a
complementary alternative simulation are shown in the Supple-
mentary Material.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab417#supplementary-data
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Simulation

After filtering for minimum read count (see Methods), 99 427
simulated expressed TEs were used for downstream analyses of
M. musculus, 99 765 of H. sapiens and 99 235 of N. furzeri (Supple-
mental File 1). DESeq2 predicted 5 153 differentially expressed
TEs in the M. musculus dataset (adjusted p-value threshold
of 0.05), 5 174 in H. sapiens and 5 148 in N. furzeri when the
simulated counts are used directly. These sets of DETEs are used
as ‘ground truth’ of each species (see Methods).

Detection of TE expression

We first analyzed the tools’ abilities to distinguish between
truly expressed and silent TEs. Overall, similar observations
can be made in M. musculus (Figure 2), H. sapiens and N. furz-
eri (Supplemental Figure 3). Across all species and sequenc-
ing setups, our results consistently indicate that tools using
expectation maximization algorithms to assign multi-mapping
reads perform better on average than TEtools∗, which omits
such a step. The overall improvement upon using paired-end
data, as measured by the F-score (Supplemental File 2), appears
to be surprisingly limited in all species when considering TEs
across all Kimura distances (Figure 2A; Supplemental Figure 3A).
With median F-scores from 0.93 (single-end) to 0.97 (paired-end)
only SalmonTE∗ shows consistently improved F-scores across
all species. In some cases, the single-end data delivers higher
F-scores compared to paired-end data, e.g. Telescope for M.
musculus (0.86 to 0.89, Figure 2A).

Consequently, the most substantial F-score increase com-
paring single-end (0.78) and paired-end (0.91) is observed for
SalmonTE∗ for Kimura distances <5 in M. musculus. On the other
hand, the F-score is significantly decreased for Telescope for the
same set of TEs from 0.73 to 0.56 (Figure 2B). Tools using the STAR
aligner (Telescope, TEtranscripts∗, and SQuIRE) obtain higher F-
scores for single-end than for paired-end data in M. musculus.
However, in H. sapiens and N. furzeri, SQuIRE and TEtranscripts∗
show the expected improvement of F-scores using paired-ends
for Kimura distances <5 (Supplemental Figure 3B).

Conversely, the length of single-end reads had a stronger
impact. Compared to 50 bp single-end reads, the mean F-scores
for the 100 bp single-ends improved from 0.8 to 0.82 across all
tools in M. musculus (0.87 to 0.91 in H. sapiens, 0.76 to 0.82 in N.
furzeri).

When considering F-scores for the four investigated TE
classes (DNA, LINE, LTR and SINE) separately, best results are
consistently obtained for DNA elements (Figure 2C, Supplemen-
tal Figure 3C). Despite its large number of DNA elements with a
Kimura distance <5 (n = 10 916), this is also true in N. furzeri. On
the other hand, the lowest F-scores are observed for LINEs with
a Kimura distance <5 in all species (Figure 2D; Supplemental
Figure 3D, Supplemental File 2). Again, we also observe the
strongest F-score increase for LINEs upon paired-end data usage
for SalmonTE∗ in all species (from 0.67 to 0.91 in M. musculus,
from 0.90 to 0.98 in H. sapiens and from 0.83 to 0.93 in N. furzeri).

The superior performance of SalmonTE∗ is also confirmed
using the alternative simulation strategy. Importantly, the rank-
ing of all tools is comparable using this alternative data, only
SQuIRE and TEtranscripts∗ swap their ranks (see Supplemental
File 5). Here, however, the tools appear to make slightly better
use of paired-end information.

Quantification of TE expression

In terms of the tools’ performances in quantifying TE expression,
we evaluated the expression detection performance based on FP,

TP, and FN counts, as well as r2(TP), for single- and paired-end
data. Results for M. musculus are shown in (Figure 3). Analogous
data for the other species and simulations are shown in the
Supplement (Supplementary Figs 4–7; Supplementary File 3).
SalmonTE∗ and Telescope continuously show the lowest counts
of FPs across all studied species and setups ranging from 3 028
in H. sapiens (SalmonTE) to 35 551 in M. musculus (Telescope).
Surprisingly, in the case of Telescope, the numbers of FPs are
consistently increase by using paired-end data. The differences
between the tools are less pronounced regarding FNs. Here,
TEtools∗ consistently yields the lowest count of FNs across all
species and sequencing setups.

We observe a tendency of SalmonTE∗, TEtranscripts∗ and
TEtools∗ towards underestimating the TP counts. This is most
pronounced in N. furzeri (Supplementary Figure 6) where almost
half of simulated TEs (48%; median of all three tools) receive
fewer reads than simulated while this is the case for only 24%
of human TEs. Overestimation of TE expression appears to be
most pronounced for TEs quantified with SQuIRE, which can be
consistently observed in all species and sequencing setups.

Our analysis also indicates that the r2(TP) values obtained
with Telescope are the only ones consistently improving when
paired-end data is used, while the other tools exhibit inconsis-
tencies or, in the case of TEtools∗, don’t improve. The majority
of the tools show slightly increased r2(TP) for M. musculus and N.
furzeri, and slightly decreased values in H. sapiens.

Differential TE expression

Subsequently, we evaluated the ability to detect expression
changes with DESeq2 based on the tools’ read count tables.
For benchmarking, we used the FDRs and TPRs to analyze the
DETE detection performances (Figure 4A and B; Supplemental
Figure 8). Exact numbers for the recall are given in Supplemental
File 4. In general, we observe that the ranking of the tools in
this exercise is comparable for all genomes, sequencing- and
simulation strategies.

At a fixed FDR of 0.1, SalmonTE∗ achieves the highest TPRs
(0.81 to 0.99) across all data sets. With TPRs from 0.47 to 0.95,
Telescope always takes the second rank. Both tools benefit from
paired-end information. Conversely, TPRs across all data sets for
TEtranscripts∗ (0.26 to 0.43) or TEtools∗ (0.24 to 0.61) are smaller
and results do not substantially improve with paired-end reads.
SQuIRE does not reach TPRs bigger than 0.05 for an FDR of 0.1 in
all species and simulation strategies.

Overall performances are apparently impacted by the
genome quality. Consequently, results in H. sapiens are generally
better compared to M. musculus and N. furzeri. With the exception
of individual performances for paired-end data, the results for
M. musculus are generally better than for the non-model genome
of N. furzeri. Especially Telescope shows a decline in performance
when applied to the killifish transcriptome simulation. Again,
for all species investigated here, SalmonTE∗ outperforms the
other tools (cf. Supplemental Figure 8).

Calculating TPRs for TEs with a Kimura distance <5
(Figure 4B, Supplemental Figure 8), we observe that SalmonTE∗
and Telescope maintain their leading ranks. Again, paired-end
data typically improves the results of both tools. The TPRs of
SalmonTE∗ (0.73 to 0.97) and Telescope (0.70 to 0.98) indicate
their overall suitability for the expression measurement of
young elements in both, model and non-model organisms.

Given that SQuIRE ranks overall second in the quantifica-
tion of TE expression, it is surprising that the tool shows a
comparatively poor performance in the differential expression
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Figure 4. Comparisons of DETE detection performance and expression changes in all FPs of Set 2 versus Set 1 for single-end (left column in respective panel, light-grey)

and paired-end setup (right column, dark-grey). (A, B) DETE detection performance (recovery of TEs simulated as differentially expressed in Set 2 compared to their

expression in Set 1) is visualized as TPR in relation to FDR, shown per tool (lines) for (A) all detected TEs and (B) TEs with Kimura distance <5. The dashed horizontal

lines represent a fixed FDR of 0.1. (C) Expression fold changes of FPs between Set 2 and 1 in contrast to mean read counts across all replicates for each tool (rows).

Data points with a |log(fold change)| < 0.5 were removed for the sake of clarity. DETE – differentially expressed TE; FDR – false discovery rate; FP – false positive; TE

transposable element; TPR – true positive rate.

exercise (TPR of 0.002 to 0.02). This result may be explained by
the combination of a relatively high number of FPs and a stronger
tendency for over-estimation of read counts (Figure 3; Supple-
mental File 3). To investigate the role of FPs in this phenomenon,
we selected all TEs that were simultaneously wrongly detected

in Set 1 and Set 2. This examination revealed populations of
1 571 and 1 518 TEs in the single- and paired-end setups, respec-
tively, with comparably high read counts (mean count >20) and
fold-changes |log(fold change)| >1, Figure 4C). Of these, 97% were
in fact also wrongly detected as differentially expressed. Thus,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab417#supplementary-data
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we reason that the rather large number of FPs in combination
with more pronounced mis-estimations of read counts could
explain this result.

Discussion
While TEs have repeatedly been shown to play a role in patho-
logical and physiological processes [3, 4, 26, 27], little is known
about their expression patterns across different species, tissues
and developmental stages. As the elevated expression of TEs has
been observed during aging, a better understanding of molec-
ular causes and consequences of TE dysregulation could, for
instance, also yield new insights in age-related diseases and
phenotypes [3, 28–30]. The lack of knowledge on TE regulation
may be a consequence of a perceived lack of suitable meth-
ods to investigate the expression of repetitive regions of the
genomes. Analyses on the level of TE families may only reveal
transcriptional variation of single instances or sets of them if
the changes are strong and consistent enough to compensate for
contra-directional expression patterns of other family members.
This may be exceptionally critical for families with multiple
active instances. The most important shortcoming of family-
level strategy, however, is the blindness regarding the precise
genomic context in which the expression occurs. Since it is hard
to imagine that all active instances of a TE family are governed
by the same mechanisms or exert identical effects on cellular
functions, it is critical to investigate TE expression at the level of
single instances.

While achieving this goal is hampered by inherently high
degrees of sequence similarity, technical, and, ultimately, finan-
cial limitations, our study explores to which extent the mea-
surement of locus-specific TE expression is achievable with
existing methods. Notably, three of the tools tested here are
originally designed to work on the family-level only (SalmonTE,
TEtranscripts and TEtools).

Detection of expression

The analysis of repetitive elements is critically obfuscated
by multi-mapping reads and different strategies have been
devised to assign these reads over the years [31]. Two of
the methods tested here, implemented by Telescope and
SalmonTE, involve read-generating models and maximum
likelihood objectives for distributing multi-mapping reads to
candidate loci. Of note, SalmonTE is based on Salmon and
relies entirely on its quasi-read-mapping algorithm. Different
solutions, also involving expectation maximization algorithms
for the assignment of multi-mapping reads, are employed by
SQuIRE and TEtranscripts. TEtools, also intended for use on the
family-level only, omits such a step and assigns multi-mapping
reads randomly to the TE pseudogenome (Table 1).

In general, we observe that the detection of expressed
TEs works better with tools that employ expectation maxi-
mization steps, i.e. SalmonTE∗, Telescope, TEtranscripts∗ and
SQuIRE (Figure 2A). Telescope and TEtranscripts∗ work with
pre-computed alignment files and recommended alignment
parameters are the same for both tools. Even though Telescope
and TEtranscripts∗ were thus called with the very same
alignment files, their performances differed strongly. Thus, it is
safe to assume that these differences are due to post-alignment
calculations rather than the accurate assignment of reads to
a genomic locus by the aligner. Apparently, SQuIRE’s strategy
to assign reads to multiple loci (Supplemental File 1) tends to

increase the number of falsely detected expressed TEs. In turn,
this has negative effects on the F-score statistics.

The analysis of repetitive genomic regions is substantially
influenced by the amount of effective sequence information.
Thus, paired-end setups should facilitate the detection of tran-
scripts from many TEs [32]. In general, SalmonTE∗ is able to
benefit the most from the additional sequence information in
paired-end data. However, the degree to which individual tools
take advantage of the additional sequence information varies
strongly. Surprisingly, in the case of Telescope, paired-end data
led to a drop of performance in detecting expressed TEs in all
genomes and simulation strategies. This phenomenon might in
part be explained by the tool’s filtering strategies. By default,
reads and read-pairs mapping to more than 100 possible loci
are removed. In comparison with single-end, paired-end data
typically reduces the number of multi-mappers such that fewer
reads are removed by this filter [32]. Consequently, a higher num-
ber of read alignments are reported (shown by increased map-
ping rate, Supplemental File 1). On the flip side, the threshold
might also substantially safeguard against misalignments and
could explain the elevated number of FPs for paired-end data.

The Kimura distance [17] of a TE describes the sequence
similarity to its family consensus sequence. Since sequence
similarity plays a crucial role in tool performances, we evalu-
ated the tools for distinct Kimura distances. As expected, we
observe decreasing F-scores for elements with low Kimura dis-
tances (Figure 2B, Supplemental Figure 2), which can be miti-
gated by paired-end sequencing strategies. Naturally, this has
consequences for exact measurement of elements from active
families. Among young elements with a high sequence simi-
larity (Kimura distance <5), LINE instances of M. musculus are
especially difficult to track, as their similarity distribution is
skewed to a Kimura distance of 0 (Supplemental Figure 1). In
contrast to DNA transposons, families of LINE, SINE and LTR
classes are still active in M. musculus [33]. The detection of young
LINE instances appears to be more successful in H. sapiens and
N. furzeri, since in these genomes the distribution of Kimura
distances is not as strongly skewed to 0 indicating a reduced or
less recent LINE activity (Supplemental Figure 1). On the other
hand, all tools perform well for DNA transposons. In the case of
N. furzeri this is a bit surprising, as this organism appears to have
a very high number of young DNA transposons. Here, the cut-
and-paste transposition mechanism of DNA transposons and
rather small family sizes [34] appear to substantially ameliorate
the multi-mapping read problem and its consequences.

While SalmonTE∗ came up as the top runner in most of
our benchmarks, we noted some exceptions. Importantly, it did
not recover the highest number of ‘truly’ expressed TEs (TP).
This might be a drawback in all such cases where maximum
sensitivity is of essence. Furthermore, SalmonTE∗ does not show
the highest r2 values for the count estimation of TP, as the
underestimation of the counts is more pronounced compared
to other tools (Supplementary File 3).

Quantification and detection of differential expression

In light of mounting evidence for the biological relevance of TEs
in health and disease, we evaluated the applicability of the five
methods for differential expression analysis. A critical factor for
the reliable detection of differential expression is the accuracy
of read count estimates. While the majority of the tools show
a systematic bias, i.e. an underestimation, in single- and paired-
end setups, paired data improves estimates on average (Figure 3,
Supplemental Figures 4–7). This result can be expected as the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab417#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab417#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab417#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab417#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab417#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab417#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab417#supplementary-data
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Table 2. Ranking of the tools concerning their performance of detection and quantification of TE expression and detection of differential
expression. TE- transposable element

Tool Detection of TE expression Quantification of TE expression Detection of differential TE
expression

SalmonTE∗ 1 1 1
Telescope 2 4 2
SQuIRE 3 2 5
TEtools∗ 5 3 3
TEtranscripts∗ 4 5 4

number of unaligned or misaligned reads is reduced by addi-
tional paired-end information. Despite the fact that Telescope
yields an increased number of FPs when paired-end data are
used, it is able to substantially improve the read count estimates
for truly expressed TEs, and shows the highest accuracy and
precision (i.e. in M. musculus, Figure 3). The best performance in
terms of detecting DETEs is observed for SalmonTE∗.

On the flip side, SQuIRE’s usability for the detection of DETEs
appears to be limited by the assignment of reads to multiple loci
(Supplemental File 1). Despite the second rank considering the
quantification of TE expression (Table 2), a substantial number
of FPs show such a high difference between Set 1 and Set 2
(Figure 4C) that they are called as DETEs. Consequently, the TPR
for an FDR of 0.1 of SQuIRE lags behind the other evaluated
approaches in this specific exercise.

Simulation

Simulations allow the systematic analysis of computational
methods when the ground truth for actual data is unknown
or difficult to obtain. On the flip side, simulated data cannot
reflect reality in all its facets. For instance, unknown alternative
transcription starts, termination sites, or post-transcriptional
processes leading to RNA degradation lead to specific transcripts
not covered by any annotation. Thus, simulations may not
reach the level of complexity in real data. Also, it is essential
to keep in mind that models and parameters accounting
for phenomena such as GC-biases or sequencing errors are
global approximations. However, for benchmarking alignment
algorithms entirely relying on the sequence information of
reference genomes and individual reads or read-pairs, such
simulations provide indispensable insight into the tools’
capabilities to deal with repetitive sequences.

Conclusion
Within the limits of our simulation study, a tool originally
designed for family-level quantification, SalmonTE, emerges
as the most convincing results. In addition to favorable results
in detecting expressed TEs, SalmonTE∗ results enable a surpris-
ingly high recall of differentially expressed TE transcripts. The
general ranking of the tools regarding DETE detection (Table 2)
based on TPRs for an FDR of 0.1 — SalmonTE∗ performing best,
Telescope second, TEtools∗ third, followed by TEtranscripts∗
and SQuIRE — holds for all sequencing setups and studied
species.

Arguably, the detection, quantification, and differential
expression analysis of transcribed TEs remains one of the
most challenging tasks in genome research. The misplacement
or absence of instances from reference genomes, especially
in the case of active TEs, insufficient read lengths, and high

degrees of sequence similarity often restrain investigations of
this biologically relevant class of RNA. Despite all technical
difficulties, our analysis shows that an accurate and precise
reference mapping of many individual TEs is already possible
and encourages a more intensive research into this direction.

Key Points
• Accurate expression assessment of individual trans-

posable elements is possible and can help to study
their biological role more in detail, here demonstrated
on simulated data.

• RNA-Seq protocols affect the detection of locus spe-
cific TE expression, however, even older protocols, e.g.
single-end, are appropriate to get a comprehensive
overview about individual TE expression.

• Detection of differentially expressed TE instances can
be achieved with existing methods, partially with
slight modifications.
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