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Ultrasound radiomics model-
based nomogram for predicting
the risk Stratification of
gastrointestinal stromal tumors

Minling Zhuo †, Jingjing Guo †, Yi Tang, Xiubin Tang,
Qingfu Qian and Zhikui Chen*

Department of Ultrasound, Fujian Medical University Affiliated Union Hospital, Fuzhou, China
This study aimed to develop and evaluate a nomogram based on an ultrasound

radiomics model to predict the risk grade of gastrointestinal stromal tumors (GISTs).

216 GIST patients pathologically diagnosed between December 2016 and

December 2021 were reviewed and divided into a training cohort (n = 163) and a

validation cohort (n = 53) in a ratio of 3:1. The tumor region of interest was depicted

oneach patient’s ultrasound image using ITK-SNAP, and the radiomics featureswere

extracted. By filtering unstable features and using Spearman’s correlation analysis,

and the least absolute shrinkage and selection operator algorithm, a radiomics score

was derived to predict themalignant potential of GISTs. a radiomics nomogram that

combines the radiomics score and clinical ultrasound predictors was constructed

and assessed in terms of calibration, discrimination, and clinical usefulness.

The radiomics score from ultrasound images was significantly associated with the

malignant potential of GISTs. The radiomics nomogram was superior to the clinical

ultrasound nomogram and the radiomics score, and it achieved an AUC of 0.90 in

the validation cohort. Basedon thedecision curve analysis, the radiomics nomogram

was found to be more clinically significant and useful. A nomogram consisting of

radiomics score and the maximum tumor diameter demonstrated the highest

accuracy in the prediction of risk grade in GISTs. The outcomes of our study

provide vital insights for important preoperative clinical decisions.

KEYWORDS

gastrointestinal stromal tumors, radiomics, ultrasound, risk grade, model, nomogram
Introduction

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal-

derived tumors of the gastrointestinal tract, with diverse biological behaviors (1, 2).

Preoperative prediction of the malignant potential of GISTs is of great significance for

clinical treatment and prognostic prediction (3, 4). However, the preoperative assessment
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of the risk grading of gastrointestinal stromal tumors is difficult

because of the difficulty in calculating mitotic counts

preoperatively. Therefore, the research on identifying a

preoperative diagnostic method that is reproducible and can

objectively predict the risk grading of GISTs has recently

attracted significant attention in in recent years.

The transabdominal ultrasonography, especially medium-

and high-frequency ultrasonography, can clearly display the

layers of the gastrointestinal wall. It can be easily operated and

can be dynamically observed repeatedly. The transabdominal

gastrointestinal ultrasonography is a commonly used method in

preoperative imaging examination of GIST. Although

transabdominal ultrasonography can directly evaluate the

tumor size, location, shape, boundary, echo homogeneity, and

blood flow signals, which is of great value for tumor detection, as

well as the localization and diagnosis, this method was easily

affected by examiner’s subjective vision and diagnostic

experience. Thus, because of tumor heterogeneity, these

subjective assessments have relatively low accuracy and

repeatability (5, 6).With the development of artificial

intelligence, radiomics prediction models have gained

attention in cancer diagnosis (7–10). Radiomics can extract

inaccessible feature data from medical images with a high-

throughput and has great application prospects in predicting

the biological behavior of tumors (11, 12).

In recent years, some studies have explored the value of

radiomics based on computed tomography or magnetic

resonance imaging to predict the malignant potential of GISTs

(13, 14); however, the application value of ultrasound has not

been reported. In this study, accessible and universal ultrasound

images were selected as the basic imaging data, and the internal

characteristic information of the tumors was extracted. In order

to integrate radiomics features, clinical factors, and conventional

ultrasound features to adequately evaluate and effectively

support preoperative clinical management, we aimed to

construct a radiomics nomogram to predict the risk grade of

GISTs in this study.
Materials and methods

Study population

This retrospective study was approved by the ethics

committee of Fujian Medical University Affiliated Union

Hospital. The signed informed consent forms were waived.

From December 2016 and December 2021, 368 GIST patients

histologically confirmed at our institution were retrospectively

recruited. The inclusion criteria were as follows: 1) the diagnosis

of GISTs was confirmed by postoperative pathology, 2) the

patients performed ultrasonic examination within 15 days

before operation, and 3) the ultrasound image clearly showed

the target lesion. The excluding standards were as follows: 1)
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patient received other preoperative treatment such as imatinib or

other tyrosine kinase inhibitors and 2) incomplete ultrasound

and clinical data. In this study, 216 patients were enrolled (126

men and 90 women; mean age 60 ± 11 years; range 28–86 years)

(Figure 1). Patients were divided into a training cohort (n = 163;

95 men and 68 women; mean age 60 ± 12 years) and validation

cohort (n = 53; 31 men and 22 women; mean age 59 ± 11 years)

after simple randomization at a ratio of 3:1. According to the

pathological results and the National Institutes of Health

modified criteria, patients in this study were divided into low-

malignant potential (very low to low risk) and high-malignant

potential (intermediate to high risk) groups.
Clinical characteristics

Preoperative demographic and clinicopathological data of

the 216 GIST patients were collected, including age, gender,

height, weight, tumor location (stomach or extragastric), and

tumor size (maximum diameter). In addition, this study

collected postoperative data, including the risk of NIH

stratification and growth patterns.
Radiomics analysis process

Research on radiomics mainly includes the following steps:

tumor segmentation, image processing and feature extraction,

feature selection, modeling, and evaluation (Figure 2). In the

training cohort, we combined different dimension reduction

technologies to establish radiomics models. Finally, the

internal validation cohort was used to evaluate the

generalization performance of the model.
Ultrasound image acquisition and tumor
image segmentation

Color doppler ultrasonic diagnostic apparatus from Toshiba

Aplio 500, Supersonic Aixplorer, and PHILIPS EPIQ5 was used.

Transabdominal ultrasound was performed using a convex array

probe and a line array probe. We conducted a retrospective

review of the image data and selected two-dimensional (2D)

ultrasound images in digital imaging and communications in

medicine (DICOM) format that scanned by convex array probe,

which clearly showed the largest cross-section of each lesion.

The tumor location(gastric or extra-gastric),internal echo

(hypoecho or isoecho), echo homogeneity (homogeneous or

inhomogeneous), boundary (clear or unclear), shape (regular

or irregular), blood flow signals of the lesion (according to the

Alder blood flow classification, where grades 0 and 1 were

merged as low blood supply, and grades 2 and 3 were merged

as multiple blood supply), presence of necrotic cystic
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https://doi.org/10.3389/fonc.2022.905036
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhuo et al. 10.3389/fonc.2022.905036
B C D E

A

FIGURE 2

Five steps of radiomics research: (A) ultrasound imaging and tumor segmentation, (B) image processing and feature extraction, (C) feature
selection, (D) modeling, and (E) performance of models.
FIGURE 1

Flowchart of inclusion and exclusion of the study population.
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degeneration (necrotic areas were diagnosed from sharply

demarcated anechoic areas), and maximum lesion diameter

(≤5.0 cm or >5.0 cm) were recorded in detail.

In this study, the tumor outline at the largest cross-sectional

area was manually drawn to indicate the region of interest (ROI)

along the tumor margin using a free open-source software

package (ITK-SNAP, version 3.8.0, University of Pennsylvania,

Philadelphia, USA).
Evaluation of radiomics
feature reproducibility

To assess interobserver reliability and intraobserver

reproducibility, 30 cases were chosen randomly from the

training cohort for ROI delineation and ROI-based feature

extraction by two experienced radiologists (radiologist 1 with

an experience of 10 years and radiologist 2 with 5 years’

experience). Interclass and intraclass correlation coefficients

(ICCs) were used to evaluate the agreement of feature

extraction. The intraobserver ICC was calculated based on two

feature extractions by radiologist 1. The interobserver ICC was

calculated based on the features extracted first by radiologist 1

and subsequently by radiologist 2. All radiologists were blinded

to the pathology results. There was good agreement when the

ICC was greater than 0.75, and features were retained with good

repeatability (15).
Radiomics feature extraction and
data preprocessing

Because the ultrasound images were collected using three

different ultrasound instruments and the feature vectors had a

wide range, to eliminate the variance caused by different scanner

acquisitions, avoid anisotropic resolution, and improve the

reproducibility, we preprocessed the image before feature

extraction with the open-source Pyradiomics package (version

2.12; https://pyradiomics.readthedocs.io/en/2.1.2/). Images were

normalized by centering to the mean standard deviation,

resampled to a voxel size using B-Spline interpolation,and

gray-level discretized by a fixed bin width of 5 in the histogram.

The radiomics features of the ROI were extracted using the

“PyRadiomics” package in Python. The extracted

radiomics features were divided into three categories: 2D

shape-based features, first-order statistical features, and

structural texture features. The structural texture features

include five grayscale matrices: gray-level co-occurrence matrix

(GLCM), gray-level run-length matrix (GLRLM), gray-level

size-zone matrix (GLSZM), gray-level dependence matrix

(GLDM), and features of neighborhood gray-tone difference

matrix (NGTDM). Furthermore, to extract high-dimensional

features from different frequency scales, eight imaging filters
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were applied to the raw images: wavelet, square, square root,

logarithmic, exponential, gradient, LoG, and local binary pattern

(LBP). Finally, 765 quantitative radiomics features were

extracted for each patient.

Z-score normalization was used to convert different data to

the same order of magnitude, and the calculation formula was as

follows: y=(x-u)/s, where µ is the mean and s is the standard

deviation. Following the Z-score normalization, the data

comparability was improved, demonstrating enhanced

robustness for subsequent model building.
Construction of clinical ultrasound
nomogram, calculation of the radiomics
score (Rad-Score), and construction of
radiomics nomogram

Univariate logistic regression was used to screen statistically

significant predictors, and multivariate logistic analysis was

subsequently performed for the factors that were determined

to be statistically significant. The final model was selected by

backward stepwise elimination with Akaike information criteria

as the stopping rule and a clinical ultrasound nomogram was

constructed (16).

The R software (version 4.0.2) was used for feature

dimensionality reduction and construction of the radiomics

score (Rad-Score). We followed a three-step procedure to

identify robust radiomics features: (1) Feature reproducibility

assessment using ICCs was established, and features with high

stability (intraclass correlation coefficient >0.75) were retained

for further analysis. (2) The high-stability radiomics features

were subjected to Spearman’s correlation analysis, with a

correlation coefficient threshold of 0.75 (17). (3) We used the

least absolute shrinkage and selection operator (LASSO)

algorithm, with penalty parameter tuning conducted by 10-

fold cross-validation, to select a suitable number of non–zero-

weighted features. Rad-Score was calculated for each patient as a

linear combination of selected features weighted by the

respective nonzero coefficients.

The Rad-Score, combined with clinical and ultrasound

factors, was incorporated into multivariate logistic regression

to construct a radiomics nomogram.
Predictive performance and validation of
clinical ultrasound nomogram, Rad-
Score and radiomics nomogram

All models were validated using an internal validation

cohort. The prediction performances of the clinical ultrasound

nomogram, the Rad-Score and radiomics nomogram were

evaluated by the area under the receiver operating

characteristic curve (AUC) for both the training and internal
frontiersin.org
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validation cohorts, and accuracy, sensitivity, specificity, negative

predictive value (NPV), and positive predictive value (PPV) were

calculated. A calibration curve was plotted to assess the

calibration of the nomogram using the Hosmer-Lemeshow

goodness-of-fit test. P>0.05 indicated insignificant deviation

from the theoretical perfect calibration. The clinical

application value of the nomogram was determined through

decision curve analysis (DCA) by quantifying the net benefit to

the patient under different threshold probabilities.
Statistical analysis

All data were analyzed using the SPSS Statistics software

version 23.0 (IBM, Armonk, NY, USA) and R software version

4.0.2 (http://www.Rproject.org).

An independent t-test was applicable to the continuous

variables between groups, while a x2 test was used for the

classification variables between groups. P<0.05 was considered

a statistically significant difference.
Frontiers in Oncology 05
Results

Characteristics of the study cohorts

In this study, 216 GIST patients, comprising 98 with low-

malignant potential and 118 with high-malignant potential, were

enrolled. There were no significant differences in the distribution

of clinical, ultrasound, and radiomics features between the low-

malignant and high-malignant potential groups in the training

and validation cohorts (P>0.05) (Table 1). These results

demonstrate the rationality of our training and validation

cohort partitions.
Establishment and evaluation of clinical
ultrasound nomogram

Univariate analysis of clinical and ultrasound parameters

showed that there were no statistically significant differences in

age, gender, BMI, internal echo, or growth pattern between low-
TABLE 1 Baseline Patient Characteristics.

Characteristics Training cohort (n = 163) Validation cohort (n = 53) P- value

Patient demographics

Sex Male 95 (58.3) 31 (58.5) 0.979

Female 68 (41.7) 22 (41.5)

Age(mean ± SD) 60 ± 12 59 ± 11 0.458

BMI(mean ± SD) 23.2 ± 3.1 23.0 ± 3.4 0.787

Ultrasound features

Tumor location Gastric 116 (71.2) 35 (66.0) 0.480

Extra-gastric 47 (28.8) 18 (34.0)

Maximum diameter ≤5.0cm 86 (52.8) 28 (52.8) 0.993

>5.0cm 77 (47.2) 25 (47.2)

The internal echo Hypoecho 152 (93.3) 51 (96.2) 0.429

Isoecho 11 (6.7) 2 (3.8)

Echo homogeneity Homogenerouse 71 (43.6) 23 (43.4) 0.984

Inhomogenerouse 92 (56.4) 30 (56.6)

Boundary Clear 147 (90.2) 41 (77.4) 0.160

Unclear 16 (9.8) 12 (22.6)

Shape Regular 77 (47.2) 25 (47.2) 1.0

Irregular 86 (52.8) 28 (52.8)

Necrotic cystic degeneration Positive 66 (40.5) 20 (37.7) 0.722

Negative 97 (59.5) 33 (62.3)

Blood flow signals Low blood supply 121 (74.2) 39 (73.6) 0.925

Multiple blood supply 42 (25.8) 14 (26.4)

Growth pattern Endoluminal 82 (50.3) 28 (52.8) 0.750

Exophytic 81 (49.7) 25 (47.2)

Radiomics score* 0.51 (-0.77 to 1.12) 0.35 (-0.87 to 1.11) 0.612
fron
Except where indicated, data are numbers of patients, with percentages in parentheses.
SD: standard deviation.
*Data are presented as medians with interquartile ranges in parentheses.
P<0.05 indicates that the difference is statistically significant.
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malignant and high-malignant potential groups (P>0.05).

However, maximum diameter, tumor location, echo

homogeneity, boundary, shape, necrotic cystic degeneration,

and blood flow signals were statistically different (P<0.05).

These significant clinical and ultrasound features in the

univariate analysis were included in the multivariate logistic

regression to build a clinical ultrasound nomogram (Figure 7).

Multivariate logistic regression analysis showed that the

maximum tumor diameter (≤5.0 cm, >5 cm) and echo

homogeneity (both P< 0.05) were independent predictors of

GIST risk, as shown in Table 2. The GIST risk prediction results

are listed in Table 5. The AUC for the clinical ultrasound

nomogram was 0.86 in the training cohort and 0.83 in the

validation cohort (Figure 8).
Frontiers in Oncology 06
Feature selection and radiomics
score building

765 radiomics features were extracted. Using an ICC of 0.75

(for both intra and inter) as a cut-off for determining good

reproducibility, 612 radiomics features with good reproducibility

were selected for the subsequent assessment. After applying

Spearman’s correlation analysis (Figure 3), 68 features

remained. Finally, the LASSO algorithm (Figure 4) with cross-

validation was performed, and 16 radiomics features were used

to develop the Rad-Score. The 16 selected radiomics features and

the distribution of the corresponding risk coefficients are

presented in Table 3. The Rad-Score was calculated using the

following formula (18):
TABLE 2 Positive clinical and ultrasound factors of multivariate logistic regression analysis for GISTs.

Clinical and ultrasound factors b OR (95%CI) P-value

Intercept -2.48

Maximum diameter 2.59 13.34 (6.03-31.59) 0.000

Echo homogeneity 1.01 2.73 (1.23-6.12) 0.000
front
95%CI, 95% confidence interval; OR, Odds ratio.
FIGURE 3

The heat-map displays the correlation between radiomics features in the training cohort.
iersin.org
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Radiomics score =o
n

i=1
Coefi � ci

where Coefi is the risk coefficient of each feature calculated by the

LASSO model, and ci is the expression value of each feature,

which refers to the 16 selected radiomics features in the present

study. The cross-correlation matrices (Figure 5) showed that

there were multiple complex cross-correlations among the 16

radiomics features, and Rad-Score indicated favorable prediction

for discriminating the risk stratification of GIST (Figure 6).
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There was a significant difference in Rad-Score between the low-

malignant and high-malignant potential groups in both the

training cohort (−0.696 VS 0.983, P< 0.0001) and the

validation cohort (−0.650 vs. 0.952, P< 0.0001).

The prediction performance for discriminating the risk

stratification of GIST of the Rad-score (AUC, 0.90 in the

training cohort and 0.83 in the validation cohort) was not

remarkable difference that of clinical ultrasound nomogram in

the training cohort (p=0.193) and validation cohort (p =

0.947) (Table 5).
BA

FIGURE 4

Feature selection using the LASSO binary logistic regression model. (A) LASSO coefficient profiles, displaying 68 features. A coefficient profile
plot was produced against the log (lambda) sequence. Each colored line represents the coefficient of an individual feature. A vertical line is
drawn at the selected l, where 16 features had nonzero coefficients. (B) Tuning parameter (log lambda) selection in the LASSO model used ten-
fold cross-validation via minimum criteria. Vertical dotted lines are drawn at the selected l values, corresponding to the chosen 16 variables that
better fit the models.
TABLE 3 Radiomics features and their coefficients that were included in the final assessment of GIST risk.

parameter Coefficient

Feature1 original_shape2D_Sphericity -0.37

Feature2 gradient_glcm_Imc1 0.30

Feature3 logarithm_ngtdm_Strength -0.29

Feature4 square_glcm_Imc1 -0.23

Feature5 square_glrlm_ShortRunLowGrayLevelEmphasis 0.25

Feature6 squareroot_glcm_ClusterShade -0.25

Feature7 wavelet.LH_glcm_ClusterShade -0.04

Feature8 wavelet.LH_glcm_Correlation -0.26

Feature9 wavelet.LH_glcm_MCC -0.04

Feature10 wavelet.LH_gldm_DependenceVariance -0.01

Feature11 wavelet.LH_glszm_ZoneEntropy 0.29

Feature12 wavelet.HL_firstorder_Kurtosis -0.06

Feature13 wavelet.HL_firstorder_Mean -0.32

Feature14 wavelet.HL_glcm_Imc2 -0.08

Feature15 wavelet.HL_glcm_MCC -0.10

Feature16 wavelet.HL_gldm_SmallDependenceEmphasis -0.85
f
rontiersin.org

https://doi.org/10.3389/fonc.2022.905036
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhuo et al. 10.3389/fonc.2022.905036
Development and validation of the
radiomics nomogram

According to the results of the multivariate logistic

regression analysis (Table 4), a radiomics nomogram was

generated by combining clinical ultrasound features and Rad-

Score (Figure 7). The AUCs of the radiomics nomogram for

predicting the GIST risk were 0.92 and 0.90 (training and

validation cohorts, respectively), and its predictive accuracy

was higher than that of the clinical ultrasound nomogram

(P = 0.011)or the Rad-score (P = 0.018)in the validation
Frontiers in Oncology 08
cohort(Table 5, Figure 8). Of the 114 tumors smaller than 5

cm, six were underestimated by the clinical ultrasound

nomogram, and 3 of the 102 tumors larger than 5 cm were

overestimated by the clinical ultrasound nomogram, but these

were correctly assessed by the radiomics nomogram. The

radiomics nomogram calibration curves showed good

calibration (Figure 7), and the Hosmer-Lemeshow test

statistics were not significant in either the training or internal

validation cohorts, indicating that the radiomics nomogram

provided a higher net benefit than the clinical ultrasound

nomogram or the Rad-score within a reasonable threshold
FIGURE 5

Cross-correlation matrix of features used to establish radiomics signatures. The depth of color indicates the intensity of the correlation between
covariates. A cross indicates irrelevant. Blue represents positive correlations, and red represents negative correlations.
BA

FIGURE 6

Rad-Score distribution of the 216 patients for (A) the training cohort and (B) validation cohort. The low-malignant potential group is colored
blue (0), and the high-risk group is colored yellow (1).
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probability range for predicting the malignant potential of

GISTs (Figure 9).
Discussion

As a rapidly developing discipline, radiomics is being

increasingly used for clinical applications. Radiomics can

extract feature data from digital medical images in a high-

throughput manner, and this data can be quantitatively
TABLE 4 Variables and coefficients of the radiomics nomogram by
multivariate logistic regression analysis.

Variable b OR (95%CI) P-value

Intercept -0.90

Maximum diameter 1.88 6.57(2.54-18.0) 0.000

The Rad-Score 1.49 4.43(2.68-8.21) 0.000
95% CI, 95% confidence interval; OR, Odds ratio.
B

C

D

E

A

F

FIGURE 7

Clinical ultrasound nomogram and radiomics nomogram. (A) Nomogram of clinical ultrasound model. (B) Calibration curve of clinical
ultrasound nomogram in training cohort. (C) Calibration curve of clinical ultrasound nomogram in validation cohort. (D) Nomogram of
radiomics model. (E) Calibration curve of radiomics nomogram in training cohort. (F) Calibration curve of radiomics nomogram in
validation cohort.
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https://doi.org/10.3389/fonc.2022.905036
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhuo et al. 10.3389/fonc.2022.905036
analyzed for the transformation of conventional clinical data

into mineable high-dimensional quantitative feature data. In this

study, radiomics features were combined with clinical and

ultrasound image features to establish a radiomics-based

nomogram for predicting the malignant potential of GISTs.

Our results confirm that the radiomics nomogram has greater

predictive power than the clinical ultrasound nomogram or the

Rad-score for the malignant potential of GISTs and can guide

clinical decision-making before surgery noninvasively

and effectively.

According to previous studies, clinical and ultrasound

features can help sonographers intuitively diagnose and

predict the risk of GISTs (19, 20). Ultrasound imaging features

mainly include the location, size, shape, growth pattern, internal

echo, and cystic necrosis of the lesion (21). In this study, 12

variables of clinical and ultrasound signs were collected, and a

clinical ultrasound model was established through univariate

and multivariate logistic regression. Finally, two variables—

tumor size and tumor echo homogeneity— were incorporated

into the model, and a nomogram of the clinical ultrasound

model was drawn. Tumor size is an important factor in

evaluating the malignant potential and prognosis of GISTs. It

is listed as a risk stratification index by the NIH grading system.

The larger the tumor size, the higher the risk of infiltration
Frontiers in Oncology 10
(22–24). Nevertheless, evaluating the malignancy of GISTs based

on tumor size alone is insufficient. According to the NIH

standards, the risk grade of GISTs is not only related to tumor

size, but also to the mitotic index, tumor location, and whether

or not the tumor is ruptured. Some small GISTs that are located

in the intestine and possess high mitotic counts may be

aggressive and have poor prognosis.

Echo homogeneity of GISTs is also an independent predictor

of clinical ultrasound nomograms for evaluating the biological

behavior of GISTs, which may be related to the fact that with

increasing tumor malignancy, cystic degeneration and necrosis

are more likely to occur inside the mass when the rate of

differentiation and proliferation of tumor cells far exceeds the

rate of proliferation of blood vessels (25, 26).

In ultrasonography, cystic degeneration and necrosis appear

as an intratumoral inhomogeneous echogenicity. Previous

studies (27–30) have shown that the presence of cystic

degeneration and necrosis in the mass can be used as reliable

indicators for GISTs malignancy evaluation, which is consistent

with the results of our study. In this study, the AUC of the

clinical ultrasound nomogram for predicting the malignant

potential of GISTs was 0.86 in the training cohort and only

0.83 in the validation cohort. Although tumor size and echo

homogeneity are important variables for predicting the risk
TABLE 5 Predictive performance of the radiomics nomogram compared with clinical ultrasound nomogram and the rad-score.

Model AUC Accuracy Sensitivity Specificity PPV NPV

Clinical ultrasound nomogram training cohort 0.86 0.80 0.75 0.86 0.86 0.74

validation cohort 0.83 0.83 0.88 0.79 0.84 0.82

The Rad-Score training cohort 0.90 0.83 0.87 0.79 0.83 0.86

validation cohort 0.83 0.79 0.90 0.57 0.74 0.81

radiomic nomogram training cohort 0.92 0.84 0.84 0.85 0.87 0.81

validation cohort 0.90 0.88 0.89 0.87 0.90 0.88
frontiers
AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value.
BA

FIGURE 8

ROC curves of the clinical ultrasound nomogram,the Rad-Score and radiomics nomogram for predicting malignancy potential of GISTs in the
(A) training cohort and (B) validation cohort. AUC, area under the receiver operating characteristic curve; GIST, gastrointestinal stromal tumor.
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stratification of GISTs, they cannot fully reflect the inherent

heterogeneity of GISTs and are easily affected by subjective

factors and the professional level of sonographers.

Radiomics features extracted from ultrasound images can

assess intratumor heterogeneity by quantifying tumor

morphology, intensity, and texture features (31, 32), which

could more effectively and objectively predict the malignant

potential of GIST preoperatively. In this study, 765 radiomics

features were extracted from ultrasound images using

pyradiomics software. There was serious multicollinearity

among the feature parameters. Features were extracted by the

Spearman and LASSO algorithm methods to reduce overfitting.

As a new feature selection method, Spearman and Lasso can

achieve less redundancy and obtain more reliable radiomics

features. The selected 16 radiomics features included one 2D

shape-based feature, two first-order statistical features, and 13

texture features. These radiomics features represent an

assessment of tumor shape and tumor heterogeneity (33).

Sphericity (measured as the shape of the ROI) is the ratio of

the perimeter of the tumor region to the perimeter of a circle

with the same surface area as the tumor region, which is

correlated with the biological risk of GISTs. The first-order

statistical features indicate that the image texture is disordered

and complex, containing more information, and the pixel

distribution is more random. High-order texture features

reflect comprehensive information, such as space and distance,

which can supplement the deficiencies of first-order statistical

features (34). The radiomics features screened from GIST lesions

in this study were significantly positively correlated with risk

stratification (Figure 7), which indicates that high-malignant

potential tumors have complex internal textures and random

distributions. This hypothesis may be because of the fact that
Frontiers in Oncology 11
high-malignant potential tumors are usually large, fast-growing,

have insufficient blood supply to the central tissue, and are more

prone to necrosis, rupture, and hemorrhage. Therefore, in our

study, the Rad-Score based on multiple features was an

important factor for assessing information regarding

tumor heterogeneity.

When the Rad-Score was combined with clinical and

ultrasound factors to incorporate multiple logistic regression,

the results demonstrated that the tumor size and Rad-Score are

independent predictors of the malignant potential of GISTs,

thereby constructing a radiomics nomogram. Radiomics can

quantitatively analyze the image characteristics and more

accurately reflect tissue heterogeneity. The radiomics

nomogram showed higher predictive performance (training

cohort AUC: 0.92; validation cohort: 0.90) than the clinical

ultrasound nomogram or the Rad-Score. In our retrospective

data, 6 cases of high-malignant potential with tumor size less

than 5 cm were accurately diagnosed using the radiomics

nomogram, but they were underestimated by the clinical

ultrasound nomogram. This suggests that our radiomics

nomogram has better predictive performance in some cases

with small tumor size. When the tumor size was larger than 5

cm, the total number of misclassifications in the clinical

ultrasound nomogram remained higher than that in the

radiomics nomogram. Therefore, the use of nomograms to

further integrate radiomics features with these subjective

clinical and ultrasound image features can lead to better

diagnostic performance with good calibration. In this study, a

radiomics-based nomogram provided a more accurate and

personalized prediction for preoperative risk assessment of

patients with GISTs by combining clinical and ultrasound risk

factors. Additionally, the decision curves showed that the
FIGURE 9

Decision curve analysis for clinical ultrasound nomogram,the Rad-Score and radiomics model nomogram.
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radiomics nomogram was superior to the clinical ultrasound

nomogram or the Rad-Score in terms of clinical validity, which

confirmed the potential of the radiomics nomogram for broader

clinical applications.

This study developed the first radiomics model based on 2D

transabdominal ultrasound images to predict the risk

stratification of GISTs. However, this study has some

limitations. First, all data were obtained from a single center,

and a multicenter study must be designed for further evaluation

and validation. Second, this was a retrospective study, and

selective bias could not be completely avoided. Third, we did

not compare the feature extraction and dimensionality reduction

algorithms, and the final feature selection may not be optimal,

which may affect the predictive performance of the model.
Conclusion

As a noninvasive, non-radiation, and objective method, a

radiomics nomogram based on radiomics features from 2D

ultrasound and maximum tumor diameter was constructed for

predicting malignant potential in GISTs, which could provide

supplementary information for the prognostic evaluation of

GISTs and guide patients to select the best treatment method

minimizing their medical burden.
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