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Simple Summary: Bowen’s disease (malignant) and seborrheic keratosis (benign) are frequent
cutaneous neoplasms. Our study assessed the potential of artificial intelligence to distinguish these
entities histologically. A dermatopathologist trained deep learning network diagnosed Bowen’s
disease and seborrheic keratosis with AUCs of 0.9858 and 0.9764 and sensitivities of 0.9511 and 0.9394,
respectively. The algorithm proved robust to slides prepared in three different labs and two different
scanner models. Nevertheless, challenges, such as distinguishing irritated seborrheic keratosis from
Bowen’s disease remained. We believe our findings demonstrate that deep learning algorithms can
aid in clinical routine; however, results should be confirmed by qualified histopathologists.

Abstract: Background: Some of the most common cutaneous neoplasms are Bowen’s disease and
seborrheic keratosis, a malignant and a benign proliferation, respectively. These entities represent a
significant fraction of a dermatopathologists’ workload, and in some cases, histological differentiation
may be challenging. The potential of deep learning networks to distinguish these diseases is assessed.
Methods: In total, 1935 whole-slide images from three institutions were scanned on two different
slide scanners. A U-Net-based segmentation deep learning algorithm was trained on data from
one of the centers to differentiate Bowen’s disease, seborrheic keratosis, and normal tissue, learning
from annotations performed by dermatopathologists. Optimal thresholds for the class distinction
of diagnoses were extracted and assessed on a test set with data from all three institutions. Results:
We aimed to diagnose Bowen’s diseases with the highest sensitivity. A good performance was
observed across all three centers, underlining the model’s robustness. In one of the centers, the
distinction between Bowen’s disease and all other diagnoses was achieved with an AUC of 0.9858
and a sensitivity of 0.9511. Seborrheic keratosis was detected with an AUC of 0.9764 and a sensitivity
of 0.9394. Nevertheless, distinguishing irritated seborrheic keratosis from Bowen’s disease remained
challenging. Conclusions: Bowen’s disease and seborrheic keratosis could be correctly identified by
the evaluated deep learning model on test sets from three different centers, two of which were not
involved in training, and AUC scores > 0.97 were obtained. The method proved robust to changes in
the staining solution and scanner model. We believe this demonstrates that deep learning algorithms
can aid in clinical routine; however, the results should be confirmed by qualified histopathologists.
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1. Introduction

Seborrheic keratosis (SK) is among the most common benign epithelial lesions affecting
the majority of patients older than 60 years [1,2]. SK may present as papules, macules, or
plaques and vary in color from tan to black with a verrucous, “stuck-on” appearance. Addi-
tionally, SK may show exophytic or hyperplastic growth [2–4]. Due to their high variability
in clinical and dermatoscopic presentation, SKs are frequently excised to exclude malignant
cutaneous tumors [5]. Bowen’s disease (BD) is a cutaneous squamous cell carcinoma in situ
and one of the most frequent malignant tumors worldwide. The clinical appearance ranges
from slow-growing, persistent reddish-brown patches to slightly raised plaques of dry skin.
Based on unique histopathological characteristics regarding the absence or presence of
crowded nuclei, suprabasal mitoses, necrotic keratinocytes, or parakeratosis housing plump
nuclei, the majority of SK and BD can be differentiated easily by histopathological analysis.
However, due to the broad spectrum of morphological manifestations in both entities,
histopathological differentiation may be challenging in a number of cases. Factors such as
leukocytic infiltration or morphological alteration of tumor cells as a result of inflammation
can make a histological distinction between these entities difficult. Additionally, benign
clonal cell proliferations can be present in SK, resembling BD. Aside from histological
similarities, small biopsies with limited amounts of tissue being available for analysis can
further impede the reliable histological differentiation of SK and BD [6–8]. Correctly distin-
guishing these lesions is, however, essential, as therapeutical approaches differ. Complete
treatment of malignant tumors such as BD is mandatory as those will continue to grow and
may evolve into invasive neoplasms with significant morbidity, potentially even mortality.
In contrast, the treatment of SK is primarily for aesthetic purposes [6]. An inappropriate
diagnosis may thus result in overtreatment or undertreatment, both having potentially
serious long-term unnecessary effects for affected patients.

Despite increasing numbers of malignant and benign tumors, the number of der-
matopathologists is decreasing. In recent years, artificial intelligence (AI) has been imple-
mented in different disciplines of medicine. AI appears to have the potential to improve
and accelerate diagnostic work-flows and may thus defuse the problem of a continuous
shortage of dermatopathologists. Deep learning algorithms and convolutional neural
networks (CNNs) for object detection and segmentation have rapidly been utilized in
dermatology for the classification of dermoscopic images [9,10], to differentiate various
benign and malignant cutaneous lesions.

The digitization of entire histology glass slides to obtain whole-slide images (WSIs)
is now being adopted across the world in pathology labs. This has also enabled the
development of AI methods for histopathology. One of the main challenges is the size of the
WSI (approximately 40,000 px × 20,000 px at a 20× level of magnification) in comparison
to dermoscopic images (sizes vary from 300 px × 300 px up to 1000 px × 1000 px). Another
challenge is the variation of slide staining protocols across laboratories, which might affect
the robustness of the models.

In the present study, we implement and evaluate a U-Net-based [11] segmentation
algorithm to differentiate SK from BD on WSIs obtained from three different centers. Our
algorithm produces a detailed segmentation map of the WSIs, where the pathologists can
directly see which parts of the tissue (at the pixel level) are identified as one diagnosis or
another. The algorithm is meant to support the dermatopathologists in their daily routine
by providing an initial diagnostic suggestion and additional information.
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Related Methods

In histopathology, networks based on the U-Net architecture have gained popularity.
Numerous working groups obtained impressive results on the CAMELYON challenge [12]
for detecting breast cancer metastasis in lymph nodes by using such architectures [13,14].
Li and Lu [15] proposed a model for rapid detection and refined segmentation of breast
cancer regions applying a ResNet101 [16] or MobileNetV2 [17] base, followed by a U-
Net architecture to refine the segmentation. Another architecture called HookNet [18]
combines context and details via multiple branches of encoder–decoder convolutional
neural networks. Other, simpler architectures have also obtained promising results [19,20].

In dermatopathology, deep learning approaches have been applied for the segmenta-
tion of both melanocytic [21] and non-melanoma lesions, including basal cell carcinoma
(BCC) [22]. A U-Net architecture automatically segmenting the epidermis in histological
images has also been implemented [23]. Olsen et al. [20] applied a deep-learning-based
segmentation method based on the VGG architecture to differentiate three common diag-
noses: nodular BCC, SK, and dermal nevus. Ianni et al. [24] trained a model differentiating
four groups of lesions: melanocytic, basaloid, squamous, and “other”. Evaluating the
model with data from three different laboratories not used for training, a 78% accuracy
was achieved. A two-stage AI-based system for the automatic multi-class grading of oral
squamous cell carcinoma and for the segmentation of the epithelial and stromal tissue has
also been presented [25].

Despite those numerous studies, significant challenges remain to transfer AI from
research into clinical practice [26]. In this work, we present a deep learning solution to
differentiate some of the most common diagnoses in dermatopathology: BD and SK. To
the best of our knowledge, no work has yet investigated the automatic identification and
segmentation of BD, nor its differentiation from SK. These are two of the most common
diagnoses seen in the daily clinical routine, and their distinction can on occasion be chal-
lenging for dermatopathologists. They are both intra-epidermal (in situ) lesions that can
exhibit similar patterns. Our system can assess the WSI and report if it detects any BD or
SK lesion at all. This can be very useful to assist the dermatopathologist in the assessment
of resection margins. Other works in the literature [20,24,25] mainly focus on analyzing
WSIs that contain some lesion, and the task is to classify it into 1–4 classes.

2. Materials and Methods
2.1. Ethics Approval

The study was performed in accordance with the approval of the ethics committee of
the University of Duisburg-Essen (IRB-Number 20–9196-BO).

2.2. Dataset Creation

SK and BD included in the study were samples from the MVZ Dermatopathologie
Duisburg Essen GmbH, Essen (Center 0), University Hospital Essen, Department of Derma-
tology (Center 1), and Dermatopathologie bei Mainz (Center 2). Samples were excised for
histopathological analysis during daily routine clinical work, and slides with tissue were
processed according to standard staining protocols. The cases represented a mix of biopsies,
partial tumor excisions, and complete excisions. Biopsies were either spindle-excision,
punch, or curettage. Based on the diagnosis given during the clinical routine, the diagnosis
of SK or BD was reevaluated by at least one board-certified dermatopathologist. Training
slides were selected for cases with unambiguous morphology and diagnosis. Slides were
digitized by applying either a Leica® Aperio AT2 or Hamamatsu Nanozoomer S360 slide
scanner; see Table 1.
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Table 1. Sources of training and test data included in the study. In total, 1935 WSIs were analyzed.

Laboratory Scanner Training WSI Test WSI

Center 0 (Essen) Hamamatsu Nanozoomer S360 800 865
Center 1 (U. Essen) Leica® Aperio AT2 - 145
Center 2 (Mainz) Leica® Aperio AT2 - 125

Annotation of the WSI was performed in an efficient semi-automatic process between
pathologists and the AI using our experimental platform DigiPath-Viewer, which is being
developed at the Center for Industrial Mathematics in Bremen. Based on a few entirely
manually annotated samples, the AI model was trained to make initial suggestions for
segmentation. Annotation suggestions by the AI model followed, requiring only minor
adjustments by the pathologists.

2.3. Special Test Dataset from Center 0

All 865 WSIs belonging to the test dataset from Center 0 correspond to all cases
digitized in that laboratory between 1 January and 8 March 2022. All cases were used
without pre-selection and were automatically pre-diagnosed with a previous version of
the model integrated into the DigiPath-Viewer. Diagnoses were checked and corrected
if necessary by the dermatopathologists parallel to the daily routine work. To date, this
platform is only used for research purposes.

The SK cases from Center 0 were also classified as irritated or not irritated SK, enabling
us to compute metrics on those subsets. Both the training and test sets from Center 0
also include WSIs having sections without any disease, identified in the manuscript as
“Normal”. The exact distribution of WSIs and sections of Center 0 is depicted in Table 2.

Table 2. Distribution of the data from Center 0. The number of WSIs are provided, as well as the
number of tissue sections that were segmented from these, e.g., in Figure 1, there are 4 tissue sections
(very small sections are filtered out). Train+Val refers to the part of the data that was used for the
training and validation of the model.

Label Train+Val-WSI Train+Val-Sections Test-WSI Test-Sections

Normal 361 640 358 902
BD 215 1086 210 607
SK 144 582 254 691
SK (irrit.) 80 194 43 148

Total 800 2502 865 3213

2.4. Architecture and Training of the Model

The implemented method works end-to-end, i.e., it receives a WSI as the input and
delivers the whole segmentation map. The first step is to differentiate tissue from the
background by a combination of classic image filters, morphological operations, and a
threshold method to produce a binary mask. Due to the immense size of the WSI, it is not
possible to feed the entire data at once as the input to a neural network due to the limited
memory on the graphics card (NVIDIA RTX A6000 with 48 GB). Therefore, it is common
practice [14] to extract tiles, feed them independently to the network, and combine the
results afterward. In Figure 1, a WSI with BD from Center 0 is shown, where one of the
tissue sections was tiled with our method. We used tiles of size 1024 µm × 1024 µm at a
10× level of magnification with at least 300 µm overlap in each direction. At 10×, it holds
that 1 µm = 1 px, so the size of the tiles in pixels is 1024 px × 1024 px. Figure 2 shows some
of the patches extracted from the tiled section in Figure 1, whereas Figure 3 shows patches
extracted from a WSI from Center 2. In the latter, one can observe some differences in the
style of the images due to stain variations and that the glass slides were digitized with
scanners from different manufacturers.
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1024 µm

300 µm

2 mm

Figure 1. WSI from Center 0 with tissue cuts/sections that contain BD. Prior to the tile extraction,
the tissue areas (solid black contour) are detected. The tiles are 1024 µm × 1024 µm at a 10× level of
magnification and are extracted with at least 300 µm overlap in each direction, as shown in one of
the cuts.

Figure 2. Representative tiles of size 1024 µm × 1024 µm from the WSI in Figure 1 that were used for
evaluating the established algorithm.

Figure 3. Representative tiles of size 1024 µm × 1024 µm from a WSI from Center 2 that were used
for evaluating the established algorithm.
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The neural network architecture is a simplification of the original U-Net [11]. The
model is made of an encoder, which in our case is a ResNet34 [16], and a decoder that
only has two levels of up-sampling; see Figure 4. In the encoder, the spatial dimensions
go down from 1024 px × 1024 px to 32 px × 32 px. The output of the network contains two
probability heat maps, one for each diagnosis, BD and SK, for size 128 px× 128 px, i.e., each
pixel in the output corresponds to a region of 8 px × 8 px in the original tile. The reason
for doing this, instead of utilizing an output the same size as the original input image,
is to reduce the complexity of the model and the number of trainable parameters. The
immediate gain is that the model requires less memory to run and enables training with
larger tile sizes. Only half of the input size could have been trained applying the original
U-Net architecture. Tile size is critical as only a single image tile can be evaluated by the
network to make a diagnosis. To correctly diagnose BD or SK, it is crucial to analyze as
much tissue as possible.

512× 512

64

256× 256

64 64

128× 128

128128

128× 128

128 128

256

64× 64

256 256 256 256 256

512
32× 32

512 512

64

64× 64

768 256

384 128

Residual Basic Block + Downsample

Residual Basic Block

Bilinear Upsampling

Convolution + Downsample

Convolution + Softmax

Skip Connection

1024× 1024

BD

Encoder Decoder

SK

Figure 4. The implemented U-Net-based neural network is composed of an encoder and a decoder.
By means of the encoder, the spatial dimension of the WSIs are convoluted and reduced from
1024 px × 1024 px to 32 px × 32 px. This part of the network acts as a feature extractor. Information
not relevant for the diagnosis is also discarded due to the bottleneck effect occurring in the middle of
the network. The extracted features then pass through a series of convolution and bilinear upsampling
operations in the decoder to finally create two probability heat maps of size 128 px × 128 px (one
corresponding to BD and the other to SK). Each pixel in the output corresponds to a 8 px× 8 px region
of the input image.

Network training was performed in a fully supervised setting. A large dataset of
tiles and their corresponding pixelwise labels (masks) were created and split into training
(80%) and validation (20%) parts. The split was performed such that all tiles from the same
WSI were either in one part or the other. The model was trained using the Adam [27]
optimization method for focal loss minimization [28] (γ = 2) with an initial learning rate
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of 10−4. Additionally, data augmentations were performed, including random rotations,
elastic deformations, noise, blur, brightness, contrast, and color variations to increase the
variety in the training set and the model’s robustness.

We used the PyTorch framework [29] and a distributed parallel setting with 4×
NVIDIA RTX A6000 and an effective batch size of 256. During training, the intersection
over union (IoU) score was monitored, both on the training and validation dataset; see
Figure 5. Optimization converged after 40 epochs without having observed over-fitting.

0 10 20 30 40
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Io
U

Training

BD
SK

0 10 20 30 40
epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Io
U

Validation

BD
SK

Figure 5. Evaluation of the IoU metric after every training epoch of the model on the training dataset
(left) and the validation dataset (right).

2.5. Hyper-Parameter Selection

For each call “BD vs. all” or “SK vs. Normal” on the section level, i.e., after combining
the results from the single tiles, two hyper-parameters were used: the threshold for making
the probability heat map and the minimum positive area to make the call (cf. Figure 6). A
line search over a range of meaningful values was performed using the training dataset
from Center 0 to estimate the optimal minimal area. For each candidate value, the receiver
operating characteristic (ROC) curve of the model and the area under the curve (AUC) were
computed. The area yielding the highest AUC score was selected. AUC scores measure how
well the model performs in binary decision tasks, with the advantage of being threshold
independent, i.e., a threshold does not need to be selected beforehand. Figure 7 shows
the results of the scores for each of the candidate areas in the grid. The ROC curve is
obtained by computing for every threshold the true positive rate (TPR), which is equivalent
to the sensitivity of the model, and the false positive rate (FPR), which is equivalent to
1 − Specificity. They are defined as

TPR =
TP

TP + FN
,

FPR =
FP

FP + TN
,

where TP = true positives, FP = false positives, TN = true negatives, and FN = false
negatives.

Once the minimum positive area hyper-parameter was chosen, the threshold to make
the cut in the probability heat map was selected by choosing the threshold yielding the
maximum Fβ score (cf. Figure 8). It is a weighted harmonic mean of the model’s precision
and recall/sensitivity. The parameter β is chosen to make the sensitivity β-times as impor-
tant as precision. In this case, we chose β = 2 for BD to attribute higher importance to the
sensitivity and the standard β = 1 for SK.

Fβ = (1 + β2)
Recall · Precision

Recall + β2 · Precision
. (1)
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The selected areas and their corresponding AUC scores, as well as the selected thresh-
olds and the F1 scores are depicted in Table 3. In Figure 9, a selection of tiles is shown
with their corresponding model BD output. Before combining the results, post-processing
with morphological filters to the probability maps was applied to make them smoother
and remove minor artifacts (third column). For reference, we also include the result after
applying the selected threshold (fourth column).

area(BD) ≥ δ1?

BD

yes

area(SK) ≥ δ2?no

SK

no Normal

yes

Figure 6. The pipeline for the classification of the tissue cuts is based on the combination of the results
from single tiles. If the total area of BD in the tissue section exceeds a threshold δ1, the diagnosis BD
is made. If the threshold δ1 is not met, but the area of SK exceeds the threshold δ2, the diagnosis SK is
set. Otherwise, the tissue is neither classified as BD nor SK.

0.00 0.02 0.04 0.06

Minimum total area to call BD (mm2)

0.9991

0.9992

0.9993

0.9994

0.9995

AU
C

BD vs all

0.00 0.02 0.04 0.06

Minimum total area to call SK (mm2)

0.9900

0.9905

0.9910

0.9915

0.9920

0.9925

0.9930

AU
C

SK vs Normal

Figure 7. The optimal minimal area to call “BD vs. all” or “SK vs. Normal” was computed using a
line search. The AUC was computed for each candidate’s minimal area on the combined training and
validation datasets. For each call, the smallest area yielding the highest AUC was selected (black dot).

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

F β
(β

=
2)

BD vs all

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

F β
(β

=
1)

SK vs Normal

Figure 8. The optimal threshold to call “BD vs. all” or “SK vs. Normal” was computed by line search.
The Fβ score was computed for each candidate threshold on the combined training and validation
datasets. For each call, the threshold that yields the highest Fβ was selected (black dot).

Table 3. Selection of the minimal areas and thresholds to call “BD vs. all” and “SK vs. Normal” based
on the training dataset.

Call AUC Minimum Area Threshold Sensitivity Fβ

BD vs. all 0.9994 0.0256 mm2 (δ1) 0.5 0.9944 0.9897 (β = 2)
SK vs. Normal 0.9933 0.0333 mm2 (δ2) 0.6 0.9602 0.9663 (β = 1)
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Input BD B̂D B̂D ≥ 0.5
(1024 px × 1024 px) (128 px × 128 px) (128 px × 128 px) (128 px × 128 px)

Figure 9. Output examples for some of the tiles (1024 µm × 1024 µm) from Figure 2. From left to right:
original tile, the output of the network (only BD), post-processing, the binary result after applying a
threshold of 0.5.
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3. Results
3.1. BD vs. SK

The main goal of this study is to investigate to what extent our deep learning approach
can differentiate BD from SK. In order to obtain statistics on how well the model performs
in this task, all normal tissue sections without any of those labels were filtered out, and the
model was used to predict whether there is BD in the section. This is what is identified as
“BD vs. SK”. Three test datasets, each from one of the laboratories, were used to evaluate
the model. The results are depicted in Table 4 and Figures 10 and 11.

The results show that the model can make the distinction between BD and SK with
high confidence, especially on the data from Centers 1 and 2, which were not involved
in the training process of the deep learning model. This performance transfer to other
labs highlights the generalization capability and robustness of the approach. An example
segmentation for a BD test cut from Center 0 is shown in Figure 12.

Table 4. Test scores for “BD vs. SK” for the 3 different test datasets.

Laboratory AUC Sensitivity Specificity

Center 0 0.9774 0.9511 0.9016
Center 1 0.9988 0.9496 0.9948
Center 2 0.9941 0.9957 0.9702

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

ROC curves (BD vs SK)

Center 0
Center 1
Center 2

Figure 10. ROC curves for “BD vs. SK” for the 3 different test datasets.

Center 0 Center 1 Center 20.0

0.2

0.4

0.6

0.8

1.0

Classification metrics (BD vs. SK)

Sensitivity
Specificity

Figure 11. Sensitivity/specificity on the test datasets for the call “BD vs. SK”.
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788 µm

788 µm

Figure 12. Exemplary tissue section of BD from the test set of Center 0 (upper picture) and the same
tissue section with its corresponding 2 heat map overlays (lower picture): yellow (BD) and orange
(SK). The probability value between 0 and 1 is used to set the transparency. As the model did not
detect any SK in the section, there is no visible orange (fully transparent). The section was correctly
classified by the algorithm as BD.

3.2. BD vs. All

This section evaluates how well the model distinguishes BD from all other tissue types
included in the study: normal tissue, SK, only non-irritated SK, and only irritated SK. For
this evaluation, we only used the test set from Center 0. The corresponding ROC curves
are provided in Figure 13, and the metrics are depicted in Table 5.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

ROC curves (Center 0)

BD vs. All
BD vs. SK
BD vs. SK (not irrit.)
BD vs. SK (irrit.)
BD vs. Normal

Figure 13. ROC curves for the test set from Center 0.
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Table 5. Test scores for the different calls on the test set from Center 0.

Call AUC Sensitivity Specificity

BD vs. all 0.9858 0.9511 0.9399
BD vs. SK 0.9774 0.9511 0.9016
BD vs. SK (not irrit.) 0.9907 0.9511 0.9534
BD vs. SK (irrit.) 0.9155 0.9511 0.6599
BD vs. Normal 0.9924 0.9511 0.9704

Table 5 shows that the model has a comparatively low specificity for distinguishing
between BD and irritated SK. In the following, we take a closer look at this phenomenon
and propose an adaption of the model.

Relative Area Approach

We observed that the model makes mistakes by predicting irritated SK as BD. However,
in most of those cases, the model recognizes only a small part as BD and the rest as SK.
Therefore, we implemented another rule for differentiating BD from SK based on the
relative area r recognized as BD:

r =
100 · area(BD)

area(BD) + area(SK)
. (2)

We then changed the condition for the BD call to be

area(BD) ≥ δ1 and r ≥ 20 % . (3)

Table 6 reports the results. The relative area approach helps to improve the specificity
of the model, as Figure 14 shows. Especially for the differentiation of irritated SK, a
value above 0.8 is now achieved. This comes at the cost of a slightly decreased sensitivity
compared to the previous results in Tables 4 and 5. Additional examples of the model’s
prediction, including the relative BD area, are shown in Figures 15 and 16.

Table 6. Test scores for differentiating BD from SK using the relative area approach.

Laboratory Call Sensitivity Specificity

Center 0 BD vs. SK 0.9376 0.9580
Center 0 BD vs. SK (not irrit.) 0.9376 0.9898
Center 0 BD vs. SK (irrit.) 0.9376 0.8095
Center 1 BD vs. SK 0.9076 1.0000
Center 2 BD vs. SK 0.9785 1.0000

BD vs. SK BD vs. Sk (not irrit.) BD vs. SK (irrit.)
0.0

0.2

0.4

0.6

0.8

1.0
Classification specificity (Center 0)

Specificity
Specificity
(relative area)

Figure 14. Specificity for the different calls on the test set from Center 0. The plot shows the specificity
metric when using the first approach (blue) and the combined approach with the relative area (red).
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(a)

(b)

(c)

(d)

444 ¯m

444 ¯m

554 ¯m

554 ¯m

Figure 15. Exemplary tissue sections of two irritated SKs from Center 0 (a,c) and the same tissue
sections with their corresponding 2 overlays (b,d): yellow (BD) and orange (SK). The probability
value between 0 and 1 is used to set the transparency. The relative area for the diagnosis of BD in the
first sample (a,b) is (r): 67.7% > 20%, so it was classified as BD, which was incorrect. In the second
sample (c,d), most of the visible color was orange (SK), which was the correct diagnosis. There was a
small area (lower right corner) that was identified as BD. The relative area for the diagnosis of BD
was (r): 5.7% < 20%. Therefore, the section was classified as SK, which was correct.
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608 µm

608 µm

Figure 16. Exemplary tissue section of BD from Center 2 (upper picture) and the same tissue section
with its corresponding two heat maps overlays (lower picture): yellow (BD) and orange (SK). The
probability value between 0 and 1 was used to set the transparency. The relative area for the diagnosis
of BD was (r): 77.04% > 20%. Therefore, it was classified as BD, which was correct.

3.3. SK vs. Normal

We also evaluated how well the model differentiated SK from normal tissue. For this,
we only used the test set from Center 0, which also contains many normal tissue sections
and excludes sections containing BD. The results can be found in Figure 17 and Table 7.
The distinction between SK and normal tissue works reliably. A segmentation example of
an SK section is shown in Figure 18.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

ROC curve (SK vs. Normal)

SK vs. Normal

Figure 17. ROC curve for “SK vs. Normal” on the test set from Center 0.
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Table 7. Test scores for “SK vs. Normal” on the test set from Center 0.

Call AUC Sensitivity Specificity

SK vs. Normal 0.9764 0.9394 0.9036

1198 µm

1198 µm

Figure 18. Exemplary tissue section of SK from the test set of Center 1 (upper picture) and the
same tissue section with its corresponding 2 heat map overlays (lower picture): yellow (BD) and
orange (SK). The probability value between 0 and 1 is used to set the transparency. As the model did
not detect any BD in the section, no yellow is visible (fully transparent). The section was correctly
classified by the algorithm as SK.

4. Discussion

SK and BD are among the most common lesions in older patients (>60). Due to the
high variability in clinical appearance, these tumors are frequently biopsied or excised.
Differentiating benign SK from malignant BD, which can progress to invasive squamous
cell carcinoma (SCC) [30], is crucial. The majority of histological samples can easily be dis-
tinguished on the basis of hematoxylin and eosin staining (H&E), requiring no additional
stainings. However, the infiltration of leukocytes as a sign of irritation or inflammation
and clonal cell proliferation in SK can occasionally make correctly differentiating those two
tumors challenging. Additionally, cases of BD developing in SK have been described [31,32].
It remains controversial whether this is a causative or collision phenomenon. Sufficient
tissue must be available to identify the correct diagnosis. Thus, little tissue as a consequence
of small biopsies may additionally be challenging even if several serial sections or immuno-
histological stainings are performed. In complex cases, neither histological parameters, nor
a single immunohistochemical marker are sufficient to distinguish these two entities. Some
have suggested that a reliable distinction can be made with a panel of immunohistological
markers [33]. However, this is both cost-intensive and time-consuming. Especially when
little tissue is available and the diagnosis may depend on the morphological traits of a few
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cells, artificial intelligence (AI) might be helpful to draw the dermatopathologists’ attention
to those areas of interest.

In most cases, our established algorithm could classify the tumor (BD vs. SK vs. normal
tissue) in accordance with the diagnoses made by the dermatopathologists. One of the
great fears of a pathologist is missing a diagnosis. A pathologist recognizing things as hard
to classify, means one knows there is a problem and can search for a solution. It is more
dangerous to not realize a problematic case and miss it. This is precisely the scenario where
we believe AI has its potentially greatest use in the foreseeable future. An example is the
previously mentioned collision tumors, where a small portion of the slide has a malignant
neoplasm. The AI recognizing it, and suggesting review by the pathologist could ensure
correct diagnosis. Our results show that the AI was able to detect BD (BD vs. all) with an
AUC of 0.9858 and sensitivity 0.9511 on a large test set from Center 0 (3213 tissue sections).
This means the AI is not only able to differentiate BD from SK, but also to decide if there is
any BD lesion at all. This could be useful to assist dermatopathologists in the assessment of
resection margins.

Our findings demonstrate that the deep learning model can distinguish between BD
and SK with an AUC of 0.9774 on an uncurated test dataset (Center 0) and an AUC of
0.9988 and 0.9941 on a selection of cases from two other institutions with data samples that
were not involved in the training process (Center 1 and Center 2). Still, the specificity of
the algorithm to distinguish BD from irritated SK—with the relative area approach—was
0.81 in contrast to a specificity of >0.90 for the differentiation of BD vs. SK (not irritated)
vs. normal (cf. Table 5). We conclude that the low number of irritated SK included in the
study is one reason for the low sensitivity. The algorithm could not be sufficiently trained
to recognize these lesions. Thus, enlarging the training cohort of irritated SK would likely
improve the algorithm and enhance the sensitivity.

Another interesting aspect is collision tumors, where both BD and SK are present. Rec-
ognizing the malignant disease (BD) will be more critical for the patient, so we prioritized
BD detection as the initial step in our algorithm. Incorrect classification of irritated SK areas
as BD led to incorrect classification of the entire tumor. As mentioned above, this caveat
should be largely minimized by additional training. However, actual collision tumors exist,
and these cases should not be classified as solely one diagnosis. This is something we will
work on further. However, we believe this represents one of the benefits AI can offer as an
aid for routine pathologists. If, for example, 90% of the presented lesion is SK, but there
is also BD present in small amounts, it is conceivable the dermatopathologist might miss
the, for the patient, actually relevant BD diagnosis and just diagnose SK. A red flag by
the AI showing the relevant area could help ensure the pathologist does not oversee any
relevant areas.

5. Integration in Daily Routine

One can generally wonder how best to implement the algorithm in daily routine. In
conventional current routine work, many pathologists first look at the histology and, only
after gaining an initial impression based solely on the morphology, refer to the clinical
details. This is to avoid an initial bias based on the clinician’s assessment. This concept
could also be considered best practice for the pathologist working with AI. The pathologist
first makes his/her own opinion and then checks if the AI algorithm produced the same
result. If so, this would increase the diagnostic certainty.

The role of AI described above and probably utilizable in the not-to-distant future
represents in many ways a variation of the “four-eye principle” often applied in pathology.
This refers to at least two pathologists assessing a case before making a diagnosis. In
reality, due to time and personnel shortage, the four-eye principle is mainly applied to
difficult-to-classify tumors where the resulting treatment and prognosis implications are
very high (i.e., cutaneous melanoma). AI could be the “second set of eyes” for both complex
and daily routine “simple” diagnoses.
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The DigiPath-Viewer software is currently applied in a laboratory on a trial basis. A
selection of cases is scanned daily, and our method is evaluated in automatic mode in the
background. After the standard daily routine, the dermatopathologists analyze the results
of the method and provide feedback, which is used used to further improve the algorithm.
While at the moment, only used for research purposes, this kind of tool could transition
into clinical routine use.

6. Limitations and Future Work

The algorithm could be further fine-tuned by adjusting the thresholds, in particular
for distinguishing the two entities SK and BD. However, we believe additional training
with higher sample numbers, particularly for difficult-to-classify cases such as irritated SK,
would currently be the best approach to improve the algorithm.

A caveat we have repeatedly observed is that the AI makes calls based on the diagnosis
it knows. Our algorithm will diagnose SK or BD if it comes across something such as a
clear cell acanthoma that it has not been trained to detect. This example demonstrates that,
at least for a considerable time to come, pathologists need to remain wary and scrutinize
diagnostic calls made by the AI. While misdiagnosing a clear cell acanthoma case is unlikely
to have serious consequences, misdiagnosing other entities could have very serious effects
for the affected patients.

Optimally, to avoid making false calls and correctly identify anomalous structures, an
AI algorithm would likely need to be trained on diverse (preferably all) cutaneous diagnoses
and conditions not normally present in the skin (i.e., metastasis from other sites). One
diagnosis that we did not include here, although it is related to BD and considerably more
prevalent, is actinic keratosis (AK). AKs are early epidermal neoplasias, which can evolve
into BD or invasive SCC. An algorithm detecting AK would undoubtedly be of immense
help. However, differentiating between normal skin and an initial AK, as well as advanced
AK and BD is difficult. These cases in reality often represent a continuum. Therefore, in the
current study, we focused on lesions more clearly diverging from one another, making the
distinction both for the AI and pathologist relatively clear cut. Having obtained promising
results distinguishing SK from DB, we believe increasing the complexity by including
AK in the algorithm is the next step we will focus on in the near future. Comparisons of
algorithm diagnostic accuracy with levels of agreement between different pathologists are
also envisioned. The potential for improvement and work ahead is immense.

7. Conclusions

In our study, we assessed the potential of a deep learning approach to distinguish one
of the most common benign (SK) from malignant (BD) cutaneous tumors. In addition to
classifying sharply demarcated tumors, the established algorithm correctly distinguished
different tissue areas of collision tumors on the same histological slide. We evaluated
the model’s performance on test sets from three different centers, two of which were not
involved in training, and obtained AUC scores > 0.97 in all cases. The model can also
distinguish BD and SK from normal tissue. The diagnostic question addressed is focused,
and much work remains. However, the algorithm is being continuously improved by
adding samples and additional diagnoses such as AK. Despite the potential for further
improvement, we believe that the algorithm already represents an aid to the diagnosing
pathologist in the current state. Parallel to expanding and improving the algorithm, it is
being assessed prospectively on routine cases. We believe this example demonstrates the
utility and promise of AI as a routine workhorse tool in dermatopathology.
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WSI Whole-slide image
BD Bowen’s Disease
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AI Artificial intelligence
ROC Receiver operating characteristic
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