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A B S T R A C T   

SARS-CoV-2 infection is associated with an elevated risk of new-onset diabetes. With infections forecast to rise in 
the coming months, this may exacerbate an existing public health crisis by increasing rates of diabetes world-
wide. Much remains to be learned about a causal link between SARS-CoV-2 and incident diabetes. This is 
complicated by the rapid evolution of new SARS-CoV-2 variants that may have differential effects on develop-
ment of diabetes. It is possible that some variants confer an increased risk, while others carry little to no risk. 
Distinguishing between these possibilities could be key in preventing or screening for new-onset diabetes, and 
could inform care of at-risk individuals with recent SARS-CoV-2 infection.   

1. The connection between COVID-19 and diabetes 

Clinical characteristics of new-onset diabetes after SARS-CoV-2 
infection remain poorly characterized, largely owing to a reliance on 
electronic health record data in early epidemiological studies and thus, a 
lack of rigorous assessment of autoimmunity and/or β-cell function prior 
to SARS-CoV-2 infection and at diabetes diagnosis. Based on existing 
evidence, COVID-19 seems to be consistently associated with an 
increased risk of type 2 diabetes (T2D) but not type 1 diabetes (T1D). For 
example, Al-Aly found that SARS-CoV-2 infection was associated with a 
40% higher risk of T2D but not T1D in U.S. veterans [1]; however, due to 
the use of diagnostic codes, misclassification of diabetes sub-type may 
have occurred. Further, SARS-CoV-2 infection does not often correlate 
with the presence of islet autoantibodies [2–5]. That said, studies in 
which islet autoantibodies were measured have generally been small 
and/or used cross-sectional designs. Therefore, uncertainty remains 
about the relationship between SARS-CoV-2 infection and diabetes sub- 
type. 

Impaired insulin secretion from pancreatic islet β cells is a critical 
determinant of diabetes development. Despite little evidence that SARS- 
CoV-2 triggers an autoimmune response to islets, it is suggested that the 
pathogenesis of new-onset diabetes in infected individuals includes 
early β-cell injury [6]. This may occur via direct SARS-CoV-2 invasion of 
β cells [6], as in human islets that display impaired insulin secretion 
upon infection with wild-type (WT) SARS-CoV-2 in vitro [7]. 

Alternatively, indirect β-cell injury may occur due to the exaggerated 
systemic pro-inflammatory cytokine response, which can induce endo-
plasmic reticulum stress in β cells [7] and impair their function/survival. 
Infected islet endothelial cells may also impact β-cell health, perhaps by 
altering secretion of paracrine factors known to support β-cell function/ 
survival. 

SARS-CoV-2 infection can also induce insulin resistance [8], the 
latter a metabolic derangement commonly triggered by pro- 
inflammatory cytokines [9]. Insulin resistance can predispose in-
dividuals to diabetes by contributing to hyperglycemia, compensatory 
hyperinsulinemia, and ultimately β-cell failure. Corticosteroid treat-
ment, which improves clinical outcomes in hospitalized individuals with 
COVID-19 who require supplemental oxygen, may also induce insulin 
resistance. Although one study did not find dexamethasone to cause 
clinically significant changes in blood glucose among COVID-19- 
positive individuals without diabetes [10], this possibility needs 
further study. 

2. Evolution of SARS-CoV-2: Are some variants more damaging 
than others? 

SARS-CoV-2 variants differ in their phenotypic characteristics and 
the degree to which they induce acute symptoms. The Delta (B.1.617.2) 
variant produces higher infection loads than WT SARS-CoV-2 and the 
Omicron (B.1.1.529) [11] and Alpha (B.1.1.7) variants [12]. It also 
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displays increased transmissibility compared to Alpha [13]. The risk of 
severe COVID-19 is greater with the Alpha, Beta (B.1.351), Gamma (P.1) 
and Delta variants than with WT SARS-CoV-2, as measured by hospi-
talization, ICU admission and/or death [14]. Furthermore, the Beta and 
Gamma variants are more able to evade vaccine-mediated immunity 
than the Delta variant [15]. Similarly, the BA.1 Omicron subvariant 
exhibits an enhanced ability to evade immunity when compared to Delta 
[16], likely explaining the marked increase in reinfection rates after 
emergence of Omicron. However, an early subvariant of Omicron has 
~2-fold lower case fatality ratio than Delta [17]. As acute COVID-19 
severity is positively correlated with the risk of diabetes after SARS- 
CoV-2 infection [18], the propensity of a variant to induce severe 
acute disease may be a determinant of diabetes development. 

3. How might different SARS-CoV-2 variants impact diabetes 
development? 

The extent of β-cell damage induced by SARS-CoV-2 may be gov-
erned by mutations that impact the virus’ properties. For instance, 
mutations affecting receptor affinity may modulate viral entry into β 
cells and subsequent cellular derangement. The SARS-CoV-2-spike 
D614G mutation that exists in most variants but not WT, increases 
infectivity by allowing enhanced binding to the angiotensin-converting 
enzyme 2 (ACE2) receptor [19]. Another example is the N501Y muta-
tion in the spike protein of the Omicron variant, which increases ACE2 
affinity and reduces neutralization by monoclonal antibodies [20]. As 
ACE2 expression has not been unequivocally demonstrated in the β cell, 
an alternative receptor for SARS-CoV-2 in β cells is the highly expressed 
CD147 [21]. CD147 inhibition reduced entry of the Alpha and Delta 
variants into epithelial cells to a greater extent than the Beta and Gamma 
variants [22]. This suggests that the Alpha and Delta variants may utilize 
CD147 to enter cells. Should CD147 be a predominant route for SARS- 
CoV-2 entry into β cells, variants utilizing CD147 may have higher 
rates of β-cell infection, plausibly increasing the risk of diabetes 
development. 

Some variants may modulate immune responses. In mice, the BA.1 
Omicron subvariant was associated with less cytokine release than the 
Beta variant [23] and induced less extensive lung inflammation than the 
Beta [23] and Delta [24] variants. ORF3a mutations, which are present 
in the Beta, Gamma, and Delta but not Alpha and Omicron variants, are 
associated with worsened inflammatory responses and post-acute 
sequelae of COVID-19 (PASC) [25]. Furthermore, maintenance of 
higher infection loads, as would be observed with the Delta variant 
[11,12], is correlated with an increased risk of an exaggerated immune 
response with high levels of circulating cytokines [26]. Higher circu-
lating cytokine concentrations may thus induce β-cell stress and 
diminish insulin secretion. 

4. Gaps in knowledge, opportunities, and challenges for future 
work 

Studies are beginning to elucidate the differential effects of SARS- 
CoV-2 variants on PASC [27]; however, little is known about effects 
on diabetes development. More study is needed to determine invasion 
mechanisms of SARS-CoV-2 variants in β cells, and the extent of β-cell 
damage by different strains. Such investigations could include in vitro 
studies, or morphological and transcriptome or proteome analyses of 
autopsy pancreas samples from individuals infected with different SARS- 
CoV-2 variants. Further, differential effects on insulin secretion and 
sensitivity in vivo can be studied. New-onset diabetes development and 
progression should also be monitored in individuals after SARS-CoV-2 
infection by different variants. Large databases like the CoviDIAB reg-
istry and national databases of the US Department of Veterans Affairs 
may facilitate such longitudinal studies. 

Several challenges exist in studying SARS-CoV-2 variants and new- 
onset diabetes. Most importantly, the causal variant of infection is not 

identified for many individuals. Additionally, longitudinal metabolic 
testing is needed to characterize new-onset diabetes, which can be 
burdensome to conduct and is not routinely performed in individuals 
with COVID-19. Also, SARS-CoV-2 infection is associated with increased 
burden of metabolic complications related to lipid metabolism and 
obesity [1] – these promote insulin resistance and impair insulin 
secretion independent of SARS-CoV-2 infection. Thus, assigning a direct 
cause-effect relationship between SARS-CoV-2 infection and new-onset 
diabetes may be confounded by such factors, which could differ by 
variant of infection. Lastly, risk of diabetes after SARS-CoV-2 infection is 
increased in several population subgroups such as individuals that are 
over 65 years of age, male, and Black [18]. There is also a graded in-
crease in risk with a body mass index of >25 and ≤ 30 kg/m2 and of >
30 kg/m2 [18]. These characteristics must be controlled for when 
evaluating the impact of SARS-CoV-2 variants on new-onset diabetes. 

5. Concluding remarks 

Differing properties of SARS-CoV-2 variants may damage the β cell to 
different extents. Some variants may carry a greater risk of diabetes 
development in infected individuals, though additional research is 
needed to assess the validity of and mechanisms underlying this theory. 
Given the potential public health impacts of a post-COVID diabetes 
epidemic, the results of these investigations are urgently needed to 
inform diabetes risk assessments and preemptive screening strategies. 
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