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Abstract
Background  Ferroptosis is a unique mode of cell death that is iron-dependent and associated with oxidative stress 
and lipid peroxidation. Oxidative stress and ferroptosis are essential mechanisms leading to metabolic abnormalities 
in cells and have been popular areas in cancer research.

Methods  Initially, 76 oxidative stress and ferroptosis-related genes (OFRGs) were acquired by intersecting the 
gene sets from oxidative stress and ferroptosis. Afterwards, optimal OFRGs were screened using PPI networks, and 
individuals were separated into two OFRG subtypes (K = 2). Subsequently, we successfully constructed and verified a 
prognostic signature comprising SLC7A2, Cadherin 19 (CDH19), and CCN1. To further uncover potential biomarkers 
of gastric cancer (GC), we examined the expression level of CDH19, investigated the effects of knocking down CDH19 
on the biological behavior of GC cells, and explored whether CDH19 is involved in ferroptosis and oxidative stress 
processes.

Results  According to the findings, individuals in the low-risk scoring group have less infiltration of immune 
suppressive cells, fewer occurrences of immune escape and dysfunction, greater efficacy in chemotherapy and 
immunotherapy, and better survival outcomes. The qRT-PCR assay indicated that CDH19 expression was significantly 
higher in GC cells. Through experiments, we demonstrated that knocking down CDH19 can affect the transcription 
levels of ACSL4 and GPX4, increase intracellular iron ion concentration and accumulation of reactive oxygen species 
(ROS), and inhibit the proliferation and migration of GC cells.

Conclusion  We developed an OFRG-related signature to predict the prognosis and treatment responsiveness of 
individuals with GC and identified CDH19 as a possible therapeutic target for GC.
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Introduction
Gastric cancer (GC) is one of the most widespread diges-
tive tract tumors. Global cancer statistics for 2024 show 
that there will be almost 20  million new cases of can-
cer worldwide, with 968,784 instances 4.9%) being GC. 
Nearly 9.6  million cancer patients died, and 660,175 
(6.8%) of them had GC. In terms of both incidence and 
mortality, GC was placed fifth among malignant tumors 
[1]. In addition, there are apparent regional variations 
in the incidence rate of GC. Its incidence rate in Asia 
(especially China and Japan) is significantly higher than 
in other countries and areas [2], posing a severe threat 
to public health. The pathogenesis of GC is multifaceted, 
multistep, and multistage. The most notable risk factor is 
Helicobacter pylori infection [3]. Early GC can be treated 
with endoscopy or radical surgery and generally have a 
better prognosis. However, most patients are diagnosed 
when the disease has advanced, and there is a substan-
tial risk of distant metastasis and local recurrence [4]. 
In recent years, the application of targeted medications 
(such as trastuzumab) and immune checkpoint inhibitors 
(ICIs; anti-PD-1, anti-PD-L1, and anti-CTLA4) has bene-
fited the clinical outcomes of some GC patients [5]. Nev-
ertheless, immunotherapy is still limited for most people. 
Therefore, exploring more biomarkers and seeking novel 
therapeutic targets for GC is imperative.

Ferroptosis was initially proposed in 2012 as a multi-
level regulatable iron-dependent lipid peroxidation-
driven cell death process [6]. Ferroptosis differs from 
other cell death modes in morphology and mechanism, 
such as apoptosis, autophagy, and necrosis. Morphologi-
cally, cells that undergo ferroptosis typically exhibit loss 
of plasma membrane integrity, mitochondrial shrinkage, 
and increased mitochondrial membrane density [7]. Fer-
roptosis is characterized by two primary features: iron 
accumulation and redox imbalance. Ferroptosis induc-
ers, such as Erastin and RSL3, increase intracellular 
iron accumulation, which generates excess reactive oxy-
gen species (ROS) through the Fenton reaction, thereby 
exacerbating cellular oxidative damage [8, 9]. Moreover, 
iron may increase the activity of lipoxygenases (LOXs) or 
cytochrome P450 reductase (PORs), which regulate lipid 
peroxidation and oxygen homeostasis. The second hall-
mark of ferroptosis is redox imbalance. LOXs and PORs 
elevate levels of phospholipid hydroperoxides (PLOOHs), 
which encourage polyunsaturated fatty acid (PUFA) per-
oxidation in the cell membrane. This peroxidation pro-
cess leads to the destruction of cellular and organelle 
membranes, ultimately resulting in cell death [10, 11]. 
Consequently, ferroptosis can be inhibited by antioxi-
dants and iron chelators.

In addition, ferroptosis has been proven to play a cru-
cial role in inhibiting tumor cell proliferation and over-
coming drug resistance in hepatocellular carcinoma, 
breast cancer, lung cancer, and other cancers [12–14]. On 
the one hand, various classic cancer treatment strategies 
can trigger ferroptosis. On the other hand, ferroptosis is 
influenced by cellular metabolism, including mitochon-
drial activity and lipid metabolism, as well as cancer sig-
naling pathways such as AMPK, E-cadherin-NF2 Hippo 
YAP, and HIF2α- HILPDA pathways [15–17]. However, 
tumor cells can also develop resistance to ferroptosis and 
promote cancer progression through specific mecha-
nisms, including limiting the synthesis and peroxidation 
of PUFA-PL, reducing unstable iron supply, and upregu-
lating the cellular defense system to combat ferroptosis 
[6].

Oxidative stress is a state of imbalance between oxida-
tion and antioxidants in the body, with lipid peroxidation 
serving as the fundamental mechanism of ferroptosis. 
Oxidative stress can produce excessive oxidation inter-
mediates like ROS and reactive nitrogen species (RNS), 
which can directly or indirectly damage DNA, proteins, 
and lipids, induce gene mutation, and cause cell or tis-
sue damage [18]. These intermediates are significant risk 
factors for human aging and various illnesses, including 
cancer, cardiovascular disease, and diabetes. In recent 
years, oxidative stress in cancer has garnered consider-
able attention. Tumor cells can increase NADPH level 
by activating AMPK, pentose phosphate pathway (PPP), 
and reducing glutamine and folate metabolism. Addi-
tionally, they can alter the activity of sulfur metabolism 
and antioxidant transcription factors to survive under 
high ROS levels [19]. Prior research has indicated that 
patients with thyroid, breast, and gastric cancers exhibit 
significantly higher levels of oxidative stress than normal 
individuals, while the level of antioxidant enzymes is sig-
nificantly lower [20–22]. Although oxidative stress may 
foster tumor formation and proliferation, excessive ROS 
also possess cytotoxic properties that can lead to tumor 
cell death and limit cancer metastasis [23].

In conclusion, oxidative stress and ferroptosis consti-
tute crucial factors in the onset and progression of cancer. 
Despite integrated studies on oxidative stress and ferrop-
tosis in GC remain scarce, combined studies on oxida-
tive stress and ferroptosis in GC are still lacking. Thereby, 
using public databases related to GC for bioinformatics 
analysis, this paper assesses oxidative stress and ferrop-
tosis subtypes and connects them to the characteristics 
of immune infiltration. Subsequently, a signature model 
related to oxidative stress and ferroptosis-related genes 
(OFRGs) was constructed through differential analysis 
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and Cox analysis to predict patient prognosis and treat-
ment response, explore the pathogenesis of oxidative 
stress and ferroptosis in GC, reveal the immune land-
scape, and identify new potential biomarkers.

Materials and methods
Data collection
We downloaded RNA-sequencing, somatic muta-
tion, and clinical data from The Cancer Genome Atlas 
(TCGA) database (https:/​/portal​.gdc.ca​ncer​.gov/) and 
the Gene Expression Omnibus (GEO) database ​(​​​h​t​t​p​s​
:​/​/​w​w​w​.​n​c​b​i​.​n​l​m​.​n​i​h​.​g​o​v​/​​​​​)​. The screening criteria for 
genes require expression in at least 50% of the samples. 
The TCGA-STAD queue consists of 36 normal gastric 
samples and 410 GC samples, of which 414 samples have 
prognostic information. GSE54129 queue has 21 nor-
mal gastric samples and 111 GC samples. GSE84437 and 
GSE62254 cohorts contain expression information and 
prognostic data for 433 and 300 individuals with GC, 
respectively. Expression data (TPM) of 174 normal gas-
tric tissue samples acquired from GTEx database ​(​​​h​t​t​p​s​:​/​
/​w​w​w​.​g​t​e​x​p​o​r​t​a​l​.​o​r​g​​​​​)​. The copy number variation (CNV) 
and RNA stemness scores (RNAss) were attained from 
the UCSC Xena database ​(​​​h​t​​t​p​s​​:​/​/​x​​e​n​​a​b​r​o​w​s​e​r​.​n​e​t​/​d​a​t​a​
p​a​g​e​s​/​​​​​)​. Immunotherapy data are downloaded from The 
Cancer Immunome Atlas (TCIA, https://tcia.at/patients). 
566 oxidative stress-related genes (ORGs) were obtained 
from the Molecular Signatures Database (MisDB) website 
(http://​www.gse​a-msigd​b.or​g/gsea/msigdb/index.jsp), 
and 484 ferroptosis-related genes (FRGs) were acquired 
from the FerrDb website ​(​​​h​t​​t​p​:​​/​/​w​w​​w​.​​z​h​o​u​n​a​n​.​o​r​g​/​f​e​r​r​d​
b​/​c​u​r​r​e​n​t​/​​​​​)​. The detailed gene sets are shown in Table S1.

Identification of oxidative stress- and ferroptosis-related 
genes (OFRGs)
We obtained OFRGs by intersecting ORGs and FRGs and 
then analyzed these genes using Gene Ontology (GO) 
and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) [24, 25]. We subsequently analyzed somatic 
mutations and plotted waterfall plots related to OFRGs. 
Based on the copy number of genes in all samples in 
the TCGA-STAD database, the copy number variation 
(CNV) frequency of OFRGs was calculated and use the a 
circular graph was generated using the “Rcircos” package 
[26]. The Wilcoxon test and “limma” package [27] were 
used to compare the expression of OFRGs in normal and 
GC tissues. Survival curves for prognosis-related OFRGs 
were plotted through univariate Cox analysis and Kaplan-
Meier (K-M) method.

Consensus clustering to determine OFRG subtypes
Initially, we established a Protein-Protein Interaction 
(PPI) network for OFRGs using STRING ​(​​​h​t​t​p​s​:​/​/​c​n​.​s​t​
r​i​n​g​-​d​b​.​o​r​g​/​​​​​) and imported it into Cytoscape software. 

Then, we applied the “ConsonsusClusterPlus” package 
[28] to perform consensus clustering analysis in GC indi-
viduals and classified them according to the optimal value 
of the cumulative distribution function (CDF) curve. The 
R packages “ggplot2” and “Rtsne” were employed for 
principal component analysis (PCA) and t-distributed 
stochastic neighbor embedding (t-SNE) analysis, respec-
tively. We exploited K-M curves to plot the overall sur-
vival (OS) and performed molecular functional and 
pathway analysis between clusters through GO, KEGG, 
and gene set variation analysis (GSVA) [29]. Single sam-
ple gene set enrichment analysis (ssGSEA) was utilized to 
detect the abundance of immune cell infiltration between 
two clusters.

Construction and verification of prognostic signatures for 
OFRGs
The differentially expressed genes (DEGs) between 
two OFRGs clusters are determined using the “limma” 
packages. The criteria for DEGs are | logFC | > 1 and 
FDR < 0.05. Univariate Cox analysis was performed on 
these DEGs to categorize GC individuals into distinct 
gene clusters (K = 2). Subsequently, the predictive signa-
ture model was further developed using the Least Abso-
lute Shrinkage and Selection Operator (LASSO) and 
multivariate Cox analyses. Risk scores were calculated 
based on gene expression and coefficients, allowing for 
the stratification of GC patients into high- and low-risk 
subgroups. This model was validated using the GSE84437 
cohort. The following formula was employed to compute 
the risk score:

	
Risk score =

n∑

i =1

(Coefi ∗ Expi)

Coefi is gene coefficient; Expi is gene expression; n is the 
number of genes in signature.

The relationship between OFRGs subtype, gene cluster, 
and risk signature was investigated through the Sankey 
diagram [30]. Researchers conducted enrichment analy-
sis on high- and low-risk categories using GSVA and 
utilized K-M curves to compare survival outcomes. Cox 
analysis was employed to identify independent prognos-
tic factors for GC and develop a nomogram [31] based 
on risk scores and additional clinicopathological features. 
Calibration curves for 1-, 3-, and 5-year were generated 
to validate accuracy, and the sensitivity and specificity 
of risk signature and nomogram were estimated using 
the ROC curves [32]. Additionally, we also probed the 
correlation between risk scores and clinicopathological 
parameters and forecasted patient survival outcomes in 
various clinical pathology subgroups.

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.gtexportal.org
https://www.gtexportal.org
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://tcia.at/patients
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.zhounan.org/ferrdb/current/
http://www.zhounan.org/ferrdb/current/
https://cn.string-db.org/
https://cn.string-db.org/
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Analyzing the immune cell infiltration and immunotherapy
With the ESTIMATE algorithm [33], we assessed the 
immune, stromal, and estimated scores in the tumor 
microenvironment (TME) of GC patients and then per-
formed immune function analysis in the high- and low-
risk subgroups. Multiple algorithms, including ssGSEA, 
Xcell, Timer, Cibersort, and others, were employed to 
measure the degree of infiltration of tumor-infiltrating 
immune cells (TIICs) in the risk categories [34]. The 
expression levels of a few recognized immune check-
points and RNAss were compared between the risk 
subgroups via the Wilcoxon test. The Tumor Immune 
Dysfunction and Exclusion (TIDE) score ​(​​​h​t​t​p​:​/​/​t​i​d​e​.​d​f​c​
i​.​h​a​r​v​a​r​d​.​e​d​u​/​​​​​) was employed to evaluate immune escape 
and immune dysfunction in patients with GC. A higher 
TIDE score indicates a greater likelihood of immune 
escape and reduced benefits from immunotherapy.

Moreover, we retrieved microsatellite (MS) status and 
ICI treatment data from the TCIA website, split all GC 
individuals into microsatellite stable (MSS), low-level 
microsatellite instability (MSI-L), and high-level micro-
satellite instability (MSI-H) subgroups, and predicted the 
efficacy of anti-CTLA-4 and anti-PD-1 medication for 
those in high and low-risk subgroups. We explored the 
association between risk score and tumor mutation bur-
den (TMB) using the “ggpubr” package. Then, the “sur-
vival” and " survminer " packages [35] were applied to 
execute a combined survival analysis for the high and low 
TMB score, risk score, and Cadherin 19 (CDH19) expres-
sion groups. Ultimately, we forecasted drug sensitivity in 
high and low-risk subgroups utilizing the “oncoPredict” 
package [36].

Identifying CDH19 as a potential biomarker for GC
The researchers analyzed the expression of CDH19 in 
GC and evaluated expression differences using qRT-PCR. 
Then, we employed GSEA for functional and pathway 
enrichment analysis and investigated the association 
between CDH19 and clinical outcome indicators such as 
progression free survival (PFS) and disease-free survival 
(DFS). We utilized ssGSEA to analyze the infiltration 
abundance of TIICs in the high and low CDH19 groups. 
Further, this study also predicted the efficacy of immuno-
therapy based on the expression of CDH19.

Cell culture and reagents
Human gastric epithelial cells (GES-1) and Human GC 
cell lines (AGS, HGC27, and MKN-7) were obtained 
from the Chinese Academy of Sciences Cell Bank (Shang-
hai, China) type culture bank. These cell lines were 
identified by STR and tested negative for mycoplasma. 
These cell lines were cultured in Losvi-Parker Memorial 
Institute (RPMI)-1640 medium (HyClone, USA) supple-
mented with 10% fetal bovine serum (FBS) (HyClone, 

USA), 100 U/mL penicillin (HyClone, USA), and 100 µg/
mL streptomycin (HyClone, USA) at 37 °C, 5% CO2.

Lentiviral transfection
The RNAi lentivirus vector was constructed by the 
Gikai gene (http://www.genechem.com.cn/). The ​t​a​r​g​
e​t lentiviral vector used was GV493, with the element 
sequence hU6-MCS-CBh-gcGFP-IRES-puromycin (Ref-
erence number: CON313). The RNAi negative control 
(sh-NC) sequence was ​T​T​C​T​C​C​G​A​A​C​G​T​G​T​C​A​C​G​
T. The shRNA sequences designed for CDH19 were as 
follows: sh-CDH19-1: ​C​C​A​C​T​G​T​A​T​G​T​G​C​A​A​G​T​T​C​
T​T. sh-CDH19-2: ​C​G​A​T​C​C​C​T​C​A​A​G​T​G​G​T​A​A​T​A​A. 
Sh-CDH19-3: ​C​C​C​A​G​G​T​A​A​T​A​G​A​C​A​T​C​G​C​T​A. AGS 
and HGC-27 cell lines were inoculated in 6-well plates 
at a density of 2 × 10^4 cells per well. After 24 h of incu-
bation, the medium was replaced, and the diluted virus 
solution was added. After 24 h of infection, the cells were 
moved to a cell culture dish, and puromycin was added 
for screening (48 h, repeated three times) to obtain sta-
ble transfection. The two most significantly knock-down 
cell lines from AGS and HGC-27 cells successfully trans-
fected with lentivirus were then selected.

Quantitative real-time polymerase chain reaction (qRT-
PCR)
Total RNA was extracted from cells utilizing TRIzol® 
reagent and reversely transcribed it into cDNA. In the 
qRT-PCR process, the reaction mixture consisted of 2 µl 
of reverse transcription product, 7.2  µl of DEPC, 10  µl 
of SYBR, and 0.4 µl of forward and reverse primer. The 
qRT-PCR reactions were performed under the following 
conditions: Pre-denaturation at 95  °C for 30  s, followed 
by 40 cycles of 95 °C for 10 s and 60 °C 30 s. Finally, the 
melting curve analysis was conducted with the following 
steps: 95 °C for 15 s, 60 °C for 60 s, and 95 °C for 15 s. The 
primer sequences are as follows:

CDH19-F (5′-​A​G​T​C​A​T​C​A​C​A​T​C​G​G​C​C​A​G​C​T​A​A​G​
A-3′).

CDH19-R (5′-​T​A​C​T​T​C​C​A​G​C​T​C​C​A​G​C​T​C​C​C​A​A​
A-3′).

β-actin F (5’-​G​A​C​C​A​C​C​T​T​C​A​A​C​T​C​C​A​T​C​A​T-3’).
β-actin R (5’-​C​C​T​G​C​T​T​G​C​T​A​A​T​C​C​A​C​A​T​C​T-3’).
β-actin was used as the internal reference, and the 

2 − ΔΔCt method was applied to determine the expres-
sion level of CDH19. The experiment was repeated three 
times.

Cell viability assay MTT
GC cells transfected with sh-NC or sh-CDH19 lentivirus 
were inoculated into 96-well plates at a density of 7 × 103/
well. After cell culture, 500 µL of 0.5 mg/mL MTT solu-
tion prepared with FBS-free medium was added to each 
well and incubated in the incubator for at least two hours. 

http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
http://www.genechem.com.cn/
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The resulting blue-violet crystal formazeris was then 
melted with equivalent DMSO. Absorbance at 490  nm 
was measured using a full-featured microplate detector 
(BioTek, USA), and cell viability was calculated as fol-
lows: cells (%) = OD of experimental group/OD of control 
group. Cell proliferation was monitored every 24  h for 
a period of 3 days to evaluate cell proliferation. All data 
were processed in Excel and imported into GraphPad 
Prism 9 software for graphical drawing.

Migration assays
GC cells transfected with sh-NC or sh-BCHE lentivi-
rus were seeded in 6-well plates and stable cell cultures. 
When the cell density exceeds 90% of the area of each 
well, a 200 µL tip was used to create a wound on the cell 
surface. After washing the floating cells with phosphate-
buffered saline (PBS), the adherent cells were grown in 
a culture medium for 4  h. The images were obtained at 
0 and 48  h. The scratch area was measured three times 
to evaluate the cell healing rate. The data were analyzed 
using ImageJ software and graphs were generated using 
GraphPad Prism 9 software.

Colony formation assay
AGS and HGC-27 cells, transfected with sh-NC or sh-
CDH19, were seeded in 6-well plates at a density of 
1000 cells per well. The cells were cultured in RMPI-
1640 medium containing 10% fetal bovine serum, with 
the medium being refreshed every two days. Incubation 
was carried out in a CO2 incubator maintained at 37 °C 
with 5% CO2. After 14 days, cell colonies were fixed in 
4% paraformaldehyde at room temperature, stained with 
crystal violet, and subsequently photographed.

Western blot analysis
Cells were lysed using IP buffer, and the supernatant was 
collected using a centrifuge. Proteins were separated 
with 10% SDS-PAGE (20  µg/sample) and transferred to 
PVDF membranes (Millipore, Billerica, and MA, USA). 
The membranes were blocked with 5% skim milk for 1 h 
and then incubated overnight with the primary antibody 
at 4 °C. Following three washes with wash buffer (10 min 
per wash), the membranes were incubated with the sec-
ondary antibody for 1 h at 37 °C. After an additional three 
washes with wash buffer (10  min per wash), the mem-
branes were developed. The experiment was repeated 
three times. The antibodies used were glutathione per-
oxidase 4 (GPX4; Abcam, USA), SLC7A11, ACSL4, and 
GAPDH (Proteintech, China).

ROS assay
In RPMI-1640 medium without FBS, the ROS assay 
H2DCFDA (10 mmol/L) and DHE (10 mmol/L) were 
diluted to a final concentration of 10 µmol/L, and then 

the prepared DCFH-DA and DHE were added to the 
cell plate and incubated with the cells for 40  min, then 
aspirated and added DAPI for 15 min, and the ROS level 
was measured by fluorescence inverted microscopy. The 
images were merged using imagej software, and all exper-
iments were repeated three times.

Iron staining
Dilute 1 mmol/L of FerroOrange (Dojindo, China) to 
a final concentration of 1 µmol/L in HBSS solution, 
then add the prepared FerroOrange to the cell plate and 
incubate with the cells for 30  min before fluorescence 
inverted microscopy to measure Fe2 + levels.

Statistic nalysis
R software (Version 4.2.2, http://www.R-project.org) 
and GraphPad Prism (Version 9.3.1, CA, USA) were 
employed to perform statistical analyses. Wilcoxon test 
was applied for intergroup comparative, and Spearman 
was utilized for correlation analysis. Kaplan-Meier curves 
were implemented for survival analysis. Consensus clus-
tering analysis was used for OFRG and gene clusters. The 
“timeROC” and “survival” packages were conducted for 
the ROC curve and Cox regression analysis. P < 0.05 was 
considered statistically significant (ns: p > 0.05; *P ≤ 0.05; 
**P ≤ 0.01; ***P ≤ 0.001; ****, P < 0.0001).

Results
Identifying prognostic genes related to oxidative stress 
and Ferroptosis
Following the intersection of 566 ORGs and 484 FRGs, 
76 OFRGs were identified in total (Fig. 1A), and enrich-
ment analyses were performed on these genes. GO 
analysis showed that they were primarily enriched in the 
“response to oxidative stress” of biological process (BP), 
the “NADPH oxidation complex” and “oxidoreductase 
complex” of cellular component (CC), and the “superox-
ide generating NAD (P) H oxidation activity” and “anti-
oxidant activity” of molecular function (MF). According 
to KEGG analysis, these genes were associated with the 
“Chemical cancer genes reactive oxygen species” and 
“TNF signaling pathway” (Fig. 1B). Gene mutation anal-
ysis of OFRGs revealed that TP53 exhibited the high-
est mutation frequency, and missense mutation was the 
most prevalent type of mutation. A waterfall plot was 
created using the top 20 genes with the highest frequency 
of mutations (Fig. 1C).

Additionally, we examined the CNV levels of OFRGs 
and observed that GAIN variation occurred more fre-
quently than LOSS variation. We also created a copy 
number circle diagram representing these genes’ chro-
mosomal locations (Fig. 1D, E). Through univariate COX 
analysis, 15 prognostic-related OFRGs were determined 
(Fig.  1F), with their K-M survival curves displayed in 

http://www.R-project.org
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Figure S1. Subsequent differential analysis of tumor and 
adjacent samples from the TCGA cohort revealed sig-
nificant differences in the expression of the majority of 
OFRGs (Fig. 1G).

Consensus clustering analysis
The researchers used the STRING website to generate a 
PPI network of OFRGs and imported Cytoscape software 
to screen out the five most critical OFRGs (Fig. 2A). Con-
sensus clustering analysis was performed, dividing all GC 
samples into two OFRG clusters (K = 2) (Fig.  2B, Table 
S2). PCA and t-SNE demonstrated significant dispersion 

Fig. 1  Genetic, expression, and mechanism analysis of OFRGs in gastric cancer. (A) Determine 76 OFRGs through Veen diagram. (B) GO and KEGG analy-
ses of OFRGs. (C) The mutation state of OFRGs in somatic cells. (D) The frequency of CNVs gain and loss in OFRGs. (E) Locations of CNV alterations in OFRGs 
on chromosomes. (F) Determine OFRG associated with prognosis through univariate Cox analysis. (G) The expression of OFRGs in normal gastric samples 
and gastric cancer samples in the TCGA database. ns p > 0.5; *p < 0.05; **p < 0.01; ***p < 0.001. OFRGs, oxidative stress and ferroptosis-related genes; GO, 
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; CNV, copy number variation; TCGA, The Cancer Genome Atlas
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Fig. 2  Consensus clustering analysis. (A) PPI network of OFRGs constructed utilized STRING website and Cytoscape software. (B) Consensus clustering 
analysis based on OFRGs. (C) PCA and t-SNE analysis of OFRG clusters. (D) K-M analysis of OFRG clusters. (E) Evaluate the level of immune cell infiltration 
through the ssGSEA algorithm. (F) GSVA analysis of OFRG clusters. (G, H) GO and KEGG analysis of DEGs between OFRG clusters. ns p > 0.5; *p < 0.05; 
**p < 0.01; ***p < 0.001. PPI, Protein-Protein Interaction; OFRGs, oxidative stress and ferroptosis-related genes; PCA, principal component analysis; t-SNE, 
t-distributed stochastic neighbor embedding; K-M, Kaplan-Meier; ssGSEA, single sample gene set enrichment analysis; GSVA, gene set variation analysis; 
DEGs, differentially expressed genes
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between the two clusters, which is helpful for distin-
guishing patients (Fig.  2C). Furthermore, a statistically 
significant distinction in survival outcomes was observed 
between the two patient groups (p < 0.05), with patients 
in cluster A showing a more prolonged OS(Fig. 2D). We 
used the ssGSEA approach to measure the expression 
levels of immune cells in two clusters. We identified sig-
nificant differences in 20 different types of immune cells, 
with cluster B displaying higher immune-suppressive cell 
infiltration (Fig.  2E). Subsequently, we employed GSVA 
analysis to generate a heat map of the KEGG pathway 
between the two clusters. The enrichment pathways of 
cluster A, namely “BASE_EXCISION_REPAIR”, “PER-
OXISOME”, and “CITRATECYCLE_TCA_CYCLE”, pri-
marily focus on cellular function and metabolism. The 
pathways enriched in cluster B, such as “TGF_BETASIG-
NALING_PATHWAY” and “FOCAL_ADHENSION,” are 
linked to matrix and cancer activation (Fig.  2F). Subse-
quently, we conducted differential analysis on clusters 
A and B (| logFC |>1.0 and FDR < 0.05) and performed 
enrichment analysis on DEGs. The GO analysis implied 
that these DEGs were primarily enriched in pathways, 
including “Leukocyte migration”, “myeloid Leuko-
cyte migration”, and “response to lipopolysaccharide” 
(Fig. 2G). According to KEGG findings, DEGs were asso-
ciated with pathways that promote inflammation and 
carcinogenesis, such as the “IL-17 signaling pathway” and 
the “PI3K-Akt signaling pathway” (Fig. 2H).

Construction and validation of a prognostic risk signature
Upon identifying prognostic-related genes by univari-
ate COX analysis on the aforementioned DEGs (Fig. 3A), 
we categorized all GC samples into gene clusters A or 
B (K = 2) using clustering analysis (Fig.  3B, Table S1). 
Expression levels of JUN, IL6, and PTGS2 were lower 
in gene cluster B, whereas SRC expression was elevated. 
TP53 did not significantly change between the two gene 
clusters (Fig.  3C). In addition, the K-M curve indicated 
that patients in gene cluster B had a superior prognosis 
(Fig.  3D). Then, we performed LASSO analysis to miti-
gate the risk of overfitting and ultimately constructed 
a prognostic signature for OFRGs, including SLC7A2, 
CDH19, and CCN1, through multivariate analysis 
(Fig. 3E, F). The risk score for each sample was calculated 
as follows: Risk score= (0.128282677879963) × SLC7A2 
expression + (0.13087784597397) × CDH19 expression 
+ (0.120683245893589) × CCN1 expression. GC patients 
were classified as high-risk or low-risk groups based 
on the median risk score. Table S4 displays the results 
of the risk score. Notably, the high-risk group exhib-
ited elevated expression levels of SLC7A2, CDH19, and 
CCN1 (Fig. 3G). Furthermore, K-M analysis revealed that 
the groups with higher expression levels of these three 
genes had worse prognostic outcomes and a shorter OS 

period (Fig. 3H). Afterward, we generated a Sankey plot 
of OFRG clustering, gene clustering, risk signature, and 
survival outcomes (Fig. 4A). Figure 4B and C illustrated 
that the risk scores of cluster B and gene cluster A groups 
were significantly higher, supporting the consistency and 
reliability of the previous analysis. K-M analysis indicated 
that the OS of high-risk scoring populations in the TCGA 
and GSE84437 cohorts was significantly shorter (Figs. 4D 
and 5A), and the scatter plot of risk scores and patient 
survival statistics also demonstrated that patients with 
higher risk scores had a higher risk of death (Figs. 4E and 
5B). The ROC curve displayed area under curve (AUC) 
values of 0.631, 0.637, and 0.652 for 1, 3, and 5 years, 
respectively. Compared to other clinical features, the risk 
signature has the highest 5-year AUC value (Fig. 4F), and 
consistent results were shown in the GSE84437 cohort 
(5  C). Through PCA method dimensionality reduction 
analysis, we found that the high and low-risk groups 
exhibited two distinct development trend directions with 
good dispersion, suggesting that the risk score can effec-
tively differentiate GC patients (Fig. 4G).

In addition, to further evaluate the significance of 
risk score in predicting the prognosis of GC patients, 
we carried out COX regression analysis on risk score 
and several clinical characteristics, including age, gen-
der, grade, and stage. Univariate Cox analysis displayed 
that Age (HR = 1.022, 95% CI = 1.006–1.039, p < 0.01), 
Stage (HR = 1.596, 95% CI = 1.294–1.970, p < 0.001), and 
Risk score (HR = 1.685, 95% CI = 1.339–2.120, p < 0.001) 
can significantly affect the OS of GC. In multivariate 
Cox analysis, Age (HR = 1.032, 95% CI = 1.015–1.050, 
p < 0.001), Stage (HR = 1.676, 95% CI = 1.346–2.087, 
p < 0.001), and Risk score (HR = 1.717, 95% CI = 1.353–
2.180, p < 0.001) were independent prognostic factors. 
Cox regression analysis of univariate (HR = 3.261, 95% 
CI = 1.521–6.997, p = 0.002) and multivariate (HR = 3.812, 
95% CI = 1.761–8.253, p < 0.001) in the GSE84437 cohort 
also confirmed the best predictive effect of risk score 
(Fig.  5D). Later, we conducted mechanistic analysis 
on the high and low-risk groups using GSVA, suggest-
ing that the low-risk group’s enriched pathways were 
primarily related to cellular metabolism and function. 
In contrast, the high-risk group was linked to signaling 
pathways associated with cancer occurrence and devel-
opment, such as “TGF_BETA,” “HEDGELOG,” “MTOR,” 
and “MAPK,” as well as the matrix secretion and activa-
tion pathways like “FOCAL_ADHESION” and “GAP_
JUNCTION” (Fig. 5E).

Establishment and evaluation of a nomogram
In order to predict GC individuals’ survival time and sur-
vival rate, researchers constructed a clinical nomogram 
combining clinical pathological features and risk scores 
(Fig. 5F, Table S5). For instance, the nomogram predicts 
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a patient’s 1-year, 3-year, and 5-year survival rates to be 
62.1%, 23.8%, and 13.6%, respectively, with a total score 
of 159. The C-index value of calibration curve and AUC 
of the ROC curve for years 1, 3, and 5 of the nomograms 
were all greater than 0.65, confirming the accuracy of 

the prediction capacity of the nomogram. Moreover, 
we examined the correlations between the risk score 
and the clinical pathological features of GC, discovering 
that higher grades, later T stages, and death populations 
all had considerably higher risk scores (Figure S2 A-H). 

Fig. 3  Development of a prognostic risk signature for OFRGs. (A) Genes associated with prognosis in DEGs of clusters A and B. (B) Divide gene clusters 
based on consensus clustering analysis. (C, D) Expression and prognostic analysis of gene clusters. (E) Lasso Cox regression analysis and cross-validation. 
(F) Multivariate Cox analysis for determining the optimum signature genes. (G) Expression of signature genes in high and low-risk subgroups. (H) K-M 
analysis of signature genes in the risk signature. *p < 0.05; **p < 0.01; ***p < 0.001. OFRGs, oxidative stress and ferroptosis-related genes; DEGs, differentially 
expressed genes; LASSO, Least Absolute Shrinkage and Selection Operator; K-M, Kaplan-Meier
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Fig. 4  Evaluation of the risk signature. (A) Sankey plot between OFRG clusters, gene clusters, risk signature, and GC prognosis. (B) The relationship be-
tween OFRG clusters and risk scores. (C) The relationship between gene clusters and risk scores. (D) K-M analysis of the risk signature in the TCGA-STAD 
queue. (E) Distributions of risk scores and survival statuses. (F) ROC curve for the risk signature and other clinical characteristics. (G) PCA between risk 
subgroups based on the OFRGs signature. (H) Cox regression analyses of the signature and other clinical parameters in the TCGA cohort. OFRGs, oxida-
tive stress and ferroptosis-related genes; GC, gastric cancer; K-M, Kaplan-Meier; ROC, receiver operating characteristics curve; PCA, principal component 
analysis. OFRGs, oxidative stress and ferroptosis-related genes; GC, gastric cancer; K-M, Kaplan-Meier; TCGA, The Cancer Genome Atlas
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Fig. 5  Validation of the risk signature. (A) K-M analysis in the GSE84437 queue. (B) Distributions of risk scores and survival statuses in the GSE84437 co-
hort. (C) ROC curve for the risk signature and clinical characteristics in the GSE84437 cohort. (D) Univariate and multivariate Cox regression analyses in the 
GSE84437 cohort. (E) GSVA analysis for the risk signature. (F) A clinical nomogram constructed based on age, stage, and risk scores. (G) Calibration plot 
for the nomogram. (H) ROC curve for the nomogram and other clinical characteristics. K-M, Kaplan-Meier; ROC, receiver operating characteristics curve; 
GSVA, gene set variation analysis
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Additionally, low-score patients had significantly longer 
OS in the age ≤ 65, male, G3 level, T3-T4 stage, N1-N3 
stage, and M0 subgroups (Figure S2 I-O).

Assessment of immune cell infiltration and immunological 
function
As seen in Fig. 6A, the stromal and immune scores of the 
high-risk group were significantly higher, indicating that 
the GC population with high-risk scores had a higher 
proportion of stromal cell and immune cell infiltra-
tion in the TME. After that, we explored the correlation 
between risk scores and immune function. Our analysis 
revealed that the low-risk group was primarily associated 
with functions like MHC class I and Th2 cells, whereas 
the high-risk group had higher levels of immune cell 
infiltration, including dendritic cells (DC), neutrophils, 
regulatory T cells (Treg), tumor-infiltrating lymphocytes 
(TIL), and so on (Fig. 6B). Likewise, we investigated the 
relationship between TIICs and risk scores using mul-
tiple methods. The findings demonstrated that, with the 
exception of activated CD4 T cells and type 17 T helper 
cells, which were negatively correlated with risk scores, 
the majority of tumor-infiltrating immune cells (TIICs), 
such as macrophage, myeloid-derived suppressor cells 
(MDSCs), and Treg, were positively correlated with risk 
scores. These cells demonstrated a higher proportion of 
infiltration in the high-risk group (Fig. 6C-F, Table S6).

Prediction of immunotherapy efficacy
The use of immunotherapy in cancer treatment has 
extremely high clinical value. However, its efficacy is 
limited to a subset of patients, as tumor cells can evade 
immune detection and develop resistance to immuno-
therapy [37]. The TIDE score can reflect the possibility of 
immune escape during immunotherapy and evaluate the 
potential clinical efficacy of immunotherapy in different 
risk groups. As shown in Fig. 6G, the TIDE, Dysfunction, 
and Exclusion scores of the high-risk scoring group were 
substantially higher than those of the low-risk scoring 
group. This suggests that patients in the high-risk scoring 
group are more likely to have immunological dysfunction 
and to develop resistance to immune therapy. We also 
studied the association between risk scores and several 
common immunological checkpoints (Fig. 7B). Addition-
ally, we discovered a negative correlation between risk 
score and RNAss (Fig. 6H).

Microsatellites are repetitive sequences of small frag-
ments of nucleic acids present in the genome with high 
mutagenicity. Functional defects in mismatch repair 
(MMR) proteins cause microsatellite instability (MSI), 
which raises the risk of tumor formation by inducing a 
high mutation phenotype in the genome. Microsatel-
lites are classified into three groups based on their status: 
MSS, MSI-L, and MSI-H. The proportion of MSI-H varies 

significantly among tumor types, with a higher incidence 
observed in solid tumors such as GC, colorectal cancer 
(CRC), and endometrial cancer (EC) [38]. The detection 
of MSI is crucial for the diagnosis, treatment, and prog-
nosis of various solid tumors, including CRC and EC. 
MSI-H is an independent prognostic marker for stage II 
colorectal cancer. Compared to MSS patients, those with 
MSI-H have a better prognosis for GC and small intestine 
adenocarcinoma [39, 40]. Likewise, MSI-H patients are 
more responsive to immunotherapy, benefiting from ICIs 
regardless of cancer type [41, 42]. Consequently, we ana-
lyzed the connection between risk scores and microsatel-
lite status. Our findings revealed that the MSI-H group 
had the lowest risk score, and the low-risk group had a 
higher proportion of MSI-H (27% vs. 10%), indicating 
that the GC population with low-risk scores was more 
likely to benefit from immunotherapy (Fig. 7A, Table S7). 
Additionally, this study uncovered a relationship between 
risk scores and the effectiveness of ICIs. As Fig. 7C illus-
trated, patients in the low-risk group responded better to 
several ICI groups, including ctla4_neg_pd1_pos, ctla4_
pos_pd1_neg, and ctla4_pos_pd1_pos.

We next investigated the somatic mutation data from 
the TCGA-STAD cohort and visualized the results using 
a waterfall plot. Researchers observed that the low-risk 
scoring group had a higher mutation frequency (93.68% 
vs. 88.04%), with missense mutation being the most com-
mon mutation and TTN being the gene with the greatest 
mutation frequency (Fig. 7D). In recent years, TMB has 
received great attention in studying ICI-related biomark-
ers. TMB can indirectly reflect the ability and degree of 
tumors to produce new antigens and has been proven to 
predict the efficacy of immunotherapy for various malig-
nancies [43]. Treatment with ICIs is more likely to be 
beneficial for patients with high TMB (TMB-H). There-
fore, we calculated the TMB value for each patient with 
GC and discovered that the low-risk group had a higher 
TMB score (Fig. 7E), and the TMB-H group had a longer 
OS time (Fig. 7F). Moreover, in the combined analysis of 
TMB and risk scores, the population with high TMB and 
low-risk scores had the longest OS and the best progno-
sis (Fig.  7G). Lastly, we also forecasted drug sensitivity 
based on the risk scores, finding that the low-risk score 
group exhibited lower IC50 values and higher sensitivity 
for a few commonly utilized chemotherapeutic agents, 
such as 5-Fluorouracil, Oxaliplatin, Irinotecan, and Cis-
platin FigureS3A).

Determination CDH19 as a potential biomarker for GC
The researchers evaluated the diagnostic efficacy of 
genes in the signature model using ROC curves. The 
AUC for SLC7A2, CDH19, and CCN1 were 0.524, 
0.793, and 0.487, respectively, with CDH19 show-
ing the best diagnostic efficacy (Fig.  8A). Therefore, we 
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Fig. 6  The correlation between the risk signature and immune cell infiltration. (A) The stromal, immune, and estimate scores of GC patients. (B) Immune 
function analysis for risk subgroups. (C-D) Analyzing the infiltration levels of TIICs in high and low-risk groups using several algorithms. (E) Heatmap be-
tween the risk signature and immune infiltrating cells. (F) Spearman analysis between the risk signature and several TIICs, including activated CD4 T cell 
and regulatory T cell. (G) TIDE, dysfunction, and exclusion in high and low-risk groups. (H) Expression of ICIs in risk groups. *P < 0.05; **P < 0.01; ***P < 0.001. 
GC, gastric cancer; TIICs, tumor-infiltrating immune cells; TIDE, tumor immune dysfunction and exclusion; ICIs, immune checkpoint inhibitors
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Fig. 7  Prediction of immunotherapy efficacy. (A) Analysis of risk scores and microsatellite state. (B) The correlation between risk scores and RNAss. (C) 
Predict the efficacy of anti-PD-1 and anti-CTLA-4 antibodies in the risk subgroup. (D) Waterfall diagram of somatic mutations in high and low risk scoring 
groups. (E) TMB scores in high and low-risk groups. (F) K-M curve of OS in high and low-TMB groups. (G) K-M curve survival curves among the four groups 
that combined TMB with risk signature. *P < 0.05; **P < 0.01; ***P < 0.001. RNAss, RNA stemness scores; TMB, tumor mutation burden; OS, overall survival. 
K-M, Kaplan-Meier; OS, overall survival
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decided to conduct further research on CDH19. Firstly, 
a PPI network of genes closely associated with CDH19 
was constructed through the STRING website, and 
then imported into Cytoscape software for processing 

(Fig.  8B). The correlation heatmap showed that CDH19 
had the highest correlation with CDH10, CDH11, and 
CDH18 (correlation coefficient > 0.4), with all p-values 
less than 0.001(Fig.  8C). To detect the expression of 

Fig. 8  Identifying CDH19 as a potential gastric cancer biomarker. (A) ROC curves for diagnosing gastric cancer, including SLC7A2, CDH19 and CCN1. (B) 
PPI network of proteins closely related to CDH19. (C) Heatmap of CDH19 and related genes. (D) The expression levels of CDH19 in GC tissue and normal 
gastric tissue, including GTEx database, TCGA-STAD cohort, and GSE54129 cohort. (E) Determination of CDH19 expression levels in gastric cancer cell lines 
and normal gastric epithelial cells by qRT -PCR, and the experiment was repeated three times. (F) Immune cell infiltration analysis of high and low CDH19 
expression groups. (G) The tumor immune dysfunction and exclusion score of different CDH19 expression groups. (H) Evaluation of CDH19 expression 
and microsatellite status. (I) The relationship between CDH19 expression, TMB score, and prognosis. ns P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001. ROC, 
receiver operating characteristics curve; PPI, Protein-Protein Interaction; qRT-PCR, quantitative real-time polymerase chain reaction; GC gastric cancer; 
TCGA, The Cancer Genome Atlas; TMB, tumor mutation burden
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CDH19 in GC and normal gastric tissues, the research-
ers included STAD samples from the GTEx database 
to reduce sample bias. After integration, a total of 620 
samples were obtained, comprising 210 normal gastric 
samples and 410 GC samples. Visualization using the 
“limma” package revealed that CDH19 expression was 
higher in GC, suggesting that CDH19 may be play a role 
in the occurrence and development of GC. Subsequently, 
the researchers validated through the GSE54129 cohort 
that the expression level of CDH19 in GC was also higher 
than that in normal gastric tissue (Fig. 8D). Therefore, to 
verify CDH19 expression levels, we performed the qRT-
PCR experiment and found that CDH19 was consider-
ably up-regulated in GC cell lines (AGS, HGC-27, and 
MKN-7) (Fig. 8E). Additionally, we divided all individu-
als into high and low groups based on the expression of 
CDH19 and performed K-M analysis to better under-
stand the impact of CDH19 on the prognosis of GC 
patients. The results revealed that OS, PFS, and DFS were 
shorter in the population with high CDH19 expression 
(Fig. 3H, S3B). As a result, we speculate that CDH19 may 
serve as a pro-oncogene and that patients with higher 
expression levels may have shorter lifetimes and worse 
prognoses. According to GSEA analysis, the high CDH19 
expression population was associated with “PPAR_SIG-
NALING_PATHWAY”, “MAPK_SIGNALING_PATH-
WAY”, “HEDGEHOG_SIGNALING_PATHWAY”, 
“FOCAL_ADHESION” and “GAP_JUNCTION“(Figure 
S3C), which were linked to the occurrence of cancer and 
matrix activation. Furthermore, ssGSEA analysis showed 
that the low CDH19 expression group had more acti-
vated CD4T cells infiltration, whereas the high CDH19 
group had a higher proportion of immunosuppressive 
cells, such as macrophages, MDSCs, and Tregs (Fig. 8F). 
Similarly, for immunotherapy-related indicators and bio-
markers, the CDH19 high expression group exhibited 
higher TIDE, Dysfusion, and Exclusion scores (Fig.  8G) 
but lower MSI-H ratios and TMB scores (Fig. 8H-I), illus-
trating that CDH19 can be used to direct clinical immu-
notherapy and forecast immune efficacy.

CDH19 affected the biological behavior of GC cells
We constructed RNAi negative control (sh-NC) and 
knockdown CDH19 (sh-CDH19) lentiviral vectors to 
evaluate the role of CDH19 in promoting GC cell prolif-
eration, invasion, and metastasis. After transfecting them 
into the AGS and HGC-27 cell lines, we validated the 
knockdown effect using qRT-PCR assay. Figure  9A and 
B demonstrated that sh-CDH19-1 and sh-CDH19-2 in 
AGS, as well as sh-CDH19-2 and sh-CDH19-3 in HGC-
27, exhibited the most pronounced knockdown effects. 
Thus, we selected the cells above for subsequent pheno-
typic experiments. Cell viability and proliferation were 
assessed using the MTT assay and colony formation 

assay. The findings indicated that the AGS knockdown 
group (Fig. 9C, E, H) and the HGC-27 knockdown group 
(Fig.  9D, F, H) had considerably lower cell viability and 
proliferation capacity than the control group (sh-NC). 
Following this, a 48-hour wound-healing experiment 
revealed that the migration ability of GC cells in the sh-
CDH19 group was significantly reduced (Fig.  9G). All 
experimental data in Table S8. Thus, we preliminarily 
infer that knocking down CDH19 expression inhibited 
the growth and migration of GC.

CDH19 affects ferroptosis and oxidative stress in GC cells
As shown in Fig.  9I, researchers used FerroOrange 
reagent for iron staining and found that the intensity 
and concentration of iron ion staining were higher in sh-
CDH19 cells. The expression level of ACSL4 is lower in 
GES-1 cells, while the expression level of GPX4 is higher 
in AGS and HGC-27 cells (Fig.  10A), ACSL4, a lipid 
metabolism enzyme, is known to promote ferroptosis 
when its expression or activity is elevated [44], indicating 
that ferroptosis may be involved in the occurrence of GC. 
Subsequently, Western blot results exhibited an increase 
in ACSL4 transcription levels in the sh-CDH19 group, 
and a decrease in GPX4 transcription levels (Fig.  10B). 
Therefore, CDH19 may be involved in regulating ACSL4 
and GPX4 related pathways, thereby affecting the occur-
rence of ferroptosis.In addition, to explore whether 
CDH19 influences the oxidative stress process, we used 
DCFH-DA and DHE reagents to measure ROS levels in 
GC cells. The study discovered that ROS was significantly 
increased in the sh-CDH19 groups of AGS and HGC-27 
cell line (Fig. 10C, D), implying that suppressing CDH19 
expression may enhance oxidative stress and increase 
ROS accumulation.

Discussion
GC is a malignant tumor with a high incidence rate and 
mortality, and its overall prognosis is unfavorable. In 
recent years, immunotherapy, mainly with ICIs, has sig-
nificantly improved the objective response rate (ORR) 
and OS of patients with advanced malignant tumors. 
Nevertheless, the overall treatment effectiveness rate is 
less than 20%, and the cost is generally expensive, often 
accompanied by varying degrees of immune-related 
adverse reactions. Therefore, it is urgent to find accurate 
and reliable biomarkers to screen potential beneficiaries 
of immunotherapy.

The underlying mechanism of ferroptosis, an iron-
dependent cell death, is lipid peroxidation induced by 
oxidative stress. The primary cause of ferroptosis is 
the build-up of ROS, which leads to lipid peroxidation 
and exceeds the redox levels of glutathione (GSH) and 
GPX4. This disrupts cell membrane integrity and ulti-
mately triggers cell death [45]. Iron, lipids, and ROS play 
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Fig. 9  CDH19 promotes the proliferation and migration of GC cells. (A, B) The expression of CDH19 in gastric cancer cell control (sh-NC) and knockdown 
(sh-CDH19) groups was examined utilized the qRT-PCR assay and select the two cell lines with the most obvious knockdown for subsequent experiments, 
repeating the experiment three times. (C-F) The MTT assay was employed to evaluate the proliferation and viability of AGS and HGC-27 GC cells. (G) 
The wound-healing experiment assessed the GC cell’ migration capacity and calculate its migration rate. (H) Colony formation experiments of AGS and 
HGC-27 cells lines, including sh-NC and sh-CDH19 groups. (I) Iron staining of AGS and HGC-27 cells lines. ns P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001. **** 
P < 0.0001. GC, gastric cancer; qRT-PCR, quantitative real-time polymerase chain reaction
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Fig. 10  CDH19 participates in ferroptosis and oxidative stress. (A) Expression levels of ACSL4 and GPX4 in GES-1, AGS and HGC-27 cell lines. (B) Exploring 
the effect of CDH19 on ferroptosis-related proteins GPX4 and ACSL4 in GC cells through Western-blot experiments. (C-D) Exploring the effect of CDH19 
on reactive oxygen species levels in GC cells through immunofluorescence staining. Above experiments were repeated three times. GC, gastric cancer; 
GPX4, glutathione peroxidase 4
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irreplaceable roles in the process of ferroptosis. Ferropto-
sis is regulated by multiple cellular metabolic pathways, 
including mitochondrial activity, sugar, amino acid, and 
lipid metabolism, as well as signaling pathways related to 
cell proliferation and tumor progression [46]. Tumor cells 
can evade ferroptosis and promote cancer metastasis 
by limiting the synthesis and peroxidation of PUFA-PL, 
restricting the supply of unstable iron, and upregulat-
ing the cellular defense system [6]. According to reports, 
the inactivation of tumor suppressor factors such as p53, 
BAP1, and KEAP1, or the activation of the oncogene 
KRAS, can upregulate the expression of SLC7A11, lead-
ing to a reduction in ferroptosis in tumor cells [18, 47]. 
Tumor cells also avoid ferroptosis through metabolic 
reprogramming. For example, when insufficient energy 
metabolism causes a decrease in ATP content, can-
cer cells activate the AMPK signaling pathway, thereby 
reducing PUFA synthesis and ultimately decreasing fer-
roptosis. Therefore, inhibiting the AMPK-ACC-PUFA 
signaling pathway may produce anti-tumor effects and 
enhance the efficacy of immunotherapy and chemother-
apy treatment [48].

Additionally, PI3K-AKT mTOR is one of the most 
frequently mutated signaling pathways in cancer, with 
both mTORC1 and mTORC2 involved in ferroptosis. 
mTORC2 can phosphorylate SLC7A11 and inhibit its 
transport activity. Activating the LATS1/2 kinase in the 
Hippo pathway can lead to the inactivation of mTORC1, 
preventing the degradation of SLC7A11 in lysosomes. 
Moreover, the PI3K-AKT mTORC1 signaling pathway 
plays a crucial role in maintaining cellular redox bal-
ance through NRF2-mediated signal transduction and 
SREBP1/SCD1-mediated MUFA synthesis [49]. Litera-
ture has demonstrated that ferroptosis can induce GC 
cell death, and its combination with various chemo-
therapy drugs is expected to overcome drug resistance 
in GC patients [50]. Given the poor prognosis of GC, it 
is crucial to identify genes related to oxidative stress and 
ferroptosis as clinical diagnostic and therapeutic markers 
for GC.

This study successfully developed a prognostic sig-
nature for OFRGs through bioinformatics analysis 
and experiments. Besides, CDH19 was identified and 
validated as a potential biomarker for GC. We initially 
employed expression and mutation analysis on OFRGs 
and investigated their relationship with the prognosis of 
GC. Afterwards, consensus clustering analysis divided all 
GC samples into two clusters (K = 2). The Kaplan-Meier 
survival analysis revealed that cluster A had a more 
extended OS period, and immune infiltration analysis 
indicated that cluster B had a higher level of immune cell 
infiltration. Enrichment analysis showed that cluster B 
was closely related to signaling pathways such as “IL-17”, 
“PI3K Akt”, and “JAK-STAT.” Subsequently, a prognostic 

signature for OFRGs, including SLC7A2, CDH19, and 
CCN1, was constructed via LASSO and multivariate Cox 
analysis. In the TCGA-STAD and GSE84437 queues, the 
survival of high-risk score populations was substantially 
shorter, and mortality risk was significantly increased. 
The risk scores of cluster B and gene cluster A were ele-
vated, confirming the consistency of the above analysis. 
The ROC curve suggested that the predictive ability of the 
risk signature is superior to conventional clinical patho-
logical parameters. Further, univariate, and multivariate 
Cox analysis indicated that age, stage, and risk score are 
all risk factors for the prognosis of GC. Following that, 
we employed GSVA to perform functional analysis on 
the high and low-risk groups, discovering that the low-
risk group’s enriched pathways were primarily related to 
cellular metabolism and function. In contrast, the high-
risk group was linked to signaling pathways associated 
with cell proliferation and cancer development, such as 
“TGF-β,” “Hedgehog,” “MTOR,” and “MAPK.” Next, we 
established a clinical nomogram based on age, stage, and 
risk score, and the nomogram prediction’s reliability was 
validated using the calibration and ROC curves.

TME is a dynamic ecosystem composed of cellular 
components such as tumor cells, immune cells, stromal 
cells, and non-cellular components such as extracel-
lular matrix and blood vessels. These elements interact 
with each other and affect the growth and progression 
of tumors [51]. The relationship between ferroptosis and 
TME is complicated. On the one hand, ferroptosis in 
cancer cells can trigger or regulate immune responses in 
TME. On the other hand, immune cells in TME exhibit 
significant differences in sensitivity to ferroptosis, and 
different types of immune cells can enhance or inhibit 
ferroptosis in cancer cells [52]. Due to the intricate TME 
and insufficient immune system activation, tumor cells 
undergo immune escape, resulting in limited immune 
therapy response in many cancer patients. ICIs based 
on tumor cell ferroptosis are expected to provide new 
strategies for improving ferroptosis-mediated immuno-
therapy. In the analysis of immune function and immune 
infiltration, researchers discovered that the infiltrating 
proportion of stromal cells and immune cells (especially 
neutrophils, M2 macrophages, MDSC, T-regs) in the 
TME was higher in populations with high-risk scores. 
These cells can shape an immune-suppressive microen-
vironment within tumors, trigger immunological escape, 
and develop immune resistance, thereby promoting can-
cer occurrence and progression [53, 54]. Considering the 
high clinical value of ICIs in treating cancer, research-
ers are exploring the role of risk scores in predicting the 
effectiveness of immunotherapy. In the high-risk popula-
tion, TIDE, Dysfunction, and Exclusion scores are signifi-
cantly higher, indicating a higher probability of immune 
dysfunction and resistance to immunotherapy resistance 
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in these patients. In addition, we analyzed the relation-
ship between risk scores and microsatellite status. The 
MSI-H group exhibited the lowest risk score, and the 
low-risk group had a higher proportion of MSI-H and 
increased response rates to different ICI treatments. Sub-
sequently, through somatic mutation analysis, we found 
that the low-risk scoring group had higher mutation fre-
quency, elevated TMB score, and more prolonged OS, 
indicating a greater likelihood of benefiting from immu-
notherapy in the GC population with low-risk scores.

Following that, the researchers discovered the differen-
tial expression of CDH19 between GC and para-cancer 
tissues, and the qRT-PCR experiment demonstrated that 
CDH19 was significantly upregulated in GC cell lines. 
CDH19 is one of the type II cadherin genes located in 
chromosome cluster 18 and is an important member 
of the cadherin family. This family consists of 23 mem-
bers, among which the widely studied cadherin proteins 
include epithelial (E -) cadherin (CDH1), neural (N -) 
cadherin (CDH2), placental (P -) cadherin (CDH3), 
and retinal (R -) cadherin (CDH4). The cadherin fam-
ily, comprising transmembrane glycoproteins, mediates 
calcium dependent intercellular adhesion and regulates 
cell growth and differentiation [55]. The changes in the 
expression of cadherins play a crucial role in tumori-
genesis, tumor progression, angiogenesis, and tumor 
immune response [56]. For example, dysregulation of the 
cadherin catenin complex can activate oncogenic path-
ways, including Wnt and TGF - β, which contribute to 
epithelial mesenchymal transition (EMT) and promote 
cancer occurrence and metastasis [57]. The charac-
teristic of EMT is the loss of CDH1 expression and the 
accompanying upregulation of CDH2, which is associ-
ated with increased migration and invasiveness as well as 
poor prognosis. In addition, epigenetic reprogramming 
of EMT promotes ferroptosis in cancer cells. The EMT 
markers CDH1 and ZEB1 are closely related to the fer-
roptosis sensitivity of cancer cells. Previous studies have 
reported that CDH1 mediated cell-cell contact inhibits 
ferroptosis by activating the intracellular NF2-YAP1 and 
Hippo signaling pathways, indicating that the mainte-
nance of NF2 and CDH1 inhibits ferroptosis related lipid 
peroxidation and cell death [16]. In diffuse GC, func-
tional loss mutations in CDH1 have also been shown to 
increase sensitivity to ferroptosis [58]. HPCAL1-depen-
dent CDH2 depletion increases susceptibility to ferrop-
tosis by reducing membrane tension and promoting lipid 
peroxidation. Conversely, CDH2-mediated increase in 
membrane tension inhibits ferroptosis, potentially due to 
effects on membrane fluidity and the uptake of iron and 
other extracellular metabolites [59]. It is reported that the 
overexpression of CDH1/2/4/11/12/13 mRNA in breast 
cancer is associated with extracellular matrix remod-
eling, EMT activation and WNT/β - catenin signaling 

pathway imbalance, leading to poor prognosis in breast 
cancer patients [55]. In addition, studies have shown 
that overexpression of CDH4 in oral squamous cell car-
cinoma (OSCC) can promote the proliferation, invasion, 
and migration of cancer cells, which may be related to 
the EMT pathway. Researchers have confirmed through 
experiments that in OSCC the downregulation of CDH4 
leads to a decrease in GPX4 and GSH, a decrease in GSH/
GSSG ratio, and an increase in GSSG and MDA, reveal-
ing that CDH4 can resist cell sensitivity to ferroptosis and 
reduce cell death by inhibiting ferroptosis [60]. CDH19 is 
related to the prognosis of numerous types of cancer. The 
OS period of patients with high expression of CDH19 in 
cervical cancer is significantly longer [61], but those with 
high CDH19 expression in bladder cancer have a dismal 
prognosis [62]. According to reports, CDH19 inhibits 
cervical cancer cell proliferation as well as the activation 
of the AKT and NF- κB signaling pathways, which may 
be a potential therapeutic target for cervical cancer [61]. 
In addition, in triple-negative breast cancer (TNBC), the 
hsa_circ_0006220/miR-197-5p/CDH19 pathway may 
contribute to disease progression [63]. In summary, these 
studies suggest that cadherins (CDHs) may be potential 
targets for cancer treatment. The CDH family is closely 
associated with ferroptosis and may act as a biomarker 
for predicting cancer cell susceptibility to ferroptosis. 
Nevertheless, the relationship between CDH19 and the 
pathogenesis and prognosis of GC is still unclear, and 
the relationship between CDH19 and ferroptosis has not 
been fully explored.

Researchers performed K-M analysis in CDH19 dif-
ferentially expressed population, discovering that the 
population with high CDH19 expression had a worse 
prognosis. Therefore, we speculate that CDH19 may be 
a risk factor for GC. Through GSEA analysis, researchers 
revealed that the high CDH19 expression is correlated 
to cancer activation related signaling pathways such as 
PPAR, MAPK, Hedgehog, as well as intercellular adhe-
sion pathways such as FOCAL-ADHESION and GAP_
JUNCTION. Moreover, populations with high CDH19 
expression exhibit lower infiltration of activated CD4 
T cells with anti-tumor effects, but a higher percentage 
of immunosuppressive cells, such as M2 macrophages 
and Tregs. The high and low CDH19 groups differ sig-
nificantly in the expression of markers linked to immu-
notherapy, suggesting that CDH19 can also be utilized 
to direct clinical immunotherapy and forecast immune 
efficacy.

Later, researchers constructed GC cell lines with 
knockdown CDH19 expression and validated the effect. 
The MTT cell viability analysis and colony formation 
assays displayed that compared with the control group 
(sh-NC), the AGS and HGC-27 knockdown groups 
(sh-CDH19) exhibited a significant decrease in GC cell 
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viability and proliferation. Furthermore, the wound heal-
ing experiment demonstrated a marked reduction in the 
migratory ability of GC cell in the CDH19 knockdown 
group. Consequently, we preliminarily confirmed that 
CDH19 promoted GC cell migration and proliferation. 
Additionally, we observed significantly higher levels of 
ROS in the CDH19 knockdown group of AGS and HGC-
27 cell lines. Further, Western blot findings revealed that 
the transcription level of GPX4 in the sh-CDH19 group 
decreased while the expression level of ACSL4 increased. 
GPX4 is a crucial resistance factor to ferroptosis, main-
taining intracellular redox balance by inhibiting lipid 
peroxidation and catalytic reduction reactions [64]. Cur-
rently, the XC-/GSH/GPX4 system is one of the exten-
sively studied pathways for ferroptosis inhibition. Cystine 
enters cells through the XC- system and generates cyste-
ine under the action of GSH, participating in GPX4 clear-
ing lipid peroxides. SLC7A11 is a transporter subunit of 
the XC- system, and blocking SLC7A11-mediated cys-
teine transport can induce ferroptosis in various cancer 
cells [6, 65]. Additionally, under stress, the activation of 
Nrf2 directly or indirectly promotes the expression of 
GPX4 [66], and HSPA5 also upregulates the expression 
of GPX4 by inhibiting p53 [67]. The activated XC- sys-
tem enriches intracellular cysteine, thereby regulating 
the mTORC1/4EBP1/GPX4 pathway to promote GPX4 
synthesis, reduce GPX4 degradation, and resist ferropto-
sis [68]. Overall, GPX4 plays a dual role in cancers. On 
the one hand, reducing GPX4 levels induces ferroptosis 
in cancer cells, thereby inhibiting cancer proliferation, 
development, and recurrence. On the other hand, GPX4 
reshapes TME and regulates the cancer process by pro-
moting angiogenesis and immune response [69]. In sum-
mary, high levels of GPX4 are often seen as markers of 
poor prognosis. Furthermore, ACSL4 is a lipid metabo-
lism enzyme that enhances the generation of lipid per-
oxides. ACSL4 promotes ferroptosis by promoting the 
esterification of PUFAs to acyl CoA (acyl CoA). It is 
worth noting that in a cell subgroup of triple-negative 
breast cancer, the expression level of ACSL4 is related to 
their sensitivity to ferroptosis inducers, and a similar cor-
relation is observed in drug-resistant mesenchymal carci-
noma cells and clear cell renal carcinoma cells. Therefore, 
ACSL4 is an important pharmacological target for treat-
ing ferroptosis-related diseases. Therefore, we conjec-
tured that CDH19 is involved in regulating ACSL4 and 
GPX4-related pathways. Knocking down CDH19 leads 
to decreased GPX4 transcription and increased ACSL4 
transcription, leading to reduced intracellular reduction 
capacity, accumulation of ROS, and promotion of ferrop-
tosis, ultimately causing GC cell death.

It is necessary to recognize the limitations of this work. 
Firstly, although the researchers combined normal gas-
tric tissue samples from the TCGA-STAD and GTEx 

databases to reduce bias and used GSE54129 as an inde-
pendent cohort to validate the differential expression of 
CDH19, the total sample size is still insufficient. A larger 
cohort of GC patients, particularly from Asia, needs to be 
included. Secondly, in the TCGA-STAD and GSE84437 
cohorts, GC patients with high expression of CDH19 had 
a worse prognosis, suggesting that CDH19 is a risk factor 
for GC, but further clinical validation is needed. In addi-
tion, this study preliminarily demonstrated that CDH19 
can promote the proliferation and migration of GC cells 
and explored the involvement of CDH19 in ferroptosis 
and oxidative stress. However, the exact mechanism has 
not been fully elucidated, and a large amount of data 
and experiments are still needed to explore how CDH19 
affects GC proliferation and ferroptosis. In addition, the 
complex interaction between ferroptosis and TME may 
affect the progression of GC, a field that has not been 
fully explored, and warrants further investigation in the 
future.

Conclusions
This article revealed that the OFRGs signature model can 
predict the prognosis of GC. We also identified CDH19 
as a potential biomarker for GC and preliminarily dem-
onstrated its involvement in the processes of ferroptosis 
and oxidative stress.

Supplementary Information
The online version contains supplementary material available at ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​
g​/​1​0​.​1​1​8​6​/​s​4​0​2​4​6​-​0​2​4​-​0​0​6​8​2​-​w​​​​​.​​

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Supplementary Material 5

Supplementary Material 6

Supplementary Material 7

Supplementary Material 8

Supplementary Material 9

Supplementary Material 10

Supplementary Material 11

Acknowledgements
We thank the researchers and participants in the public database that was 
utilized for this study, as well as the editor and reviewers for their valuable 
comments.

Author contributions
All authors have made contributions to the article. This study was conceived 
by SW, WQ, and JG. The data was gathered and evaluated by SW and XL. RW 
and MZ visualize data. SZ and XL conducted experimental verification. The 
article is written by SZ, RW, CL and SW. The manuscript is thoroughly reviewed 
and revised by WQ and SW. All authors examined and approved the final 
submission.

https://doi.org/10.1186/s40246-024-00682-w
https://doi.org/10.1186/s40246-024-00682-w


Page 22 of 23Wang et al. Human Genomics          (2024) 18:121 

Funding
The study was supported by Qingdao Key Clinical Specialty Elite Discipline 
and Beijing Xisike Clinical Oncology Research Foundation (Grant 
No.Y-HR2018-185, Grant No.Y2019-AZZD-0471).

Data availability
No datasets were generated or analysed during the current study.

Declarations

Ethical approval
No ethical approval is required for this study.

Consent for publication
All authors agree to publish.

Competing interests
The authors declare no competing interests.

Author details
1Department of Oncology, The Affiliated Hospital of Qingdao University, 
Qingdao, Shandong Province 266000, China

Received: 14 August 2024 / Accepted: 9 October 2024

References
1.	 Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 

2024;74(1):12–49. https:/​/doi.or​g/10.33​22/c​aac.21820.
2.	 López MJ, Carbajal J, Alfaro AL, Saravia LG, Zanabria D, Araujo JM, et al. 

Characteristics of gastric cancer around the world. Crit Rev Oncol Hematol. 
2023;181:103841. https:/​/doi.or​g/10.10​16/j​.critrevonc.2022.103841.

3.	 Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric 
cancer: descriptive epidemiology, risk factors, screening, and prevention. 
Cancer Epidemiol Biomarkers Prev. 2014;23(5):700–13. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​1​5​
8​/​1​0​5​5​-​9​9​6​5​.​E​p​i​-​1​3​-​1​0​5​7​​​​​.​​​

4.	 Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. 
Lancet. (2020);396(10251):635–48. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​1​6​/​s​0​1​4​0​-​6​7​3​6​(​2​0​)​3​1​2​
8​8​-​5​​​​​​​

5.	 Guan WL, He Y, Xu RH. Gastric cancer treatment: recent progress and future 
perspectives. J Hematol Oncol. 2023;16(1):57. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​1​8​6​/​s​1​3​0​4​
5​-​0​2​3​-​0​1​4​5​1​-​3​​​​​.​​​

6.	 Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in 
disease. Nat Rev Mol Cell Biol. 2021;22(4):266–82. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​3​8​/​s​4​1​
5​8​0​-​0​2​0​-​0​0​3​2​4​-​8​​​​​.​​​

7.	 Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and 
health implications. Cell Res. 2021;31(2):107–25. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​3​8​/​s​4​1​4​
2​2​-​0​2​0​-​0​0​4​4​1​-​1​​​​​.​​​

8.	 Conrad M, Pratt DA. The chemical basis of ferroptosis. Nat Chem Biol. 
2019;15(12):1137–47. https:/​/doi.or​g/10.10​38/s​41589-019-0408-1.

9.	 Zhang DL, Ghosh MC, Rouault TA. The physiological functions of iron regula-
tory proteins in iron homeostasis - an update. Front Pharmacol. 2014;5:124. 
https:/​/doi.or​g/10.33​89/f​phar.2014.00124.

10.	 Kuhn H, Banthiya S, van Leyen K. Mammalian lipoxygenases and their biologi-
cal relevance. Biochim Biophys Acta. 2015;1851(4):308–30. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​
1​0​1​6​/​j​.​b​b​a​l​i​p​.​2​0​1​4​.​1​0​.​0​0​2​​​​​.​​​

11.	 Zou Y, Li H, Graham ET, Deik AA, Eaton JK, Wang W, et al. Cytochrome P450 
oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat 
Chem Biol. 2020;16(3):302–9. https:/​/doi.or​g/10.10​38/s​41589-020-0472-6.

12.	 Hao X, Zheng Z, Liu H, Zhang Y, Kang J, Kong X et al. Inhibition of APOC1 
promotes the transformation of M2 into M1 macrophages via the ferroptosis 
pathway and enhances anti-PD1 immunotherapy in hepatocellular carci-
noma based on single-cell RNA sequencing. Redox Biol. (2022);56:102463. 
https:/​/doi.or​g/10.10​16/j​.redox.2022.102463

13.	 Yang F, Xiao Y, Ding JH, Jin X, Ma D, Li DQ, et al. Ferroptosis heterogeneity in 
triple-negative breast cancer reveals an innovative immunotherapy combi-
nation strategy. Cell Metab. 2023;35(1):84–e1008. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​1​6​/​j​.​c​
m​e​t​.​2​0​2​2​.​0​9​.​0​2​1​​​​​.​​​

14.	 Zou J, Wang L, Tang H, Liu X, Peng F, Peng C. Ferroptosis in Non-small Cell 
Lung Cancer: progression and therapeutic potential on it. Int J Mol Sci. 
2021;22(24). https:/​/doi.or​g/10.33​90/i​jms222413335.

15.	 Lee H, Zandkarimi F, Zhang Y, Meena JK, Kim J, Zhuang L, et al. Energy-stress-
mediated AMPK activation inhibits ferroptosis. Nat Cell Biol. 2020;22(2):225–
34. https:/​/doi.or​g/10.10​38/s​41556-020-0461-8.

16.	 Wu J, Minikes AM, Gao M, Bian H, Li Y, Stockwell BR et al. Intercellular 
interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature. 
(2019);572(7769):402–6. https:/​/doi.or​g/10.10​38/s​41586-019-1426-6

17.	 Yang WH, Ding CC, Sun T, Rupprecht G, Lin CC, Hsu D, et al. The Hippo 
Pathway Effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Rep. 
2019;28(10):2501–e84. https:/​/doi.or​g/10.10​16/j​.celrep.2019.07.107.

18.	 Forman HJ, Zhang H. Targeting oxidative stress in disease: promise and limita-
tions of antioxidant therapy. Nat Rev Drug Discov. 2021;20(9):689–709. https:/​
/doi.or​g/10.10​38/s​41573-021-00233-1.

19.	 Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative stress in Cancer. Cancer Cell. 
(2020);38(2):167–97. https:/​/doi.or​g/10.10​16/j​.ccell.2020.06.001

20.	 Farahzadi R, Valipour B, Fathi E, Pirmoradi S, Molavi O, Montazersaheb S, et 
al. Oxidative stress regulation and related metabolic pathways in epithelial-
mesenchymal transition of breast cancer stem cells. Stem Cell Res Ther. 
2023;14(1):342. https:/​/doi.or​g/10.11​86/s​13287-023-03571-6.

21.	 Franchini F, Palatucci G, Colao A, Ungaro P, Macchia PE, Nettore IC. Obesity 
and thyroid Cancer risk: an update. Int J Environ Res Public Health. 2022;19(3). 
https:/​/doi.or​g/10.33​90/i​jerph19031116.

22.	 Yu Y, Wu Y, Zhang Y, Lu M, Su X. Oxidative stress in the tumor microenviron-
ment in gastric cancer and its potential role in immunotherapy. FEBS Open 
Bio. 2023;13(7):1238–52. https:/​/doi.or​g/10.10​02/2​211-5463.13630.

23.	 Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer 
strategy. Nat Rev Drug Discov. 2013;12(12):931–47. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​3​8​/​n​r​
d​4​0​0​2​​​​​.​​​

24.	 The Gene Ontology Resource. 20 years and still GOing strong. Nucleic Acids 
Res. 2019;47(D1):D330–8. https:/​/doi.or​g/10.10​93/n​ar/gky1055.

25.	 Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res. 2000;28(1):27–30. https:/​/doi.or​g/10.10​93/n​ar/28.1.27.

26.	 Zhang H, Meltzer P, Davis S. RCircos: an R package for Circos 2D track plots. 
BMC Bioinformatics. 2013;14:244. https:/​/doi.or​g/10.11​86/1​471-2105-14-244.

27.	 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers dif-
ferential expression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015;43(7):e47. https:/​/doi.or​g/10.10​93/n​ar/gkv007.

28.	 Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with 
confidence assessments and item tracking. Bioinformatics. 2010;26(12):1572–
3. https:/​/doi.or​g/10.10​93/b​ioinformatics/btq170.

29.	 Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​
1​0​.​1​1​8​6​/​1​4​7​1​-​2​1​0​5​-​1​4​-​7​​​​​.​​​

30.	 Daniel D, West-Mitchell K. The Sankey diagram: an exploratory application of 
a data visualization tool. Transfusion. (2024). https:/​/doi.or​g/10.11​11/t​rf.17803

31.	 Balachandran VP, Gonen M, Smith JJ, DeMatteo RP. Nomograms in oncology: 
more than meets the eye. Lancet Oncol. 2015;16(4):e173–80. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​
1​0​.​1​0​1​6​/​s​1​4​7​0​-​2​0​4​5​(​1​4​)​7​1​1​1​6​-​7​​​​​.​​​

32.	 Obuchowski NA, Bullen JA. Receiver operating characteristic (ROC) curves: 
review of methods with applications in diagnostic medicine. Phys Med Biol. 
2018;63(7):07tr1. https:/​/doi.or​g/10.10​88/1​361-6560/aab4b1.

33.	 Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, 
et al. Inferring tumour purity and stromal and immune cell admixture from 
expression data. Nat Commun. 2013;4:2612. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​3​8​/​n​c​o​m​m​s​
3​6​1​2​​​​​.​​​

34.	 Zhao F, Zhao C, Xu T, Lan Y, Lin H, Wu X, et al. Single-cell and bulk RNA 
sequencing analysis of B cell marker genes in TNBC TME landscape and 
immunotherapy. Front Immunol. 2023;14:1245514. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​3​3​8​9​/​f​i​
m​m​u​.​2​0​2​3​.​1​2​4​5​5​1​4​​​​​.​​​

35.	 Liu TT, Li R, Huo C, Li JP, Yao J, Ji XL, et al. Identification of CDK2-Related 
Immune Forecast Model and ceRNA in Lung Adenocarcinoma, a Pan-cancer 
Analysis. Front Cell Dev Biol. 2021;9:682002. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​3​3​8​9​/​f​c​e​l​l​.​2​0​2​1​
.​6​8​2​0​0​2​​​​​.​​​

36.	 Maeser D, Gruener RF, Huang RS. oncoPredict: an R package for predicting in 
vivo or cancer patient drug response and biomarkers from cell line screening 
data. Brief Bioinform. 2021;22(6). https:/​/doi.or​g/10.10​93/b​ib/bbab260.

37.	 Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer 
immunotherapy. Nat Rev Drug Discov. 2019;18(3):175–96. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​
1​0​3​8​/​s​4​1​5​7​3​-​0​1​8​-​0​0​0​6​-​z​​​​​.​​​

https://doi.org/10.3322/caac.21820
https://doi.org/10.1016/j.critrevonc.2022.103841
https://doi.org/10.1158/1055-9965.Epi-13-1057
https://doi.org/10.1158/1055-9965.Epi-13-1057
https://doi.org/10.1016/s0140-6736(20)31288-5
https://doi.org/10.1016/s0140-6736(20)31288-5
https://doi.org/10.1186/s13045-023-01451-3
https://doi.org/10.1186/s13045-023-01451-3
https://doi.org/10.1038/s41580-020-00324-8
https://doi.org/10.1038/s41580-020-00324-8
https://doi.org/10.1038/s41422-020-00441-1
https://doi.org/10.1038/s41422-020-00441-1
https://doi.org/10.1038/s41589-019-0408-1
https://doi.org/10.3389/fphar.2014.00124
https://doi.org/10.1016/j.bbalip.2014.10.002
https://doi.org/10.1016/j.bbalip.2014.10.002
https://doi.org/10.1038/s41589-020-0472-6
https://doi.org/10.1016/j.redox.2022.102463
https://doi.org/10.1016/j.cmet.2022.09.021
https://doi.org/10.1016/j.cmet.2022.09.021
https://doi.org/10.3390/ijms222413335
https://doi.org/10.1038/s41556-020-0461-8
https://doi.org/10.1038/s41586-019-1426-6
https://doi.org/10.1016/j.celrep.2019.07.107
https://doi.org/10.1038/s41573-021-00233-1
https://doi.org/10.1038/s41573-021-00233-1
https://doi.org/10.1016/j.ccell.2020.06.001
https://doi.org/10.1186/s13287-023-03571-6
https://doi.org/10.3390/ijerph19031116
https://doi.org/10.1002/2211-5463.13630
https://doi.org/10.1038/nrd4002
https://doi.org/10.1038/nrd4002
https://doi.org/10.1093/nar/gky1055
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1186/1471-2105-14-244
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1111/trf.17803
https://doi.org/10.1016/s1470-2045(14)71116-7
https://doi.org/10.1016/s1470-2045(14)71116-7
https://doi.org/10.1088/1361-6560/aab4b1
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/ncomms3612
https://doi.org/10.3389/fimmu.2023.1245514
https://doi.org/10.3389/fimmu.2023.1245514
https://doi.org/10.3389/fcell.2021.682002
https://doi.org/10.3389/fcell.2021.682002
https://doi.org/10.1093/bib/bbab260
https://doi.org/10.1038/s41573-018-0006-z
https://doi.org/10.1038/s41573-018-0006-z


Page 23 of 23Wang et al. Human Genomics          (2024) 18:121 

38.	 Hause RJ, Pritchard CC, Shendure J, Salipante SJ. Classification and char-
acterization of microsatellite instability across 18 cancer types. Nat Med. 
2016;22(11):1342–50. https:/​/doi.or​g/10.10​38/n​m.4191.

39.	 Diagnosis T, Guidelines For Colorectal Cancer Working Group C. Chinese 
Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for 
colorectal cancer 2018 (English version). Chin J Cancer Res. 2019;31(1):117–
34. https:/​/doi.or​g/10.21​147/​j.issn.1000-9604.2019.01.07.

40.	 Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability 
and colorectal cancer prognosis. J Clin Oncol. 2005;23(3):609–18. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​
o​r​g​/​1​0​.​1​2​0​0​/​j​c​o​.​2​0​0​5​.​0​1​.​0​8​6​​​​​.​​​

41.	 Choi YY, Kim H, Shin SJ, Kim HY, Lee J, Yang HK et al. Microsatellite instability 
and Programmed Cell Death-Ligand 1 expression in stage II/III gastric Cancer: 
Post Hoc Analysis of the CLASSIC Randomized controlled study. Ann Surg. 
(2019);270(2):309–16. https:/​/doi.or​g/10.10​97/s​la.0000000000002803

42.	 Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch 
repair deficiency predicts response of solid tumors to PD-1 blockade. Sci-
ence. 2017;357(6349):409–13. https:/​/doi.or​g/10.11​26/s​cience.aan6733.

43.	 Addeo A, Friedlaender A, Banna GL, Weiss GJ. TMB or not TMB as a biomarker: 
that is the question. Crit Rev Oncol Hematol. 2021;163:103374. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​
/​1​0​.​1​0​1​6​/​j​.​c​r​i​t​r​e​v​o​n​c​.​2​0​2​1​.​1​0​3​3​7​4​​​​​.​​​

44.	 Gan B. ACSL4, PUFA, and ferroptosis: new arsenal in anti-tumor immunity. 
Signal Transduct Target Ther. 2022;7(1):128. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​3​8​/​s​4​1​3​9​2​-​0​
2​2​-​0​1​0​0​4​-​z​​​​​.​​​

45.	 Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat 
Rev Cancer. 2022;22(7):381–96. https:/​/doi.or​g/10.10​38/s​41568-022-00459-0.

46.	 Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: machinery and regula-
tion. Autophagy. 2021;17(9):2054–81. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​8​0​/​1​5​5​4​8​6​2​7​.​2​0​2​0​.​
1​8​1​0​9​1​8​​​​​.​​​

47.	 Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferropto-
sis in cancer. Nat Rev Clin Oncol. 2021;18(5):280–96. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​3​8​/​s​
4​1​5​7​1​-​0​2​0​-​0​0​4​6​2​-​0​​​​​.​​​

48.	 Zhao L, Zhou X, Xie F, Zhang L, Yan H, Huang J, et al. Ferroptosis in cancer and 
cancer immunotherapy. Cancer Commun (Lond). 2022;42(2):88–116. ​h​t​t​​p​s​:​/​​/​
d​o​​i​.​​o​r​g​/​1​0​.​1​0​0​2​/​c​a​c​2​.​1​2​2​5​0​​​​​.​​​

49.	 Yi J, Zhu J, Wu J, Thompson CB, Jiang X. Oncogenic activation of PI3K-AKT-
mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc 
Natl Acad Sci U S A. 2020;117(49):31189–97. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​7​3​/​p​n​a​s​.​2​0​1​
7​1​5​2​1​1​7​​​​​.​​​

50.	 Ouyang S, Li H, Lou L, Huang Q, Zhang Z, Mo J, et al. Inhibition of STAT3-
ferroptosis negative regulatory axis suppresses tumor growth and alleviates 
chemoresistance in gastric cancer. Redox Biol. 2022;52:102317. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​
g​/​1​0​.​1​0​1​6​/​j​.​r​e​d​o​x​.​2​0​2​2​.​1​0​2​3​1​7​​​​​.​​​

51.	 Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. 
Pharmacol Ther. 2021;221:107753. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​1​6​/​j​.​p​h​a​r​m​t​h​e​r​a​.​2​0​2​0​.​
1​0​7​7​5​3​​​​​.​​​

52.	 Niu X, Chen L, Li Y, Hu Z, He F. Ferroptosis, necroptosis, and pyroptosis in the 
tumor microenvironment: perspectives for immunotherapy of SCLC. Semin 
Cancer Biol. 2022;86(Pt 3):273–85. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​1​6​/​j​.​s​e​m​c​a​n​c​e​r​.​2​0​2​2​.​0​
3​.​0​0​9​​​​​.​​​

53.	 Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the 
tumor microenvironment. Nat Immunol. 2013;14(10):1014–22. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​
/​1​0​.​1​0​3​8​/​n​i​.​2​7​0​3​​​​​.​​​

54.	 Tanaka A, Sakaguchi S. Targeting Treg cells in cancer immunotherapy. Eur J 
Immunol. 2019;49(8):1140–6. https:/​/doi.or​g/10.10​02/e​ji.201847659.

55.	 Ku SC, Liu HL, Su CY, Yeh IJ, Yen MC, Anuraga G et al. Comprehensive analysis 
of prognostic significance of cadherin (CDH) gene family in breast cancer. 

Aging (Albany NY). (2022);14(20):8498–567. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​8​6​3​2​/​a​g​i​n​g​.​2​0​
4​3​5​7​​​​​​​

56.	 Yu W, Yang L, Li T, Zhang Y. Cadherin signaling in Cancer: its functions and 
role as a therapeutic target. Front Oncol. 2019;9:989. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​3​3​8​9​/​f​
o​n​c​.​2​0​1​9​.​0​0​9​8​9​​​​​.​​​

57.	 Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: con-
necting cancer pathways and tumor microenvironment. Front Cell Dev Biol. 
2023;11:1137013. https:/​/doi.or​g/10.33​89/f​cell.2023.1137013.

58.	 Minikes AM, Song Y, Feng Y, Yoon C, Yoon SS, Jiang X. E-cadherin is a 
biomarker for ferroptosis sensitivity in diffuse gastric cancer. Oncogene. 
2023;42(11):848–57. https:/​/doi.or​g/10.10​38/s​41388-023-02599-5.

59.	 Chen X, Song X, Li J, Zhang R, Yu C, Zhou Z, et al. Identification of HPCAL1 
as a specific autophagy receptor involved in ferroptosis. Autophagy. 
2023;19(1):54–74. https:/​/doi.or​g/10.10​80/1​5548627.2022.2059170.

60.	 Xie J, Lan T, Zheng DL, Ding LC, Lu YG. CDH4 inhibits ferroptosis in oral squa-
mous cell carcinoma cells. BMC Oral Health. 2023;23(1):329. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​
0​.​1​1​8​6​/​s​1​2​9​0​3​-​0​2​3​-​0​3​0​4​6​-​3​​​​​.​​​

61.	 Yu J, Sun X, Yu Y, Cui X. The cadherin protein CDH19 mediates cervical 
carcinoma progression by regulating AKT/NF-κB signaling. Acta Biochim Pol. 
2023;70(4):955–61. https:/​/doi.or​g/10.18​388/​abp.2020_6902.

62.	 Wang H, Liu J, Lou Y, Liu Y, Chen J, Liao X, et al. Identification and preliminary 
analysis of hub genes associated with bladder cancer progression by com-
prehensive bioinformatics analysis. Sci Rep. 2024;14(1):2782. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​4​-​5​3​2​6​5​-​z​​​​​.​​​

63.	 Shi Y, Han T, Liu C. CircRNA hsa_circ_0006220 acts as a tumor suppressor 
gene by regulating miR-197-5p/CDH19 in triple-negative breast cancer. Ann 
Transl Med. 2021;9(15):1236. https:/​/doi.or​g/10.21​037/​atm-21-2934.

64.	 Zhang W, Dai J, Hou G, Liu H, Zheng S, Wang X et al. SMURF2 predisposes 
cancer cell toward ferroptosis in GPX4-independent manners by promoting 
GSTP1 degradation. Mol Cell. (2023);83(23):4352–e698. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​0​1​
6​/​j​.​m​o​l​c​e​l​.​2​0​2​3​.​1​0​.​0​4​2​​​​​​​

65.	 Yan X, Liu Y, Li C, Mao X, Xu T, Hu Z, et al. Pien-Tze-Huang prevents hepatocel-
lular carcinoma by inducing ferroptosis via inhibiting SLC7A11-GSH-GPX4 
axis. Cancer Cell Int. 2023;23(1):109. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​1​8​6​/​s​1​2​9​3​5​-​0​2​3​-​0​2​9​4​
6​-​2​​​​​.​​​

66.	 Dang R, Wang M, Li X, Wang H, Liu L, Wu Q, et al. Edaravone ameliorates 
depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4 pathway. J 
Neuroinflammation. 2022;19(1):41. ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​g​/​1​0​.​1​1​8​6​/​s​1​2​9​7​4​-​0​2​2​-​0​2​4​0​
0​-​6​​​​​.​​​

67.	 Chen Y, Mi Y, Zhang X, Ma Q, Song Y, Zhang L, et al. Dihydroartemisinin-
induced unfolded protein response feedback attenuates ferroptosis via PERK/
ATF4/HSPA5 pathway in glioma cells. J Exp Clin Cancer Res. 2019;38(1):402. 
https:/​/doi.or​g/10.11​86/s​13046-019-1413-7.

68.	 Zhang Y, Swanda RV, Nie L, Liu X, Wang C, Lee H, et al. mTORC1 couples 
cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. 
Nat Commun. 2021;12(1):1589. https:/​/doi.or​g/10.10​38/s​41467-021-21841-w.

69.	 Liu Y, Wan Y, Jiang Y, Zhang L, Cheng W. GPX4: the hub of lipid oxidation, 
ferroptosis, disease and treatment. Biochim Biophys Acta Rev Cancer. 
2023;1878(3):188890. https:/​/doi.or​g/10.10​16/j​.bbcan.2023.188890.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 

https://doi.org/10.1038/nm.4191
https://doi.org/10.21147/j.issn.1000-9604.2019.01.07
https://doi.org/10.1200/jco.2005.01.086
https://doi.org/10.1200/jco.2005.01.086
https://doi.org/10.1097/sla.0000000000002803
https://doi.org/10.1126/science.aan6733
https://doi.org/10.1016/j.critrevonc.2021.103374
https://doi.org/10.1016/j.critrevonc.2021.103374
https://doi.org/10.1038/s41392-022-01004-z
https://doi.org/10.1038/s41392-022-01004-z
https://doi.org/10.1038/s41568-022-00459-0
https://doi.org/10.1080/15548627.2020.1810918
https://doi.org/10.1080/15548627.2020.1810918
https://doi.org/10.1038/s41571-020-00462-0
https://doi.org/10.1038/s41571-020-00462-0
https://doi.org/10.1002/cac2.12250
https://doi.org/10.1002/cac2.12250
https://doi.org/10.1073/pnas.2017152117
https://doi.org/10.1073/pnas.2017152117
https://doi.org/10.1016/j.redox.2022.102317
https://doi.org/10.1016/j.redox.2022.102317
https://doi.org/10.1016/j.pharmthera.2020.107753
https://doi.org/10.1016/j.pharmthera.2020.107753
https://doi.org/10.1016/j.semcancer.2022.03.009
https://doi.org/10.1016/j.semcancer.2022.03.009
https://doi.org/10.1038/ni.2703
https://doi.org/10.1038/ni.2703
https://doi.org/10.1002/eji.201847659
https://doi.org/10.18632/aging.204357
https://doi.org/10.18632/aging.204357
https://doi.org/10.3389/fonc.2019.00989
https://doi.org/10.3389/fonc.2019.00989
https://doi.org/10.3389/fcell.2023.1137013
https://doi.org/10.1038/s41388-023-02599-5
https://doi.org/10.1080/15548627.2022.2059170
https://doi.org/10.1186/s12903-023-03046-3
https://doi.org/10.1186/s12903-023-03046-3
https://doi.org/10.18388/abp.2020_6902
https://doi.org/10.1038/s41598-024-53265-z
https://doi.org/10.1038/s41598-024-53265-z
https://doi.org/10.21037/atm-21-2934
https://doi.org/10.1016/j.molcel.2023.10.042
https://doi.org/10.1016/j.molcel.2023.10.042
https://doi.org/10.1186/s12935-023-02946-2
https://doi.org/10.1186/s12935-023-02946-2
https://doi.org/10.1186/s12974-022-02400-6
https://doi.org/10.1186/s12974-022-02400-6
https://doi.org/10.1186/s13046-019-1413-7
https://doi.org/10.1038/s41467-021-21841-w
https://doi.org/10.1016/j.bbcan.2023.188890

	﻿Development of oxidative stress- and ferroptosis-related prognostic signature in gastric cancer and identification of CDH19 as a novel biomarker
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Data collection
	﻿Identification of oxidative stress- and ferroptosis-related genes (OFRGs)
	﻿Consensus clustering to determine OFRG subtypes
	﻿Construction and verification of prognostic signatures for OFRGs
	﻿Analyzing the immune cell infiltration and immunotherapy
	﻿Identifying CDH19 as a potential biomarker for GC
	﻿Cell culture and reagents
	﻿Lentiviral transfection
	﻿Quantitative real-time polymerase chain reaction (qRT-PCR)
	﻿Cell viability assay MTT
	﻿Migration assays
	﻿Colony formation assay
	﻿Western blot analysis
	﻿ROS assay
	﻿Iron staining
	﻿Statistic nalysis

	﻿Results
	﻿Identifying prognostic genes related to oxidative stress and Ferroptosis
	﻿Consensus clustering analysis
	﻿Construction and validation of a prognostic risk signature
	﻿Establishment and evaluation of a nomogram
	﻿Assessment of immune cell infiltration and immunological function
	﻿Prediction of immunotherapy efficacy
	﻿Determination CDH19 as a potential biomarker for GC
	﻿CDH19 affected the biological behavior of GC cells
	﻿CDH19 affects ferroptosis and oxidative stress in GC cells

	﻿Discussion
	﻿Conclusions
	﻿References


