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Abstract
Nucleoside analogues (NAs) have been the most frequently used treatment option for

chronic hepatitis B patients. However, they may have genotoxic potentials due to their inter-

ference with nucleic acid metabolism. Entecavir, a deoxyguanosine analog, is one of the

most widely used oral antiviral NAs against hepatitis B virus. It has reported that entecavir

gave positive responses in both genotoxicity and carcinogenicity assays. However the gen-

otoxic mechanism of entecavir remains elusive. To evaluate the genotoxic mechanisms, we

analyzed the effect of entecavir on a panel of chicken DT40 B-lymphocyte isogenic mutant

cell line deficient in DNA repair and damage tolerance pathways. Our results showed that

Parp1-/- mutant cells defective in single-strand break (SSB) repair were the most sensitive

to entecavir. Brca1-/-, Ubc13-/- and translesion-DNA-synthesis deficient cells including

Rad18-/- and Rev3-/- were hypersensitive to entecavir. XPA-/- mutant deficient in nucleotide

excision repair was also slightly sensitive to entecavir. γ-H2AX foci forming assay confirmed

the existence of DNA damage by entecavir in Parp1-/-, Rad18-/- and Brca1-/- mutants. Kar-

yotype assay further showed entecavir-induced chromosomal aberrations, especially the

chromosome gaps in Parp1-/-, Brca1-/-, Rad18-/- and Rev3-/- cells when compared with

wild-type cells. These genetic comprehensive studies clearly identified the genotoxic poten-

tials of entecavir and suggested that SSB and postreplication repair pathways may sup-

press entecavir-induced genotoxicity.

Introduction
Chronic infection with hepatitis B virus (HBV) remains a major global health problem.
Currently, the number of persons infected with HBV is approximately 2 billion, and over
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400 million are suffering from chronic hepatitis B (CHB) worldwide [1]. Nucleoside analogues
(NAs) have been the most frequently used treatment option for CHB patients due to their
effects on inhibiting replication of hepatitis B virus [2]. The majority of CHB patients need
long-term treatment with NAs [3, 4]. Entecavir, a carbocyclic 2’-deoxyguanosine analog, pos-
sesses potent and selective anti-hepatitis B virus (anti-HBV) activity. Entecavir induces a rapid
biochemical and virologic response in CHB patients and has a high genetic barrier to resistance
[5, 6]. These characteristics make it recommended as a first-line antiviral therapy for patients
with CHB by international guidelines [7–9]. Unfortunately, the US prescribing information
sheet and European centralized procedure (CP) indicate that entecavir is carcinogenic in pri-
mary human lymphocytes and induces lung, vascular, brain, liver and skin tumors in mice and
rats [10–12]. Recently, Brown et al. reported that entecavir can be incorporated and embedded
into the human genome via primer extension or subsequent ligation and that may contribute
to a putative mechanism of carcinogenicity [13]. However, further studies remain to be done to
gain a better understanding of the genotoxicity mechanisms of entecavir.

DNA damage occurs daily with physical and chemical mutagens. In response to it, cells
have evolved specific method of repairing the damages, including base excision repair (BER),
nucleotide excision repair (NER), single-strand break (SSB) repair and double-strand break
repairs consist of nonhomologous end joining (NHEJ) repair and homologous recombination
(HR) [14]. DNA lesions that remain unrepaired before entering S phase often cause the col-
lapse of DNA replication, leading to chromosomal breaks in mitotic cells and subsequent cell
death [15]. To restart blocked DNA replication forks, cells have evolved postreplication repair
(PRR), including HR and translesion DNA synthesis (TLS) pathways [16]. TLS pathways
release the replication block by filling a daughter strand gap, employing a number of DNA
polymerases, including Rad18, Rad6 and Polz [17], whereas HR relies on recombination pro-
cesses [18]. Both of Brca1 and Ubc13 play critical role in PRR [19, 20].

DT40 cells have been a favorable tool for studying the DNA repair pathways due to its high-
frequency gene targeting [21, 22]. Previously, we had generated a panel of DNA-repair defi-
cient DT40 clones which were defective in BER, NER, SSBR, NHEJ, HR and TLS respectively
(Table 1). Due to the defective function on DNA repairs, these mutant clones are also sensitive
to different genotoxic chemicals [23–25]. The characteristics of DNA-repair deficient DT40
clones are advantageous and useful for investigating the mechanisms of chemical genotoxicity
[15, 26]. In this study, to explore the underlying mechanisms that suppress entecavir-induced
genotoxicity, we performed comprehensive analyses of the genotoxicity with a panel of DT40
DNA repair mutants (Table 1).

Results

Mutant cells defective in DNA repair pathways were sensitive to
entecavir
To study the genotoxicity of entecavir, we evaluated the effects of entecavir on a panel of gene
disrupted clones (Table 1) by MTT assay. Camptothecin (CPT), a topoisomerase I poison, was
selected as a positive control. We continuously exposedWT and mutant cells to entecavir or
CPT at various concentrations for 72h. The results indicated that entecavir inhibited the
growth of DT40 cells in a dose-dependent manner. As shown in Fig 1, Parp1-/- cells defective in
DNA SSB exhibited the hypersensitivity to entecavir. Ubc13 deficient cells and TLS-deficient
clones, both Rad18-/- and Rev3-/-, were sensitive to entecavir. To investigate the two major dou-
ble-strand break repair pathways, HR and NHEJ, Brca1-/-, Brca2-/-, Xrcc2-/- and Ku70-/- were
analyzed. Only Brca1-/- cells manifested significant sensitivity to entecavir. Xrcc2-/- cells were
even slightly resistant to entecavir. The other DNA repair gene deficient cells, including XPA-/-
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cells were also sensitive to entecavir, but Polβ-/-, Fen1-/- and CtIP (S332A-/-) cells were not. CPT
can induce DNA damage by inhibiting the ligation of SSBs that are formed during the normal
functioning of topoisomerase I [38]. Unrepaired SSBs are converted to double-strand breaks
upon replication. It has been shown that CPT induced double-strand breaks are mainly
repaired by HR in DT40 cells [39]. As shown in Fig 1B and S1 Fig, Parp1-/-, Rad18-/-, Ubc13-/-,
CtIP (S332A-/-), Brca1-/- and Brca2-/- cells were hypersensitive to CPT. In contrast, Polβ-/- and
Ku70-/- were resistant to CPT, as previously reported [39]. This observation indicated that ente-
cavir may exert potential genotoxic mechanisms which mainly associate with SSB repair and
PRR, but not a double-strand break repair.

Entecavir induced the accumulation of γ-H2AX in nuclei of DT40 cells
To investigate entecavir-induced damages responses, we determined the number of γ-H2AX
foci, a sensitive molecular marker of DNA damage in nuclear DNA [40]. The immunofluores-
cence assay was conducted usingWT, Parp1-/-, Rad18-/- and Brca1-/- cells for entecavir. Six
hours after exposure to 100nM entecavir, Parp1-/-, Rad18-/- and Brca1-/- exhibit more numbers
of γ-H2AX foci when compared withWT cells (Fig 2A and 2B). The increased accumulation of
γ-H2AX in nuclei of Parp1-/-, Rad18-/- and Brca1-/- cells suggested increased DNA damages,
which is consistent with hypersensitivity of these cells to entecavir.

DNA repair-deficient cells showed a marked increase in entecavir-
induced chromosome breaks
To further investigate entecavir-induced DNA damages, we measured cytologically detectable
chromosomal aberration in chromosome spreads.WT, Parp1-/-, Rad18-/-, Brca1-/- and Rev3-/-

cells were exposed to entecavir 200nM from 3 to 24 hours (Figs 3 and 4). Interestingly,WT,

Table 1. DNA repair genesmutated in the analyzed DT40 clones.

Gene Function Reference

Rev3 TLS, HR (catalytic subunit of Polξ) [27]

XPA An initial step of nucleotide excision repair [28]

Ubc13 Ubc13 is related to the initial step of HR and [29, 30]

postreplication repair

Parp1 Poly(ADP) ribosylation, related to [31]

single-strand break and base excision repair

Brca1 HR [32]

Brca2 HR [33]

Rad18 TLS [28]

Polβ Base excision repair [34]

Fen1 Base excision repair, processing 5’flap in [35]

long-patch and lagging strand DNA

replication

Xrcc2 Rad51 paralog, homologous recombination, [25]

promotion of Rad51 assembly

CtIP(S332A−/−) Eliminating covalently bound polypeptides [36]

from DSBs

Ku70 Initial step for NHEJ dependent DSB repair [37]

DSB, double-strand break; HR, homologous recombination; NHEJ, nonhomologous end joining repair;

TLS, translesion DNA synthesis

doi:10.1371/journal.pone.0147440.t001
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Fig 1. Mutant cells defective in DNA repair pathways were sensitive to entecavir. (A) The X-axis represents the concentration of entecavir and the Y-
axis represents the relative number of surviving cells at 72 hours. Survival data were log-transformed giving approximate normality. Analysis of covariance
(ANCOVA) was used to test for differences in the linear dose-response curves betweenwild-type and a series of mutant cells. A p-value < 0.05 was
considered to be significant. (B) Relative IC50 values of cell survival results inwild-type and their mutants exposed to entecavir or CPT. Each IC50 value was
calculated from results of cell survival data shown in Fig 1A and S1 Fig Relative IC50 values were normalized according to the IC50 value of parentalwild-
type cells. The IC50 was calculated by SPSS software version13.0. Data shown are the means of three experiments. Values shown are mean ± SD.

doi:10.1371/journal.pone.0147440.g001
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Fig 2. Entecavir induced the accumulation of γ-H2AX in nuclei of DT40 cells. (A) Immuno-staining of wild-type (WT) and mutant DT40 clones using anti-
γ-H2AX antibody and DAPI. Cells were fixed 6 hours after treated with entecavir 100nM. ETV, entecavir. (B) Quantification of γ-H2AX foci in individual cells of
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Rad18-/-, Rev3-/-, Parp1-/- and Brca1-/- cells demonstrated a monophasic pattern of induced
chromosome breaks; the peaks were detectable at 12, 12, 15, 15 and 16 hours respectively (Fig
3). The peaks were significantly higher in DNA repair-deficient cells than inWT cells. Remark-
ably, the number of chromosome gap was higher than that of chromosome break in bothWT
and DNA repair-deficient cells. Entecavir mainly induced chromosome gap, but not break in
metaphase, further suggesting its action for SSB, but not double-strand break. The increased
chromosomal aberrations in Parp1-/-, Brca1-/-, Rad18-/- and Rev3-/- when compared withWT
just reflected these genes have critical role in preventing entecavir-induced chromosomal
aberrations.

Discussion
Entecavir, a carbocyclic 2’-deoxyguanosine analog, was widely used for HBV clinical therapies
by inhibiting the HBV polymerase, competing with dGTP. In this study, we used the concen-
tration of entecavir from 4 to 64 nM, which was based upon the maximal clinical exposure con-
centration 30nM [41, 42], to analyze the sensitivity of a panel of DNA repair deficient DT40
cells to entecavir. These cells include SSB repair mutant Parp1-/-, BER repair mutant Polβ-/-,
NER mutant XPA-/-, HR repair mutants Brca1-/-, Brca2-/-, Xrcc2-/- and CtIP (S332A-/-), NHEJ
repair mutant Ku70-/-, PRR mutants Ubc13-/-, Rad18-/- and Rev3-/- as well as flap structure-spe-
cific endonuclease 1 mutant Fen1-/-. Results showed that the SSB repair mutant of Parp1-/-,
PRR mutants Rad18-/-, Rev3-/-, Ubc13-/- and Brca1-/-cells were significant sensitive to entecavir.
At the same time, we found that the sensitivities of Parp1-/-, Rad18-/-, Ubc13-/- and Brca1-/- cells
to entecavir were similar to CPT. In contrast, Brca2-/- and CtIP (S332A-/-) were hypersensitive
to CPT, not entecavir. Further immunofluorescent analysis indicated that the number of γ-
H2AX foci was significantly increased in SSB repair mutant Parp1-/- and TLS mutant Rad18-/-

cells. Chromosomal aberration assay also proved that the number of chromosome gap was sig-
nificantly increased in SSB repair mutant Parp1-/- and PRR mutants, Brca1-/-, Rad18-/- and
Rev3-/- compared withWT. The data strongly suggest that entecavir is genotoxic and two DNA
repair pathways, SSB repair and PRR, are responsive to suppress the genotoxicity.

SSBs in DNA are often raised by loss of a single nucleotide and by damaged 5’- and / or 3’-
termini at the site of the break [43]. A multitude of factors trigger SSBs. Erroneous incorpo-
ration of ribonucleotides into DNA is the commonest sources of endogenous SSBs [44]. Parp1
is a sensor protein, which plays an important role in DNA SSB detection [43, 45]. In the current
study, we found that Parp1-/- cells exhibited the hypersensitive to entecavir and manifested sig-
nificantly increase in the number of γ-H2AX foci and chromosomal aberrations compared
withWT, suggesting that entecavir may induce SSBs. As Parp1 also functions in BER, we exam-
ined the sensitivity of BER deficient cells Polβ-/-, and results showed Polβ-/- cells were not signif-
icantly sensitive to entecavir. But we found the NER deficient cells XPA-/- were slightly
sensitive to entecavir.

We also examined Brca1-/-, Brca2-/-, Xrcc2-/-, CtIP(S332A-/-) and Ku70-/- cells, which respec-
tively defective in HR and NHEJ, two major pathways for double strand breaks repair [37], and
only Brca1-/- cells showed sensitivity to entecavir. We speculate that double strand breaks
might not be the majority of entecavir-induced DNA damages. Recent studies had proved that
besides the function on HR for double strand breaks repair, Brca1 could directly recruits trans-
lesion polymerases, such as Polη and Rev1, to the lesions through protein-protein interactions,
suggesting its critical role in PRR [19]. Currently, we found Rev3-/- and Rad18-/- were also

the indicated genotype. Cells were treated with entecavir 100nM for 6h. Data shown are the means of three experiments. Values shown are mean ± SD.
** P < 0.01, * P < 0.05 compared toWT. More than 100 cells were analyzed for each data point.

doi:10.1371/journal.pone.0147440.g002
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sensitive to entecavir and had increased entecavir-induced chromosomal aberrations (Fig 3).
Both Rad18 and Rev3 play critical role in PRR pathway. Studies indicated that Rad18 forms a
complex with Rad6 to promote PCNAmono-ubiquitination, which is a crucial step in PRR
pathway [16], whereas Rev3 gene encodes the catalytic subunit of DNA Polξ, which is involved
in TLS, one of PRR pathway [27]. Furthermore, Ubc13, a K63-linked E2 Ub-conjugating
enzyme, have been proved to function on both HR and error-free PRR [29, 20]. Results showed
cells deficient in Ubc13 were also sensitive to entecavir. Above all, we hypothesize that entecavir
induces DNA damage, which may collapse the replication forks and PRR pathway might
release the replication fork stall.

Entecavir was metabolized by phosphorylation to triphosphate (TP) form in mammalian
cells by cellular enzymes to inhibit HBV DNA replication [46]. The mechanism for chain ter-
mination by entecavir is likely to involve incorporation and abortive extension of ETV-con-
taining HBV DNA [47]. Some studies reported that entecavir displays no interaction with host
polymerase and failed to be incorporated into human DNA [41]. Nonetheless, the recent study
by Brown et al. showed that entecavir can be incorporated and embedded into the human
genome via primer extension with human X or Y polymerases or subsequent ligation [13]. One
possible model that could explain our data is shown in Fig 5. The triphosphate of entecavir is
incorporated into DNA strand by host replication or repair polymerases, which blocking

Fig 3. DNA repair-deficient cells showed a marked increase in entecavir-induced chromosome breaks. Increased frequency of chromosomal
aberrations (CAs) in DNA repair-deficient cells andWT treated with entecavir (200nM) from 3 hours to 24 hours. Data are derived from 50 metaphase cells for
each treatment. The experiments were independently repeated three times for statistical analysis. Values shown are mean ± SD. * P < 0.05 compared to WT.
The differences between theWT and DNA repair-deficient cell lines were tested for statistical significance using t-test.

doi:10.1371/journal.pone.0147440.g003
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extension of the nascent strand and inducing DNA SSB and Parp1 dependent repair. The ente-
cavir-induced DNA lesions could also be repaired by PRR to avoid the replication fork collapse
and chromosomal breaks when cells enter into S phase.

NAs have been shown effective inhibition of HBV replication, which delay the progression
of liver cirrhosis, reduce the incidence of HBV related liver cancer, above all, increase the life
span of the patients [2]. Until now, most current guidelines recommended that a long-term
treatment with NAs is essential to majority CHB patients, even a life-long therapy for CHB
with cirrhosis. And entecavir is one of the first-line therapies. Especially in those with decom-
pensated liver disease, undergoing immunosuppressive treatment or with contraindications,
and those unwilling to receive Peg-IFN, entecavir or tenofovir is the only therapeutic options
in patients [4]. However, long-term safety data are still lacking for NAs, including entecavir [3,
7]. Some studies demonstrated entecavir was clastogeic at 36μM in primary human lympho-
cytes [10]. Considering that entecavir inhibited HBV DNA synthesis in the nanomolar range
[42], so they thought it’s safe to humans. But in our study, entecavir induced DNA damage at
nanomolar in DT40 cells, especially in the more sensitive DNA repair deficient cells. So we
think it is necessary to monitor the genotoxicity of NAs, especially entecavir, and to restrict
treatment period.

Much work remains to be done to gain a better understanding of the mechanism of geno-
toxicity of entecavir. A better understanding of entecavir-induced genotoxicity may contribute
to development of new drugs for the treatment or prevention of chronic hepatitis B with higher
therapeutic efficacy and less genotoxicity.

Materials and Methods

Chemicals
Entecavir was obtained from Sigma-Aldrich (St. Louis, MO, USA). CPT was purchased from
Shanghai standard Biotech Co., Ltd. Stock solution of entecavir (100 μM) and CPT (100 μM)

Fig 4. Representative karyotype analysis of entecavir pretreated Rad18-/- cells. (A) Representative karyotype of untreated Rad18-/- cells. (B)
Chromosomal aberrations (CAs) in Rad18-/- cells following 200nM entecavir pretreatment for 15 h. Macrochromosomes 1–5 and Z are identified.
Chromosome gaps are shown by arrow.

doi:10.1371/journal.pone.0147440.g004
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were prepared in dimethyl sulfoxide (DMSO) and stored at -20°C in aliquots until use. Phar-
maceuticals were dissolved using DMSO and maximum volume of the solvent did not exceed
0.1% of the culture medium.

Cell lines and cell culture
Cell lines used in this study are listed in Table 1. Cells were cultured as described before [37]. The
DT40 cell lines were cultured in RPMI-1640 (Gibco) supplemented with 10% heat-inactivated
fetal bovine serum, 1% chicken serum, 1% penicillin streptomycin (Gibco) and 50 μM β-mercap-
toethanol (Gibco) at 39.5°C in a humidified atmosphere of 5% CO2 (Sanyo, Osaka, Japan).

MTT assay
The cytotoxicity of entecavir or CPT on DT40 cell lines was determined by the MTT assay [48,
49]. Cells were seeded in 96-well plates (Costar Corning, Rochester, NY). Cells were treated

Fig 5. Model of entecavir-induced genotoxicity related to single-strand break (SSB) repair and postreplication repair (PRR) pathway. The
triphosphate of entecavir is incorporated into DNA strand by host replication or repair polymerases, which blocking extension of the nascent strand and
inducing DNA SSB and Parp1 dependent repair. The entecavir-induced DNA lesions could also be repaired by PRR to avoid the replication fork collapse and
chromosomal breaks when cells enter into S phase.

doi:10.1371/journal.pone.0147440.g005
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with entecavir or CPT at various concentrations, and carrier DMSO (< 0.1%) was used as a
control, 3 wells were included in each concentration. After 72h, the cells were treated with
20 μl of 5 mg/ml MTT (Amresco, USA) and the resulting formazan crystals were dissolved in
50 μl of 20% SDS (pH4.7) over night. The absorbance at 570 nm was measured using wells
without cells as blanks. All experiments were performed in triplicate. The 50% inhibiting con-
centration (IC50) was calculated by SPSS softwareversion13.0.

Chromosomal aberrations analysis
Karyotype analysis was done as previously described [50]. Briefly, cells were treated with ente-
cavir in the complete medium. To arrest cells in metaphase, 0.1% colcemid (GIBCO-BRL,
Grand Island, NY, USA) was added 3h before harvest. Then, cells were resuspended in 1 ml of
75 mM KCl for 15 min at room temperature, and fixed in 5 ml of Carnoy's solution (mixture of
methanol and acetic acid, 3:1). The cells suspension was dropped onto ethanol-cleaned slides
and dried by a flame. The slides were stained with 5% Giemsa solution for 7 min, and dried
after being rinsed carefully with water. The chromosomal aberrations were observed under a
light microscope (with 1000× magnification). All experiments were performed in triplicate.
Data are derived from 50 metaphase cells for each treatment. The scoring criteria were essen-
tially the same as those of ISCN [51]. According to ISCN, a break is defined as a discontinuity
of a chromosome that shows a clear misalignment of the distal fragment of a broken chromo-
some. A gap is defined as a clear non-staining region on a chromosome [50]. Chromosome
gaps and breaks were both sister chromatids of a single chromosome broken at the same locus,
whereas chromatid gaps and breaks were a single chromatid broken.

Immunofluorescent
Experimental condition for immunofluorescent analysis is described previously [52]. Briefly,
DT40 cells (105 cells) were harvested on a slide glass after treated with entecavir for different
hours. Cells were fixed with 3% formaldehyde for 10 min at room temperature and then
washed with PBS. For permeabilisation, cells were incubated with 0.1% NP-40 for 15 min at
room temperature and washed again with PBS. After blocking with 3% BSA, fixed cells were
treated with specific antibodies. The cells were incubated with anti-phospho-Histone H2AX
(Ser139) mouse monoclonal antibody at a dilution of 1:500 (Millipore, Billerica, MA, USA).
Following another washing step with PBS, cells were incubated for 1h with a secondary Alexa
Fluor 488-conjugatedanti-mouse antibody (1:1000; Beyotime, Wuhan, China).

Supporting Information
S1 Fig. Sensitivity of wild-type (WT) and isogenic DNA-repair deficient DT40 clones to
entecavir or CPT. Cellular sensitivities to entecavir (A) or CPT (B and C) were analyzed using
the same method as in Fig 1.
(TIF)
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