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Abstract
Background: MEIS1 (Myeloid ecotropic viral integration site 1), as a homeobox 
(HOX) transcription factor, has a dual function in different types of cancer. Although 
numerous roles are proposed for MEIS1 in differentiation, stem cell function, gastro-
intestinal development and tumorigenesis, the involved molecular mechanisms are 
poor understood. Our aim in this study was to elucidate the functional correlation be-
tween MEIS1, as regulator of differentiation process, and the involved genes in cell 
differentiation in human esophageal squamous carcinoma (ESC) cell line KYSE‐30.
Methods: The KYSE‐30 cells were transduced using recombinant retroviral parti-
cles containing specific shRNA sequence against MEIS1 to knockdown MEIS1 gene 
expression. Following RNA extraction and cDNA synthesis, mRNA expression of 
MEIS1 and the selected genes including TWIST1, EGF, CDX2, and KRT4 was exam-
ined using relative comparative real‐time PCR.
Results: Retroviral transduction caused a significant underexpression of MEIS1 in 
GFP‐hMEIS1 compared to control GFP cells approximately 5.5‐fold. While knock-
down of MEIS1 expression caused a significant decrease in EGF and TWIST1 mRNA 
expression, nearly ‐8‐ and ‐12‐fold respectively, it caused a significant increase in 
mRNA expression of differentiation markers including KRT4 and CDX2, approxi-
mately 34‐ and 1.14‐fold, correspondingly.
Conclusion: MEIS1 gene silencing in KYSE‐30 cells increased expression of epithe-
lial markers and decreased expression of epithelial‐mesenchymal transition (EMT) 
marker TWIST1. It may highlight the role of MEIS1 in differentiation process of 
KYSE‐30 cells. These results may confirm that MEIS1 silencing promotes differen-
tiation and decreases EMT capability of ESC cell line KYSE‐30.
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1 |  INTRODUCTION

Malignancy is a complex heterogeneous illness introduced 
through accumulation of different damaging genetic and epi-
genetic alterations in tumor cells. Notably, disruption of var-
ious signaling networks and multiple molecular mechanisms 
involved in tumor onset and development can lead to exten-
sive deregulation of gene expression profiles in human can-
cers (Beerenwinkel, Schwarz, Gerstung, & Markowetz, 2014; 
Chatterjee et al., 2018; Du & Che, 2017). Among identified 
genetic changes in the cancer etiology, abnormal expression 
of different gene categories such as tumor suppressors, onco-
genes, DNA repair genes, stem cell‐related surface markers 
and cancer stem cells (CSCs) specific transcriptional fac-
tors (TFs), can be noted as leading cause of tumorigenesis 
(Sadikovic, Al‐Romaih, Squire, & Zielenska, 2008; Zhao, Li, 
& Zhang, 2017).

Based on experimental and theoretical data, there are 
associations between the expression of CSCs markers 
and cancer‐related genes in many tumors. CSCs preserve 
self‐renewal and proliferative potential via inhibiting dif-
ferentiation signaling pathways during cancer initiation 
and development (Jin, Jin, & Kim, 2017; Lathia & Liu, 
2017). Remarkably, the balance between differentiation 
and self‐renewal capabilities of CSCs produces the bulk 
of heterogeneous tumor mass contributing in aggressive 
and stemness phenotypes (Lathia & Liu, 2017). Specific 
gene expression profiles are needed for tumor cell dif-
ferentiation which are dictated through different signal-
ing pathways, transcription factor activities, as well as 
epigenetic alterations such as DNA modifications (Jögi, 
Vaapil, Johansson, & Påhlman, 2012). The involved sig-
naling pathways in CSCs differentiation are BMP (bone 
morphogenetic protein) and RA (retinoic acid) pathways, 
while CSCs stemness signaling cascades include JAK/
STAT, Wnt/β‐catenin, Hedgehog, Notch, PI3K/PTEN, 
and NF‐ kB (Jin et al., 2017; Matsui, 2016). The expres-
sion profile of differentiation‐associated genes is hetero-
geneous in nearly all types of tumor cells, probably due 
to the transcriptional activity of a small population of 
CSCs in combination with numerous partially differen-
tiated cells (Palmer, Schmid, Berger, & Kohane, 2012). 
Inhibition of differentiation happens through highly ex-
pressed ID (Inhibitor of DNA‐binding/ differentiation) 
proteins as regulators of cell fate (Jin et al., 2017).

The most important targets for ID family are basic helix‐
loop‐helix (bHLH) transcription regulators, and homeobox 

genes encoding DNA‐binding domain proteins (Jin et al., 
2017; O'Toole et al., 2003).

HOX genes family members, as a subset of homeobox 
genes, encode TFs with fundamental roles in embryo de-
velopment and segmentation, as well as differentiation of 
stem cell (Crist, Roth, Waldman, & Buchberg, 2011; Seifert, 
Werheid, Knapp, & Tobiasch, 2015). Abnormal expression of 
HOX genes, often accompanied by DNA hypermethylation, 
can lead to the developmental diseases and carcinogenesis. 
The transcribed TFs from HOX genes present two home-
odomain groups consisting of a conserved 60 amino acids for 
sequence‐specific binding to DNA motifs and a three amino 
acid loop extension (TALE) (Tsumagari et al., 2013).

MEIS1 (myeloid ecotropic viral integration site 1, OMIM: 
601739), as an activator for the HOX members, forms het-
erodimer complex with HOX transcription factors to recruit 
either transcriptional co‐activator or co‐repressor in a DNA 
sequence‐dependent manner, modulating expression of target 
genes. Numerous TFs including PREP1, HOXA7, HOXA9, 
and CREB1 regulate MEIS1 expression in different normal 
tissues and several tumor cells (Torres‐Flores, 2013). MEIS1 
has an essential role in regulation of stemness state of stem 
cells, transcription adjustment of self‐renewal genes, as well 
as involved genes in cell development and differentiation, 
playing an oncogenic role in several tumors (Dardaei et al., 
2015; Rad et al., 2016). mRNA and protein expression of 
MEIS1, as well as its cofactors, were demonstrated in numer-
ous types of malignancies such as leukemia, neuroblastoma, 
ovarian, renal cell carcinoma, pancreatic, colorectal, gastric, 
skin, and lung cancers, as well as malignant peripheral nerve 
sheath tumors (Aksoz, Turan, Albayrak, & Kocabas, 2018). 
In addition, it has been recently reported that MEIS1 may 
have cancer stemness property in esophageal squamous cell 
carcinoma (ESCC) where its downregulation was inversely 
correlated with stage of progression and metastasis of the 
tumor (Rad et al., 2016).

Differentiation outcome in squamous epithelium of esoph-
ageal needs a serial activity of different specific differentia-
tion‐associated genes, and any disruption in this chain may 
block differentiation process leading to squamous epithelial 
neoplasia, although the involved molecular mechanisms re-
main poorly understood (Luo et al., 2014).

Therefore, in the current study, we aimed to assess the 
impact of MEIS1 gene knockdown on the expression pattern 
of differentiation‐associated genes including TWIST1 (twist 
family bHLH transcription factor 1, OMIM: 601622), EGF 
(epidermal growth factor, OMIM: 131530), KRT4 (Keratin 
4, OMIM: 123940), and CDX2 (caudal type homeobox 2, 
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OMIM: 600297) in human ESC cell line KYSE‐30, to define 
probable linkage between MEIS1 and differentiation state of 
the cells.

2 |  MATERIALS AND METHODS

2.1 | Cell lines and culture condition
Human ESCC (KYSE‐30) and embryonic kidney (HEK293T) 
cell lines were purchased from the Pasteur Institute Cell Bank 
of Iran (http://en.paste ur.ac.ir/) and grown in RPMI 1640 
medium (Biosera) and Dulbecco's modified Eagle's medium 
(DMEM; Biosera), respectively. Both culture media were 
supplemented with 10% heat‐inactivated fetal bovine serum 
(FBS; Gibco, USA), 100  U/ml, and 100  μg/ml penicillin‐
streptomycin (Gibco, USA) at a humidified atmosphere 37°C 
with 5% CO2.

2.2 | MEIS1 gene expression knockdown
The lentiviral pLKO.1‐puro plasmid (Cat. No. SHC003) 
as a shRNA expression vector was obtained from Sigma‐
Aldrich (St. Louis, MO). The pLKO.1‐puro plasmid DNA 
was consisted the green fluorescent protein (GFP) gene 
under the control of the cytomegalovirus (CMV) pro-
moter which express shRNA construct targeting the human 
MEIS1 (GenBank reference sequence: NM_002398.3). The 
psPAX2 as a packaging vector and the pMD2.G as a vector 
encoding the VSV‐G (G‐protein of the vesicular stomati-
tis virus) were achieved from Addgene (plasmids 12260 
and 12259, respectively, Cambridge, MA). Twenty‐one 
micrograms of pLKO.1‐MEIS1 or 21 μg PCDH513b plas-
mid along with 21 μg of psPAX2 and 10 μg of pMD2.G 
were transiently cotransfected into HEK293T cells accord-
ing to the standard calcium phosphate method for produc-
ing lentiviral particles. The supernatant containing viral 
particles was collected at 24 and 48  hr after transfection 
and filtered through 0.45‐μm filter (Orange, Belgium). 
Then, the supernatant was pelleted using ultracentrifuga-
tion (Beckman‐Coulter ultracentrifuge XL‐100K, USA) at 

70,000 × g, 4°C for 1 hr and resuspended in fresh medium. 
For transduction of KYSE‐30 cells, cells were cultured at 
a density of 1 × 105 cells in 6‐well plates the day before 
transduction. On the day of infection, the culture media 
were replaced with fresh ones containing the lentiviruses 
for an additional 4–5 days. In order to select the infected 
cells, the transduced cells were treated with 2 µg/ml puro-
mycin (Invitrogen Corporation, Carlsbad, CA). The trans-
duced KYSE‐30 cells with recombinant lentiviral particles 
of GFP (control) and GFP‐shMESI1 were assayed using 
inverted fluorescence microscopy.

2.3 | RNA extraction, cDNA synthesis, 
comparative real time PCR, and 
statistical analysis
Total RNA was isolated from GFP and GFP‐shMESI1 
transduced ESCC cell line using Tripure reagent (Roche, 
Nutley, NJ), subsequently DNase I (Thermo Fisher 
Scientific, Waltham, MA) treatment was performed for 
preventing DNA contamination. The first strand comple-
mentary DNA (cDNA) synthesis was carried out by the 
oligo‐dT method according to the constructer's proce-
dures (Fermentas, Lithuania). MEIS1 mRNA knockdown 
was assessed using qRT‐PCR. Furthermore, relative com-
parative changes of KRT4 (GenBank reference sequence: 
NM_002272.4), CDX2 (GenBank reference sequence: 
NM_001265.5), EGF (GenBank reference sequence: 
NM_001963.5), and TWIST1 (GenBank reference se-
quence: NM_000474.4) mRNA expression were assessed 
in MEIS1 silenced compared to GFP control cells using a 
quantitative real‐time PCR (SYBR Green, AMPLIQON, 
Denmark) using gene‐specific primer sequences shown in 
Table 1 on a LightCycler® 96 Real‐Time PCR System ther-
mocycler (Roche, Germany). Glyceraldehyde 3‐phosphate 
dehydrogenase (GAPDH) housekeeping gene was used to 
normalize data. The 2‐ΔΔCt method was applied to measure 
fold changes of gene expression (Forghanifard, Khales, et 
al., 2017; Rad et al., 2016). The test was performed trip-
licate and the thermal profile for MEIS1, KRT4, CDX2, 

T A B L E  1  Primer sequences used in real‐time PCR

Gene Forward primer Reverse primer Annealing T, °C

MEIS1 ATGACACGGCATCTACTCGTTC TGTCCAAGCCATCACCTTGCT 62

KRT4 GCCGTGAGCATCTCTGTG TCCTCTATCGTCTCTTGTTCAG 58

CDX2 ACAGTCGCTACATCACCATC GATTTTCCTCTCCTTTGCTC 55

EGF ATGTAGCGGTTGTTCCTC ATGGTTGTGGTCCTGAAG 54

TWIST1 GGAGTCCGCAGTCTTACGAG TCTGGAGGACCTGGTAGAGG 57

GAPDH GGAAGGTGAAGGTCGGAGTCA GTCATTGATGGCAACAATATCCACT 60

Note: GenBank reference sequence for the examined mRNA: MEIS: NM_002398.3. KRT4: NM_002272.4, CDX2: NM_001265.5, EGF: NM_001963.5, and TWIST1: 
NM_000474.4.

http://en.pasteur.ac.ir/
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EGF, and TWIST1 included an initial denaturation at 95°C 
for 10 min, followed by 45 cycles 94°C (30 s), specific an-
nealing temperature (30 s), and 72°C (30 s).

The SPSS 19.9 statistical package (SPSS, Chicago, IL, 
USA) was applied for statistical data analysis. p value < 0.05 
was regarded as statistically significant. The χ2 or Fisher 
exact tests, as well as Pearson's correlation were used to eval-
uate the association between gene expressions.

3 |  RESULTS

3.1 | Downregulation of MEIS1 in ESCC 
cell line KYSE‐30
After lentiviral‐mediated MEIS1 knockdown, the expression 
of MEIS1 was evaluated in GFP‐hMEIS1 in comparison with 
pCDH513b GFP‐control KYSE‐30 transduced cells (>95% 
positive) to confirm MEIS1 silencing. The fluorescent mi-
croscopy images of transduced GFP‐shMESI1 and GFP 
control KYSE30 cells are shown in Figure 1. The significant 
underexpression nearly 5.5 (log2 fold change) of MEIS1 was 
detected in lentiviral GFP‐hMESI1 transduced cells com-
pared to GFP control.

3.2 | Knockdown of MEIS1 changed the 
expression of differentiation genes
Having confirmed the MEIS1 gene silencing in KYSE‐30 
cells, we analyzed expression of specific epithelial and epi-
thelial‐mesenchymal transition markers in examined cells. 
Downregulation of MESI1 led to a significant decrease in the 
levels of EGF and TWIST1 mRNA expression (‐8‐ and ‐12‐
fold, respectively) in GFP‐hMESI1 compared to control cells. 
Additionally, MEIS1 underexpression significantly increased 
expression of KRT4 and CDX2 mRNA levels with 34‐ and 
1.14‐fold, respectively. The results are summarized in Figure 2.

4 |  DISCUSSION

Different biological processes are involved in tumorigenesis 
such as cell proliferation, apoptosis, differentiation, metasta-
sis, vascularization, as well as self‐renewal. In addition, de-
regulation of signaling pathways can induce tumorigenesis 
and cancer progression. Accordingly, identification of the 
involved genes in tumor emergence and understanding of un-
derlying molecular mechanisms are required for representing 

F I G U R E  1  Knockdown of MEIS1 
gene expression in KYSE30 cells. 
Fluorescent microscopy images of GFP‐
hMEIS1 and control cells 5 days after 
transduction
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effective therapeutic targets (Forghanifard et al, 2014; Patel 
et al., 2016).

In this study, MEIS1 was silenced in ESC cell line 
KYSE‐30 and its impact on different involved genes in cell 
differentiation was analyzed. Following MEIS1 knockdown 
in KYSE‐30 cells, we revealed a significant increase in ex-
pression level of specific markers of differentiated epithelial 
cells including KRT4 and CDX2, while a significant down-
regulation was observed in EGF and TWIST1 gene expres-
sion, as specific markers of cell proliferation and EMT, 
respectively. These results may highlight the critical role of 
MEIS1 in regulation of cell differentiation through modulat-
ing of gene expression pattern in ESC cell line KYSE‐30.

Homeobox genes function as master transcriptional 
regulator of stem cell (SC) differentiation from embryonic 
stages to adult tissues, and their aberrant expression is as-
sociated with tumorigenesis (Rodrigues, Esteves, Xavier, & 
Nunes, 2016). (Grier et al., 2005). Among homeobox genes, 
MEIS1 involves in stem cell growth and self‐renewal, as well 
as cell development and differentiation during embryogen-
esis (Zhu et al., 2017). Moreover, it plays a critical role in 
tumorigenesis, and functions as a negative regulator of cell 
cycle checkpoints, as well as cell proliferation and apoptosis 
in some malignancies such as prostate, non‐small‐cell lung 
cancer (NSCLC), clear cell renal cell carcinoma (ccRCC), 
and ESCC (Aksoz et al., 2018; Crist et al., 2011).

Intriguingly, numerous reports have demonstrated that dif-
ferent molecular modulators are related to MEIS1 expression 
including TFs, miRNAs, and cellular metabolites (Aksoz et 
al., 2018). In addition, MEIS1 can modulate expression of 
involved genes in cell differentiation and proliferation such 
as HIF1/2, GATA1, CCND1/3, SOX3, and PBX1 (Torres‐
Flores, 2013). It has been confirmed that MEIS1 is involved 
in progression of different malignancies. It functions as a 

double‐edged sword with a dual function (either oncogenic 
or tumor suppressive role) in diverse cell types depending 
on the cell context. Oncogenic role of MEIS1 transcription 
factor is detected in a variety of malignancies including leu-
kemia, malignant peripheral nerve sheath tumors (MPNST), 
nephroblastoma, and ovarian, where it promotes cell prolifer-
ation and inhibits programmed cell death (Blasi, Bruckmann, 
Penkov, & Dardaei, 2017). On the other hand, several stud-
ies have demonstrated that MEIS1 acts as potential tumor 
suppressor in some tumors such as ccRCC, prostate, lung, 
gastric, and colorectal cancers through promoting cell differ-
entiation and inhibition of epithelial cell proliferation (Chen 
et al., 2012; Song, Wang, & Wang, 2017; Zhu et al., 2017).

MEIS1 silencing through RNAi mechanism was correlated 
with epithelial cancer cells (NSCLC) proliferation and ac-
celerated cell cycle progression in vivo (Li, Huang, Guo, & 
Cui, 2014). Moreover, MEIS1 knockdown inhibited DNA 
replication in acute lymphoblastic leukemias (ALL) through 
regulation of involved genes in cell cycle process (Orlovsky 
et al., 2011). On the other hand, MEIS1 ectopic expression in 
gastric cancer (GC) cells not only suppressed critical cancer 
cell properties including cell proliferation, colony formation, 
anchorage independent growth, epithelial mesenchymal tran-
sition (EMT), migration, and invasion, but also induced apop-
tosis and cell cycle arrest at G1/S transition in vitro (Song et 
al., 2017). In addition, an inverse association between MEIS1 
and SRY (sex determining region Y)‐box 2 (SOX2) in ESCC 
tumor samples was reported (Rad et al., 2016). MEIS1 silenc-
ing in ESC cell line KYSE‐30 has resulted in overexpression 
of SOX2 as a stemness factor. Such results may proposed sup-
pressive role of MEIS1 on SOX2 gene expression in ESCC to 
inhibit stemness state progression (Rad et al., 2016). It has 
been illustrated that MEIS1 silencing in mouse embryonic 
carcinoma suppressed differentiation in neural cells, while 
its ectopic expression induced differentiation via expression 
of neural progenitor markers including GLAST, BLBP, SOX1, 
and Nestin (Yamada, Urano‐Tashiro, Tanaka, Akiyama, & 
Tashiro, 2013). Consequently, induced OCT4 can increase 
MEIS1 expression and the upregulated MEIS1 can repress 
OCT4 expression, as a main gene of pluripotency, in a nega-
tive feedback loop (Yamada et al., 2013). Thus, modulation of 
OCT4 and SOX2 protein expression occur via differentiation 
signals, and MEIS1 is contributed in this modulation of tumor 
cell differentiation (Rad et al., 2016; Yamada et al., 2013).

During differentiation process, expression of differenti-
ation markers is increased, while expression of Yamanaka 
factors (OCT4, SOX2, KLF4, and MYC), which are activated 
in embryonic stem cells, is decreased. In addition, high‐level 
expression of Yamanaka factors can alter the gene expression 
pattern of the cell from differentiated to de‐differentiated state 
that lead to the cell reprograming (Miyamoto, Furusawa, & 
Kaneko, 2015). Since tumor cells approximately exhibit mark-
ers and properties of embryonic stem cells, low level of OCT4 

F I G U R E  2  Knockdown of MEIS1 gene has a significant impact 
on TWIST1, EGF, KRT4, and CDX2 mRNA expression in KYSE‐30 
cells. Retroviral transduction silenced MEIS1 expression in GFP‐
hTMEIS1 nearly 5.5‐fold compared to GFP control cells causing a 
– 12‐, ‐8‐fold decrease and 34‐, 1.14‐fold increase in TWIST1, EGF, 
KRT4, and CDX2 mRNA expression, respectively
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or SOX2 is necessity for supporting MEIS1 expression to pro-
mote the maintenance of differentiation in such cells (Tucker 
et al., 2010).

Here we have sought to investigate the significant changes 
in expression level of some gene related to tumor cell differen-
tiation following MEIS1 silencing in ESC cell line KYSE‐30. 
MEIS1 silencing resulted in suppression of the involved 
genes in cell proliferation (EGF) and EMT (TWIST1), lead-
ing to tumor cell differentiation in ESC cell line KYSE‐30.

TWIST1, as a bHLH transcription factor, is a key regulator 
of different cellular processes. It identify E‐box consensus se-
quence in promoter of target genes and adjust downstream gene 
expression (Izadpanah, Abbaszadegan, Fahim, & Forghanifard, 
2017). It was revealed in this study that MEIS1 knockdown 
causes a significant decrease in TWIST1 gene expression in 
KYSE‐30 cells. TWIST1 not only involves in embryonic organ-
ogenesis, specification, and differentiation, but also is associ-
ated with tumor initiation, angiogenesis, stemness and EMT 
(epithelial‐mesenchymal transition) promotion, leading tumor 
cell invasion and metastasis in a variety of human malignan-
cies (Forghanifard, Rad, et al., 2017). It has been indicated 
that silencing of TWIST1 lead to increase osteoblast differen-
tiation in mesenchymal stem cells (MSCs) by upregulation of 
the involved genes in FGF/ERK and BMP signaling pathways 
(Miraoui, Severe, Vaudin, Pagès, & Marie, 2010). Upregulation 
of numerous Zn‐finger TFs such as SNAIL1/2, ZEB1/2, and 
TWIST1/2 that involve in several cell signaling pathways can 
lead to loss of E‐cadherin, the hallmark of EMT progression 
(Cheng, Auersperg, & Leung, 2012; Forghanifard, Khales, et 
al., 2017). TWIST1 ectopic expression leads to downregulation 
of E‐cadherin and activation of mesenchymal markers. Inverse 
correlation between upregulation of TWIST1 and decreased ex-
pression of E‐cadherin has been shown in several malignancies 
(Sasaki et al., 2009). According to the role of TWIST1 in EMT, 
its significant decreased expression following MEIS1 silencing 
in KYSE‐30 cells may inhibit EMT progress and invasiveness 
behavior of the cells, and reverse the process of mesenchymal 
transition which may result in tumor cell differentiation.

EGF (epidermal growth factor), as a tyrosine kinase ligand, 
stimulates various cellular responses such as epithelial cells dif-
ferentiation and proliferation, apoptosis, migration, as well as 
cell division and survival (Li, Shan, et al., 2014). Interaction be-
tween EGF and its receptor (EGFR or ErbB‐1) leads to activate 
growth factor‐mediated intracellular downstream pathways such 
as PI3K/AKT and RAF/MEK/ERK that result in EGF‐induced 
EMT (Bodnar, 2013). In this study, silencing of MEIS1 expression 
significantly suppressed the EGF expression in KYSE‐30 cells 
indicating that MEIS1 is involved in the EGF related signaling 
cascades. It is suggested that downregulation of EGF, as an epi-
thelial factor, leads to decrease EMT (Li, Shan, et al., 2014). Taken 
together, our results illustrate that underexpression of TWIST1 and 
EGF, as two prevalent TFs of EMT promotion, can lead to a sup-
pressed EMT in KYSE‐30 cells as an invasive cell line.

We have found that stable MEIS1 knockdown induces 
KRT4 and CDX2 upregulation, indicating these genes are 
involved in KYSE‐30 differentiation. CDX2, as a ParaHox 
family of homeobox genes, has a key functions in intestinal 
epithelial differentiation, proliferation, maintenance of the 
intestinal phenotype and regulation of intestine specific gene 
transcription program, WNT‐mediated beta‐catenin signaling 
as well as tumorigenesis (Dong & Guo, 2015). In addition, 
downregulation of CDX2 leads to development of intestinal 
neoplasia and is introduced as a prognostic marker for colon 
cancer (Dong & Guo, 2015). Ectopic expression of the in-
testine‐specific homeobox transcription factor CDX2 cause 
Barrett's esophagus and gastric‐intestinal metaplasia (Joo, 
Park, & Chun, 2016). Furthermore, loss of CDX2 expression 
was found in various ESC cell lines due to promoter hyper-
methylation (Guo et al., 2007). In line with these reports, our 
results also confirmed this pattern of the gene expression. 
While the EMT involving genes were downregulated and 
EMT process was suppressed, the epithelial markers were 
upregulated to fix epithelial state of the cells inhibiting mes-
enchymal converting. Since all these changes in gene expres-
sion pattern was induced by MEIS1 knockdown, it may be 
hypothesized that MEIS1 promotes EMT and suppresses cell 
differentiation in ESC cell line KYSE‐30.

Cytokeratins (CKs), as intermediate filament cytoskele-
tal proteins, are the major components of normal epithelium 
and squamous tumor tissues which are expressed in different 
grades of cell differentiation and introduced as indicator for 
predicting of tumor progression in ESCC (Cintorino et al., 
2001; Singh et al., 2009). KRT4, as a member of intermedi-
ate filament proteins family, is expressed in suprabasal layers 
of nonkeratinizing stratified epithelium such as esophagus 
and regulated in a differentiation‐dependent manner (Alam, 
Sehgal, Kundu, Dalal, & Vaidya, 2011). Interestingly, expres-
sion level of KRT4 protein was decreased in transition from 
normal esophageal epithelium to invasive tumor of stratified 
squamous epithelium and associated with cancer progression 
(Chung et al., 2006). Therefore, the increased expression of 
KRT4 after MEIS1 silencing may suggest the putative correla-
tion of KRT4 overexpression with differentiation state of the 
KYSE‐30 cells. Following stable MEIS1 gene silencing, we 
have found a significant increase in CDX2 and KRT4 mRNA 
expression in KYSE‐30 cells, which may probably orient the 
cells toward differentiation phenotype. Altogether, these re-
sults correlate MEIS1 expression and the involved genes in 
maintenance of tumor cell differentiation, introducing MEIS1 
as a probable key regulator in this process in ESC cells, and 
presenting a potentially molecular mechanism for regulation 
differentiation and EMT processes in ESC cell line KYSE‐30.

In conclusion, we showed that MEIS1 is significantly cor-
related with the involved genes in cell differentiation and EMT 
processes in KYSE‐30 cells. Having confirmed the correla-
tion of MEIS1 with TWIST1 and EGF, as well as its inverse 
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association with epithelial cell markers including KRT4 and 
CDX2, we may propose a role for MEIS1 in progress of KYSE‐30 
cell dedifferentiation. These findings may suggest that MEIS1 
gene repression can be a therapeutic strategy to inverse invasive 
characteristic of the ESC cells. To the best of our knowledge, 
this is the first report revealing regulatory role of MEIS1 on 
expression of the involved genes in EMT and differentiation in 
esophageal squamous carcinoma cell line KYSE‐30.
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