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Summary 
Lymphoproliferation, chronic B cell activation resulting in hypergammaglobulinemia, and profound 
immunodeficiency are prominent features of a retrovirus-induced syndrome designated murine 
acquired immunodeficiency syndrome (MAIDS). In vivo treatment of infected mice with re- 
combinant interleukin 12 (IL-12) beginning at the time of infection or up to 9 wk after virus 
inoculation markedly inhibited the development of splenomegaly and lymphadenopathy, as well 
as B cell activation and Ig secretion. Treatment with IL-12 also had major effects in preventing 
induction of several immune defects including impaired production of interferon 31 (IFN-~/) and 
IL-2 and depressed proliferative responses to various stimuli. The therapeutic effects of IL-12 
on the immune system of mice with MAIDS were also associated with reduced expression of 
the retrovirus that causes this disease (BM5def), with lesser effects on expression of ecotropic 
MuLV. IL-12 treatment was not effective in IFN-y knockout mice or in infected mice treated 
simultaneously with IL-12 and anti-IFN-3,. These results demonstrate that induction and progression 
of MAIDS are antagonized by IL-12 through high-level expression of IFN-'y and may provide 
an experimental basis for developing treatments of retrovirus-induced immune disorders with 
similar immunopathogenic mechanisms. 

M urine AIDS (MAIDS) 1 develops in some strains of 
mice infected with the LP-BM5 mixture of murine 

leukemia viruses (MuLV) originally isolated by Laterjet an~ 
Duplan (1). This mixture includes replication-competent, non- 
pathogenic helper viruses and etiologic replication-defective 
MuLV designated LP-BM5 def (2) or DuSH (3). MAIDS 
is characterized by an early, persistent polyclonal activation 
of CD4 + T cells accompanied by increasingly severe defects 
in cell-mediated immunity (4, 5). Abnormalities of B cells 
are another prominent manifestation of the syndrome and 
include polyclonal activation associated with B cell prolifera- 
tion and differentiation to Ig secretion resulting in hyper- 
gammaglobulinemia (5, 6). As a consequence of B cell and 
CD4 + T lymphocyte proliferation, the susceptible strains of 
mice develop massive lymphadenopathy as well as spleno- 
megaly and expression of these retroviruses increases progres- 
sively with time after infection (7, 8). 

1 Abbreviations used in this paper: HPRT, hypoxanthine phosphoribosyl- 
transferase; MAIDS, murine AIDS; MuLV, murine leukemia virus; RT, 
reverse  transcriptase. 

R. T. Gazzinelli and N. A. Giese contributed equally to this work. 

B lymphocytes are the major target for infection by LP- 
BM5 def (8) and their activation and expansion are essential 
components for the development of this disorder (9). In 
MAIDS, B cell activation, and lymphoproliferation are de- 
pendent on CD4 + T cells (10, 11) and are associated with 
increased production of IL-4, IL-6, and IL-10 (Type 2 
cytokines)2; and reduced expression of IL-2 and IFN-'y pro- 
teins (Type 1 cytokines) (12). Type 2 cytokines efficiently stimu- 
late B cell growth and differentiation to Ig secretion and may 
be of crucial importance to the chronic B cell activation and 
hypergammaglobulinemia, a central feature of this disease. 
High levels of such cytokines may also promote activation 
and replication of proviral DNA in B lymphocytes and there- 
fore favor progression of MAIDS. Studies using IL-4-deficient 
mice suggest that there are strain-dependent differences in 
the importance of this particular Type 2 cytokine for devel- 

2 Studies identifying cells other than CD4 + T cells as important sources 
of IFN-'y (NK cells) or Ibl0 (B cells, macrophages), for example, suggest 
the use of the terms Type 1 and Type 2 to designate certain cytokine profiles 
rather than Thl and Th2 with their inherent implications of T cell origin. 
As many studies indicate that CD4+ T cells with Thl and Th2 features 
exist in vivo, Th subset terminology will still be used to refer to these 
cell types. 
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opment of MAIDS. (B6 x 129)F2 mice with an IL-4 
knockout had a much-delayed course of disease (13), while 
progression of MAIDS was comparable in B6 knockout and 
wild-type mice (14). 

Nevertheless, Type 1 cytokines, through their ability to 
activate macrophages, cytotoxic T cells, and NK cells, may 
be important components in resistance to this retrovirus mix- 
ture. If Type 1 responses are protective to virus-infected mice, 
it would be expected that manipulations which enhance in- 
duction of Thl differentiation and Type I cytokine produc- 
tion would confer some measure of disease resistance to 
MAIDS-susceptible mice as manifested by reduced lym- 
phoproliferation and improved cell-mediated immune func- 
tion. We have explored this postulate by treating infected 
mice with IL-12. 

IL-12 is a heterodimeric cytokine produced by macrophages 
in response to infection with various organisms. It acts in 
synergy with TNF-ot and IL-2 to induce the generation of 
IFN-3' by NK cells (15-18) and acts on both CD8 + T and 
NK cells to enhance their cytotoxic activity (19). Importantly, 
IL-12 also conditions naive helper cells to differentiate to the 
Thl pathway (20-22) and stimulates Th2 cells to transiently 
produce IFN-3' (23). 

In the results presented here, we show that chronic treat- 
ment with rlL-12 for 4 wk, initiated at either 0 or 4 wk 
post infection, resulted in significantly reduced spleen and 
cervical lymph node weights and marked reductions in the 
severity of histopathologic changes and immune abnormali- 
ties associated with the progression of MAIDS. IL-12 treat- 
ment also had an inhibitory effect on expression of the 
retrovirus that causes the disease (BM5def) but had less of 
an effect on the replication-competent, nonpathogenic, eco- 
tropic helper virus transcripts. Finally, our results show that 
the beneficial effects of IL-12 were dependent on IFN-3~ syn- 
thesis and were associated with inhibition of B cell prolifera- 
tion and activation. 

Materials and Methods 
Mice and Viruses. 6-wk-old C57BL/6 (B6) female mice obtained 

from The Jackson Laboratory (Bar Harbor, ME) were injected in- 
traperitoneally with 0.1 ml of stocks of LP-BM5 MuLV prepared 
as previously described (2). IFN-3' knockout mice (24) used in our 
studies were obtained from Genentech Inc. (South San Francisco, 
CA), were backcrossed into B6 genetic background for five to six 
generations, and typed individually for the wild-type and defective 
IFN-'y genes. Frequencies of spleen cells producing infectious 
ecotropic MuLV were determined in infectious center tests using 
mitomycin C-treated cells (2, 7). 

1L,12 Treatment. ri1-12 (25) (5.6 x 106 U/mg) produced by 
the Mammalian and Microbial Cell Sciences and Process Biochem- 
istry groups of Genetics Institute (Cambridge, MA; generously 
provided by Dr. Stan Wolf of that Institute) was diluted in PBS 
containing 0.1% BSA (PBS-BSA) and was inoculated intraperi- 
toneally at 0.1-0.25/zg/mouse/d for 5 d, followed by 2 d with 
no inoculations. This cycle was repeated 4 or 8 times, with the 
first round starting at day 0 or day 1 after infection in protocols 
designed to test effects of II-12 on early disease. Mice were tested 
at 8-10 wk post infection. For protocols designed to test effects 
of ri1-12 on established disease, mice were infected for 4 or 8 wk 

before starting treatment with rlL-12 for four cycles. Some infected 
mice were treated simultaneously with I1-12 and anti-IFN--y mAb 
(XMG1.6) at a dose of 2 mg of partially purified (26) mAb/ 
mouse/wk. Normal mice, uninfected mice treated with rlIA2, and 
infected mice treated with PBS-BSA served as controls. 

Studies of lnfected Mice. At autopsy, mice were bled, spleen and 
cervical lymph node (LN) weights were determined, and selected 
tissues were obtained for histopathologic studies. Single-ceU sus- 
pensions prepared from spleen or pooled peripheral LN cells were 
treated by flow cytometry (FACS| Becton Dickinson & Co., Moun- 
tain View, CA) using a panel of antibodies including Thy-l.2, K, 
CD4, CD8, CD11b, CD32, CD43, and CD45R (B220). FACS | 
and histopathologic criteria used to stage the progression of MAIDS 
have been described in detail (7, 27). For proliferative responses, 
cultured spleen cells were stimulated with Con A (5 #g/ml), Con 
A plus PMA (10 ng/ml), PMA plus ionomycin, or LPS (20/~g/ml). 
Proliferative responses were measured after pulsing with [3H]thy- 
midine at 72 h. Supernatants were harvested at 24 h for measure- 
ments of IL-2 and at 48 h for IFN-% I1-2 was measured using the 
I1-2-dependent cell line CTLL or by ELISA, and IFN-~/by two- 
site ELISAs performed as previously described (28). Serum IgG and 
IgM levels were determined by ELISA as described (29). 

Semiquantitative Reverse Transc@tase (RT)-PCR. The sequence 
of hypoxanthine phosphoribosyltransferase (HPRT) primers and 
probes and techniques used for PCR analysis of viral gene expres- 
sion were published elsewhere (30). For detection of BM5def and 
ecotropic virus mRNAs, the following primers and probe were 
used respectively: 5'-CCTTTTCCTTTATCGACACT-3', 5'-ACC- 
A ~ G G A A T A C C ' I E G - 3 ' ,  and 5'-CTCIGCCAAAGGGAC- 
CAGTT-3'; 5'-GGCCTAGAATATCGGGCTC-3', 5'-TGTAGT- 
CCTGGTCGTGGATG-Y, and 5'-CCCTGCTGTTCAGGAAGC- 
A-Y. Briefly, total RNA was isolated from spleen or LN samples 
frozen in RNAzol, followed by extraction with chloroform and 
isopropanol. 1/zg of RNA was transcribed using MMLV-H- re- 
verse transcriptase (Promega Corp., Madison, WI). After this reac- 
tion, the cDNA-containing solution was used for specific sequence 
amplification using 1 U Taq DNA polymerase and 40 ng each of 
sense and antisense primers. The number of cycles was chosen ex- 
perimentally for each gene product: ecotropic helper, 30 cycles and 
LP-BM5def, 23 cycles. As control for the RT-PCR, HPRT (23 
cycles) was transcribed and amphfied for all samples. Finally, PCR 
products were separated on 1% agarose gels and analyzed by 
Southern blot hybridization with fluorescein-labeled probes using 
an ECL-Y oligolabeling and detection system and Hyperfilm-ECL 
(Amersham International, Little Chalfort, UK). 

Results and Discussion 
Two protocols were used to evaluate the effects of IL-12 

during MAIDS. To determine if IL-12 would inhibit induc- 
tion of disease, B6 mice were treated with rlL-12 for 4 or 
8 wk beginning within a day after infection with LP-BM5 
MuLV. At 4 and 8 wk after infection, mice were examined 
for progression of MAIDS. To evaluate if IL-12 would be 
useful in treatment of mice with established disease, cytokine 
injections were initiated 4 wk post virus inoculation and were 
continued for 4 wk before testing. 

Chronic treatment with rlL-12 by either protocol had pro- 
found effects on the development of MAIDS. As shown in 
Table 1, rlL-12-treated mice had significantly reduced spleen 
and cervical LN weights and marked reductions in the severity 
of histopathologic changes in lymphoid and nonlymphoid 
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Table 1. Effects of Treament with rlL-12 on Development of Lymphoproliferation and Other Manifestations 
of l~'sease Progression in B6 Mice infected with LP-BM5 MuLV* 

Tissue weight 
Treatment with 

LP-BM5 rlL-12 (wk post Cervical 
MuLV infection) Spleen LN 

Stage of disease* 

PATH FACS | 

mg 
- - 80 _+ 10 <20 N N 

+ - 463 + 12 213 + 12 2 2 
- 0-4 90 +_ 10 < 2 0  N N 

+ 0-4 182 _+ 33S 95 _+ 42S N-1 N-1 
+ 0-8 167 _+ 45S 70 +_ 36S N-P, N-R 

- 5-9 295 _+ 63 33 _+ 9 N N 
+ - 483 _+ 163 293 _+ 153 2-3 2-3 
+ 5-9 455 _+ 5411 66 _+ 13 R-1 1 

* Treatment with rlL-12 reduces development of splenomegaly and lymphadenopathy in mice infected with LP-BM5 MuLV. B6 mice were inoculated 
intraperitoneaUy at 6 wk of age with 0.1 ml of virus stocks prepared as previously described (7). Numbers indicate the mean + 1 SE for data from 
four individual mice per group. 
* For histopathologic (PATH) and flow cytometry (FACS) determinations of MAIDS progression, N indicates indistinguishable from normal; R 
indicates reactive to infection but with insui~cient changes to be diagnostic of MAIDS; and 1, 2, and 3 are indicative of changes clearly diagnostic 
of MAIDS and of increasing severity. The criteria used for determining these stages of disease were detailed previously (6, 7). 
S Difference statisically significant (Schette test), p <0.05 when compared with results obtained from mice infected with LP-BM5 MuLV and treated 
with rlL-12. 
II Treatment with rlL-12 alone induces transient increases in spleen weight, mainly due to an expansion of the red pulp, which can be observed 
in animals killed shortly after cessation of immunotherapy. Staging of MAIDS by histopathology and FACS | analysis demonstrated that these in- 
creases in spleen weight could not be attributed to advanced MAIDS as seen in spleens of infected untreated mice in the same protocol. 

tissues described previously for LP-BM5 virus-infected mice 
(7; Table 1). Spleens and LN of mice with MAIDS normally 
contain greatly increased numbers of immunoblasts, plasma- 
blasts, and plasma cells (7). These populations are readily 
identified by their reduced expression of Ig r and CD45(B220) 
and increased expression of CD43, an antigen absent on resting 
B cells but expressed on presecretory and secretory B lineage 
cells (Fig. 1). Both treatment protocols significantly reduced 
the proportions and total numbers of B cell blasts and plasma 
cells in spleen (Fig. 1 A) and LN (Fig. 1 B). IL-12 treatment 
also reduced the proportions and total numbers of the un- 
usual subset of CD4 + Thy-1- TCR-ct/3 + T cells that ac- 
cumulates progressively in spleen and LN of mice with MAIDS 
(27; Fig. 1). 

Consistent with the reductions in cells with Ig-secreting 
phenotypes described above, IL-12-treated mice exhibited 
significantly reduced levels of serum IgG and IgM (Fig. 2). 
The concentrations of both Ig dasses did not differ significantly 
from those of IL-12-treated uninfected mice (not shown) or 
normal controls (Fig. 2). 

Treatment with rlL-12 also prevented virus-induced ab- 
normalities in T cell proliferative responses and cytokine secre- 
tion. While spleen cells from mice with MAIDS were greatly 
impaired in their ability to proliferate or to produce IL-2 in 
response to various stimuli, the responses of cells from treated 
mice did not differ significantly from those of normal, unin- 
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fected mice or of uninfected mice treated with rlL-12 (Fig. 3). 
The ability of rlL-12 treatment to prevent immune dys- 

function in virus-infected mice also extended to the expres- 
sion of IFN-'y protein following stimulation of spleen cells 
with mitogen (Table 2). In agreement with earlier studies 
(12; Giese, N., unpublished observations), production of 
IFN-'y by mitogen-stimulated spleen cells was progressively 
impaired following infection with LP-BM5 MuLV, whereas 
Type 2 cytokine (IL-4 and IL-10) synthesis was increased (Table 
3). In contrast, spleen cells from either uninfected or infected 
mice treated with rlL-12 for the first 4 wk post inoculation 
produced cytokine levels comparable to those generated by 
cells from normal, uninfected animals (Tables 2 and 3). 

We conclude that in vivo treatment of mice with rlL-12 
significantly inhibited induction of MAIDS when used im- 
mediately after infection and was effective in reversing many 
manifestations of this syndrome when used to treat estab- 
lished disease. The blocking effects on progression of MAIDS 
were found to persist through 4 wk (Tables 1 and 2) and 
up to 10 wk (not shown) after cessation of treatment. Fur- 
thermore, marked reductions in lymphoproliferation and 
prolonged survival have been observed in mice treated as late 
as 8 wk post infection (data not shown). 

In all infectious disease systems examined previously, pro- 
tective effects of IL-12 have been dependent on IFN-3~ (17, 
31, 32). We examined the contribution of IFN-'y expression 
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Figure 2. In vivo treatment with rlL-12 prevents and reverses hyper- 
gammaglobulinemia induced by infection with LP-BM5 MuLV. B6 mice 
were infected with virus and treated either with PBS-BSA ([-]) or with 
rlI~12 diluted in PBS-BSA (0.1-0.25/zg/mouse/d for 5 d followed by 2 d 
without inoculation) for four cycles starting at the time of infection ([]) 
or at 4 wk post infection ( I ) .  Sera were collected at 9-10 wk post infec- 
tion, and serum IgG and IgM levels were determined by ELISA as previ- 
ously described (29). The horizontal lines crossing the boxes represent the 
mean Ig levels in sera from uninfected controls, which did not differ from 
the Ig levels in sera from uninfected mice treated with rlL-12 under the 
same protocols used for infected mice (data not shown). The short horizontal 
bars represent the mean for the experimental group. The differences in 
the Ig levels for both classes were significantly different (/, <0.05) for treated 
and untreated, infected animals. 
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Figure 1. Flow cytometry analyses of spleen or LN cells from B6 mice. 
Mice were infected with LP-BM5 MuLV and treated with I1.-12 for the 
next 4 wk (.4) or treated from 5 to 9 wk (B) postinfection, tingle cell 
suspensions were prepared from spleens (.4) or LN (B) obtained at 8 or 
11 wk post infection and stained with FITC-labeled antibodies to Ig r 
light chain (top), FITC-labeled anti-CD45R(B220) mAb, and biotin/ 
allophycocyanin (APC)-labeled anti-CD43 mAb (middle), or FITC-labeled 
anti-CD4 mAb and biotin/APC-tabeled anti-Thy-l.2 mAb (bottom). All 
preparations were preincubated with unlabeled mAb to the IgG Fc receptor 
to prevent Fc binding. Cells were analyzed on a FACt ® 440 (Becton Dick- 
inson & Co.) on 3 x 10 s viable cells as determined by narrow forward- 

to IL-12-induced resistance to MAIDS in two systems. First 
we studied the effects of  IL-12 treatment on disease in IFN-v  
knockout mice. IL-12-treated infected knockout mice showed 
no significant reduction in splenomegaly (Fig. 4) or improve- 
ment in FACS ® profiles (data not shown) as a result of  treat- 
ment. In addition, serum IgG levels of  the knockout mice 
infected with LP-BM5 and treated with IL-12 were the same 
as those mice infected but untreated (Fig. 4). In the second 
system, IL-12-inoculated mice were treated simultaneously 
with high levels of  neutralizing mAb to IFN-% Treatment 
with the mAb completely blocked the ability of  IL-12 to in- 
hibit lymphoproliferation (Table 4). In addition, there were 
no differences in the histopathologic changes or abnormali- 
ties of  cell surface antigen expression exhibited by infected, 
untreated mice and infected mice treated simultaneously with 
rlL-12 and anti-IFN-y (data not shown). The combined results 
from these systems demonstrated that the therapeutic effects 
of  rlL-12 were highly dependent on expression of IFN-% 

To determine if treatment with rlL-12 altered expression 
of  the MuLV involved in MAIDS, splenic m R N A s  were ex- 
amined by R T - P C R  techniques for transcripts from both 
ecotropic helper and BM5def viruses (Fig. 5). Studies of spleens 
from infected mice treated with rlL-12 for 4 wk  post infec- 
tion and studied at 4 wk  after virus inoculation revealed re- 

angle light scatter and exclusion of propidium iodide. The numbers in 
the quadrants of the contour plots generated from the two-color analyses 
indicate the percent of cells bearing each of the phenotypes. Similar results 
were obtained in three separate experiments in studies of both spleen and 
LN cells. 
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Figure 3. In vivo treatment with rII.,12 restores 
both proliferation and IL-2 production to spleen 
cells of mice infected with LP-BM5 MuLV. Unin- 
fected mice and vires-infected mice were treated 
with rIL-12 (0.1/~g/mouse/d) beginning at the time 
of infection and continuing for 4 wk. Controls 
included mice injected with virus but not with rib 
12 and uninfected animals. Spleen cells obtained 
at 9 wk post infection were cultured with medium 
alone (solid Mrs), Con A (hatched bars), PMA plus 
ionomycin (slashed bars), and Con A plus PMA (open 
bars). 

duced expression of BMSdef as well as ecotropic virus in the 
spleens of treated mice (Fig. 5 A, experiment I). Similar effects 
of treatment were seen with mRNA from spleens of animals 
treated for 4 or 8 wk post infection and examined at 9 wk 
after virus inoculation (Fig. 5 A, experiment II). To quanti- 
tate the effects of IL-12 treatment on expression of the helper 
and defective virus, we determined the ratio of BMSdef or 
ecotropic helper virus mRNAs to HPRT transcripts in each 
of the samples from 14 untreated and 22 treated mice (Fig. 
5 B). Transcripts of the defective virus were present in all 
preparations from treated animals but were clearly reduced 
(10-fold difference in means) below the levels of untreated 
animals. Reduced expression of BMSdef could not be attrib- 
uted solely to inhibition of helper virus replication by IL-12, 
as the levels of ecotropic virus mRNA for II~12-treated mice 
were reduced about threefold compared with levels for un- 

Table 2. Effects of Treatment with rlL-12 on Induced 
Production of IFN-7 by Spleen Cells from Mice Infected 
with LP-BM5 MuLV* 

Wk post infection 
IFN-'y 

LP-BM5 Treatment 
MuLV with rlL-12 Media Con A 

ng/ml 
- - 0.3 _+ 0.2 25.8 _+ 1.9 
4 - 0.3 + 0.1 12.2 _+ 6.0* 
4 0-4 4.7 + 1.5 25.8 _+ 4.8 
- 0-4 2.8 _+ 0.9 30.3 + 3.1 
8 - <0.1 6.2 +_ 1.6' 
8 0-4 0.7 _+ 0.3 26.5 + 3.8 

* Treatment with rlL-12 restores inducibility of IFN-3'. The groups of 
mice presented received the cytokine treatment from week 0 to 4 on the 
same schedule and dose decribed in Table 1. Groups of uninfected B6 
mice treated with rlL-12 were used as controls. Numbers indicate the 
mean for four mice per group. Spleen cells were cultured in media alone 
or Con A (5 #g/ml) as detailed elsewhere (12). Supernatants were har- 
vested at 48 h for assay of IFN-"/. Cytokine measurements were per- 
formed by two-site ELISA tests as previously described (12, 28). 
t Difference statistically significant (Schette test), p <0.05 when com- 
pared with results obtained from infected or control mice treated with 
rlL-12. 

treated, infected mice (Fig. 5 B). Further studies of the effects 
of Ib12 treatment on expression of ecotropic MuLV by in- 
fectious center tests showed that the frequencies of virus- 
producing spleen cells were generally comparable for Ib  
12-treated or untreated, infected mice (data not shown). 

The basis for the dissociation between expression of BMSdef 
and ecotropic helper virus transcripts in infected mice treated 
with IL-12 is unclear. Studies o r b  cell lymphomas that con- 
tain and express BM5def showed that treatment with IL-12 
in vitro did not affect cell viability or proliferative rate and 
did not reduce the levels of defective virus mRNA (data not 
shown), suggesting that the cytokine did not act directly on 
B cells by eliminating targets for BMSdef expression or al- 
tering the rate of virus transcription. It is known, however, 
that BMSdef is expressed at highest levels in B lymphocytes, 
whereas the helper virus might be less specific in terms of 
its target cells. Therefore, an inhibitory effect of IL-12 treat- 
ment on B lymphocyte activation and expansion could ex- 
plain this discrepancy. We examined these possibilities in studies 
of mice tested immediately after completion of treatment with 
IL-12. It should be noted, first, that splenomegaly, due pri- 
marily to expansion of the red pulp and congestion, develops 
in mice treated with IL-12, with the increases being more 
prominent in infected animals (Table 5 and data not shown). 
These IL-12-induced changes resolve rapidly after cessation 
of treatment of both infected and uninfected mice. By 8 wk 
post infection, the beneficial effects of IL-12 in preventing 
development of splenomegaly due to virus were again evi- 
dent (Table 5). 

Further studies showed that the frequencies of B cells in 
spleens of mice treated with IL-12 were reduced, particularly 
in tissues of infected mice (Table 5). The increases in spleen 
size associated with IL-12 treatment did not compensate for 
these reductions, as lymphocyte recovery from the congested 
spleens was reduced (data not shown). In contrast, LN from 
IL-12-treated mice had twice the normal frequency of B cells 
for both infected and uninfected mice, indicating that IL-12 
altered the trafficking of B cells (Giese, N., unpublished ob- 
servations). The demonstration of disproportionately reduced 
proliferative responses to LPS by spleen cells from infected, 
IL-12-treated mice (Table 5) indicated that treatment altered 
not only the total numbers but the biologic responses of B cells. 

Treatment with rlL-12 dramatically changed the cytokine 
profile of infected mice, which in untreated animals was charac- 
terized by a dominance of Type 2 cytokines (Tables 2 and 
3). During IL-12 treatment, we observed greatly enhanced 

2203 Gazzinelli etal. 



Table 3. In Vivo Treatment with 1L-12 Inhibits IL-4 and IL-IO Synthesis Produced by Lymphocytes Obtained from Mice Infected with LP-BM5* 

Weeks post infection 
IL-4 IL-10 

LP-BM5 Treatment 
MuLV with rlL-12 Media Con A/P Media Con A/P 

U/ml U/ml 
- - < 0 . 1  4.5 _+ 0.5 1 _+ 1 7.4 _+ 0.5 
4 - 0.5 _+ 0.1' 7.5 _+ 0.5' <1.0 35.5 _+ 4.5* 
4 0-4 <0.1 2.4 _+ 0.4 <1.0 5.0 _+ 0.8 
- 0 - 4  < 0 . 1  2.6 _+ 1.2 <1.0 12.3 _+ 2.5 
8 - 0.6 _+ 0.3* 8.5 + 0.9* <1.0 21.6 _+ 3.4* 
8 0-4 <0.1 2.5 _+ 1.2 <1.0 4.5 + 0.5 

* The results presented in this table were obtained from animals of the same experimental group described in Table 1. Numbers indicate the mean 
for four mice per group. Spleen cells were cultured in media alone or with Con A (5 gg/ml) plus PMA (10 ng/ml) as detailed elsewhere (12). 
Supernatants were harvested at 24 h and 72 h for assay, respectively, for IL-4 and IL-10. Cytokine measurements were performed as previously 
described (12, 28). 
* Difference statistically significant (Schette test, p <0.05) when compared with results obtained from infected or control mice treated with rlL-12. 

expression of  IFN-'y accompanied by decreased levels of IL-4 
and IL-10. It is noteworthy that spleen cells from infected 
mice treated with IL-12 not only gained the ability to pro- 
duce high levels of IFN-3' upon Con A stimulation but pro- 

Figure 4. In vivo treatment with rlL-12 does not prevent hypergam- 
maglobulinemia and splenomegaly induced by infection with LP-BM5 
MuLV in IFN-'y knockout mice. IFN-'y knockout mice or the wild-type 
controls (which include animals containing one or two alldes from the 
normal IFN-3/gene) were infected with virus and either untreated or treated 
with rib12 diluted in PBS-BSA (0.25 #g/mouse/d for 5 d followed by 
2 d without inoculation) for four cycles starting at the time of infection. 
Spleens and sera were collected at 9-10 wk post infection. Serum IgG levels 
were determined by ELISA as previously described (29). The differences 
in the Ig levels and spleen weights were significantly different (p <0.05) 
for treated and untreated wild-type infected animals. 

duced remarkable amounts of IFN-y spontaneously-a  
phenomenon that has been seen after infection of resistant 
strains of mice including A/J, BALB/c, and 129 (Giese, N., 
and R. Morawetz, unpublished observations). After cessa- 
tion of cytokine therapy, spontaneous production of IFN-'y 
gradually decreased with time followed by a period of"remis- 
sion" in development of  MAIDS lasting up to 10 wk. Subse- 
quently, as noted above, the mice developed the full spec- 
trum of features characteristic of MAIDS including progressive 
lymphoproliferation, immunodeficiency, and increased expres- 
sion of Type 2 cytokines. 

Based on the findings presented here as well as on studies 
performed with the IL-4 knockout B6 mice (14), we believe 
that induction of a vigorous Type 1 response featuring high- 
level expression of IFN-'y and NK cell activation, rather than 
inhibition of Type 2 cytokine synthesis, is the basis of IL-12 
therapeutic effects during MAIDS. Thus, treatment with IL-12 
would result in strong cell-mediated immunity, control of 
virus replication, and delay of pathologic manifestations char- 
acteristic of MAIDS rather than causing a permanent switch 
from Th2 to Th l  cell activation and resistance to disease. It 
is likely that in vivo treatment with IL-12 would affect B 
cell activation and proliferation by inducing high levels of 
IFN-'y (33) and/or restricting proliferation of Th2 lympho- 
cytes (34) and, secondarily, the production of Type 2 cytokines 
that are essential for B lymphocyte expansion (35, 36). Since 
B cells are the primary targets for infection and expression 
by BMSdef, control of their proliferation would restrict 
BM5def virus expression, thus limiting the drive for CD4 
T cell polyclonal activation and progression of MAIDS. In 
addition, by acting directly on NK cells (15) and CD8 + 
lymphocytes (19), as well as stimulating Th l  expansion and 
limiting Th2 development (20-23), IL-12 could exert other 
beneficial effects favoring development of effective ceU-mediated 
functions against BM5def. A mechanism involving CD8 § 
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Table  4. Ability of rlL-12 to Inhibit Development of Lymphoproliferation and Other Manifestations of Eh'sease Progression in B6 Mice 
Infected with LP-BM5 MuLV Is Blocked by Simultaneous Treatment with Anti-IFN-'f mAb* 

Tissue weight Stage of disease* 
LP-BM5 Treatment Treatment 
MuLV with rlL-12 with anti-IFN-y Spleen Cervical LN PATH FACS | 

mg 

- - - 7 0  • 8 <2 0  N N 

+ - - 407 • 20 145 • 9 1 1 

+ - + 346 • 20 130 • 20 1 1 

+ + - 158 • 19 64 • 13 R R 

+ + + 454 • 53S 218 • 40S 1 1 

* Simultaneous treatment with anti-IFN-~ antibodies blocks effects of IL-12 treatment on progression of MAIDS. B6 mice were inoculated intraperitoneally 
at 4-6 wk of age with 0.1 ml of virus stocks prepared as previously described (7). Mice were treated with rlL-12 (0.25/zg/mouse/d) and/or anti-IFN-'y 
(2 mg/mouse/wk) for the first 4 wk of infection, as indicated in the table. 
* For histopathologic (PATH) and flow cytometry (FACS | determination of MAIDS .progression, see Table 1. 
$ Difference statistically significant (Schette test, p <(0.05) when compared with results obtained from mice infected with LP-BM5 MuLV and treated 
with rlL-12. 

Figure 5. In vivo treatment with rlL-12 alters expression of LP-BM5 def" transcripts in cells from mice infected with LP-BM5 MuLV. RT-PCR assays 
were used for measurement of the housekeeping gene HPRT, ecotropic helper virus, and the LP-BMS-defective virus. (,4) Effects of rlL-12 on spleen 
cells from virus-infected mice (BM5) or uninfected mice (control). In experiment I mice were treated with 0.25 pg/mouse/d of rlL-12 during the first 
4 wk of infection, and virus mRNA transcripts measured at 5 wk post infection with LP-BM5 MuLV mixture. In a second experiment, mice were 
treated with rlL-12 at 0.1 #g/mouse/d for 4 or 8 wk, and mRNA transcripts from spleen were tested for expression of BM5def at 9 wk post infection. 
Spleen weights (mg) at the time of testing were: LP-BM5-infected: 430, 450, 470; infected + rlIA2 for 4 wk: 200, 220, 170, 160; infected + rlir 
for 8 wk: 230, 120, 160, 160. (/3) Quantitati0n of ecotropic helper and BM5def transcripts in the spleen of 14 control infected mice and in 22 infected 
mice treated with 1I.-12. Quantitation was performed by determining the ratios of BMSdef or ecotropic virus to HPRT transcripts expressed in spleen 
cells. Background values obtained from control mice were arbitrarily defined as 1 and did not differ from control mice treated with IL-12. Data were 
obtained from mice in three separate experiments. 
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Table 5. Effects of rlL-I2 Treatment on B Cell Frequencies and Proliferative Responses to LPS* 

Wk post infection Treatment Spleen wt. B220 Kappa LPS 

mg Percent positive cells cpm x 10 - 3 
0 - 70 56 + 1 49 _+ 4 173 
4 BM5 160 + 10 63 + 2 49 _+ 0 181 + 5 
0 IL-12 (4 wk) 193 _+ 18 44 _ 1 35 _+ 1 108 +_ 13 
4 BM5 + IL-12 (4wk)  397 _+ 123 29 + 9 24 _+ 4 43 +_ 24 

0 - 75 + 5 57 _+ 3 51 + 3 297 _+ 1 
8 BM5 463 _+ 7 46 _+ 1 45 _+ 2 153 _+ 17 
0 IL-12 (4 wk) 90 _+ 10 56 + 1 47 _+ 4 185 + 36 
8 BM5 + IL-12 (4 wk) 197 _+ 15 56 _+ 1 48 + 2 192 _+ 13 

* Mice, normal or infected with LP-BM5 MuLV, were treated with IL-12 for 4 wk. Tests were performed immediately after cessation of treatment 
or 4 wk later (8 wk post infection). Numbers indicate the mean + 1 SE for groups of two to four mice. The percentages of cells expressing B220 
or K were determined by FACS | Similar results were obtained in three different experiments. 

lymphocytes dearly contributes to virus clearance in MAIDS- 
resistant A / J  mice (37). 

Recent studies show that treatment with rlL-12 can also 
enhance immuni ty  to other viral infections such as lympho- 
cytic choriomeningitis virus (38). It is well documented that 
the course of  HIV infection has certain features, other than 
immunodeficiency, that parallel observations made in MAIDS. 
These include chronic B cell activation, hypergammaglobu- 
linemia, and persistent generalized lymphadenopathy due to 
B cell proliferation (39, 40). In addition, different studies have 
demonstrated that a functional defect in the synthesis of Type 

1 cytokines by T lymphocytes may occur during the later 
stages of H I V  infection preceding the decrease in CD4 + 
lymphocyte counts (41, 42). In conjunction with recent studies 
showing impaired IL-12 production in HIV-infected patients 
(43), IL-12 stimulation of IL-2 and IFN-y  synthesis by pe- 
ripheral blood cells from HIV-infected individuals (44, 45), 
enhanced N K  cytotoxicity (44), and enhanced HIV-specific 
responses of  PBC from HIV + individuals (46), the results 
presented here support the concept that IL-12 may be useful 
in the treatment of retrovirus-induced immunodeficiencies. 
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