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A B S T R A C T   

Food fraud is widespread in the aquatic food market, hence fast and non-destructive methods of identification of 
fish flesh are needed. In this study, multispectral imaging (MSI) was used to screen flesh slices from 20 edible fish 
species commonly found in the sea around Yantai, China, by combining identification based on the mitochon
drial COI gene. We found that nCDA images transformed from MSI data showed significant differences in flesh 
splices of the 20 fish species. We then employed eight models to compare their prediction performances based on 
the hold-out method with 70% training and 30% test sets. Convolutional neural network (CNN), quadratic 
discriminant analysis (QDA), support vector machine (SVM), and linear discriminant analysis (LDA) models 
perform well on cross-validation and test data. CNN and QDA achieved more than 99% accuracy on the test set. 
By extracting the CNN features for optimization, a very high degree of separation was obtained for all species. 
Furthermore, based on the Gini index in RF, 11 bands were selected as key classification features for CNN, and an 
accuracy of 98% was achieved. Our study developed a successful pipeline for employing machine learning 
models (especially CNN) on MSI identification of fish flesh, and provided a convenient and non-destructive 
method to determine the marketing of fish flesh in the future.   

1. Introduction 

Aquatic foods provide approximately 17% of animal protein and 7% 
of all protein, and this proportion is higher in some developing coun
tries. In 2020, global aquatic animal production was estimated to be 178 
million tons, 89% of which was used for human consumption, with fish 
accounting for more than 84% of all aquatic animals (FAO, 2022). 
Increasing awareness and demand for fish, the similarity and diversity of 
existing seafood species, and stock constraints in the food market have 
led to the detection of fraud at all levels of the seafood supply chain (Fox 
et al., 2018; Hassoun et al., 2020; McCallum et al., 2022). Replacing 
high-value species with inexpensive fish is one of the most common 
forms of fraud. Food fraud for the purpose of economic interests while 
making illegal profits also produces food quality and safety issues. For 
example, fish that are toxic, with high levels of mercury, are mislabeled 
as pufferfish or swordfish (Lawrence et al., 2022). Especially for fish 
fillet, the difficulty of human sensory evaluation (HSE) has greatly 

increased due to the loss of the overall appearance of fish. The best 
response to food fraud is the use of available methods to detect food 
quality. 

Many species identification methods have been developed for use in 
supply chains to address fraudulent behavior. Solutions based on nucleic 
acid molecular analyses, such as DNA barcoding and real-time PCR 
analysis, are widely used (Cardeñosa et al., 2019). The FASTFISH-ID 
platform is based on nucleic acid sequences for species identification 
(Naaum et al., 2021). Mass spectrometry combined with chemical an
alyses (Gatmaitan et al., 2021), proteomics (Gu et al., 2020), and lip
idomics (Song et al., 2020) are alternative methods. Although these 
techniques have proven their accuracy and sensitivity, they require 
multiple instruments and professionals to process the samples and 
analyze the results, all of which are time-consuming and require 
chemical treatment of the samples. Therefore, rapid, nondestructive 
testing is required for the routine examination of fish flesh. 

Spectroscopy combined with machine learning is considered one of 
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the most promising nondestructive testing techniques for distinguishing 
fish flesh. Machine learning makes predictions by learning from exam
ples (training data) to obtain reasonable approximations without an 
explicit solution algorithm (Deng et al., 2021). The spectral reflection of 
flesh depends on the movement of molecules and atoms or changes in 
atomic energy levels to form a detailed fingerprint (Khaled et al., 2021). 
Spectral technology is often applied in food inspection, including flesh 
freshness (Robert et al., 2021b; Shin et al., 2021) and species identifi
cation (Edwards et al., 2020). Infrared (IR) spectroscopy, Raman spec
troscopy, and laser-induced breakdown spectroscopy (LIBS) have 
proven their reliability in species identification (Kumar and Chan
drakant Karne, 2017); for example, the identification of beef, venison, 
and mutton based on Raman spectra (Robert et al., 2021a) and the 
identification of pork, beef and chicken based on LIBS (Bilge et al., 
2016). Hyperspectral imaging technology (HSI) has been developed and 
widely applied in the fields of agriculture and food industry, including 
fecal matter, microbiological contamination, product quality, physical 
defects, and food fraud (Falkovskaya and Gowen, 2020). HSI has been 
used to identify lamb, beef, and pork flesh (Al-Sarayreh et al., 2020) 
based on the substantial spectral characteristics of objects, but the data 
acquisition of HSI is time-consuming and redundant. Moreover, owing 
to spectral data redundancy, data processing is complicated. 

Multispectral imaging (MSI) integrates the optimized subsets of HSI, 
and is therefore more efficient (Wang et al., 2021), while data reduction 
enables faster in data analysis (Fan and Su, 2022; Khaled et al., 2021). 
The MSI on the platform of VideometerLab4 contains spectral and 
spatial information, and each pixel contains spectral information in 19 
bands. Spectral data in different regions can be obtained via image 
segmentation to easily expand the dataset. MSI has been successfully 
applied to the detection of food freshness (Omwange et al., 2021; Ropodi 
et al., 2018), microbial quantity assessment (Govari et al., 2021), fish 
quality grading (Jayasundara et al., 2020), quantification of specific 
ingredients in flesh (Ma et al., 2015) and classification of beef slices (Li 
et al., 2021a). However, some studies have also shown that MSI has a 
relatively poor performance of quality assessment in fish microbial 
growth (Govari et al., 2021). MSI is rarely used for the identification of 
fish flesh, although a few studies have reported the rapid identification 
of fish using LIBS and Raman spectroscopy (Ren et al., 2023) and MSI 
has also been used for fish identification through the body of the fish 
(Monteiro et al., 2023). 

This study aimed to assess the potential of MSI as a method for rapid 
species identification in fish flesh. Based on the flesh of 20 fish species 
and 19 wavelengths in VideometerLab4, models of Random Forest (RF), 
linear discriminant analysis (LDA), support vector machine (SVM), 
quadratic discriminant analysis (QDA), and convolutional neural 
network (CNN), EXtreme gradient boosting (XGBoost), categorical 
boosting (CatBoost), and light gradient boosting machine (LightGBM) 
were employed and compared for their performances in fish flesh pre
diction. DNA barcoding based on COI for data labeling was employed to 
validate the prediction results. We successfully developed a pipeline to 
identify various species of fish flesh in a non-destructive and high- 
throughput way. 

2. Materials and methods 

2.1. Sampling of fish flesh 

A total of 57 fresh fish were collected from local fish markets in 
Yantai, China, in October and November 2021. The skin near the fish 
spine was removed with a scalpel, and 4–5 pieces of flesh from each fish 
were placed in 50 mL centrifuge tubes. One piece was used for species 
determination using the mitochondrial gene COI, and the other pieces 
were used for prediction based on MSI acquisition. Samples were stored 
at − 20 ◦C, before being sent to China Agricultural University for mul
tispectral photography in VideometerLab4. 

2.2. Species identification using the mitochondrial gene COI 

The mitochondrial gene COI was used to determine the species based 
on sequence similarity, and to confirm the prediction of machine 
learning based on MSI data. DNA was extracted using the TIANamp 
Marine Animals DNA Kit (TIANGEN BIOTECH, Beijing). PCR amplifi
cation was conducted using the extracted DNA as the template, with a 
reaction mixture volume of 25 μL, consisting of 0.5 μL of DNA, 1 μL each 
of forward and reverse primers (10 μmol/L), 12.5 μL of 2x Taq Plus 
Master Mix, and 10 μL of ddH2O. The primers used for PCR were uni
versal for the fish COI gene as follows (Lakra et al., 2011): 
F1-5′TCAACCAACCACAAAGACATTGGCA3′ and R1-5′ TAGACTTCTGG 
GTGGCCAAAGAATCA3’. And the PCR cycling conditions were as fol
lows: initial denaturation at 94 ◦C for 2 min; followed by 30 cycles of 
94 ◦C for 30 s for denaturation; 55 ◦C for 30 s for annealing; 72 ◦C for 30 
s for extension; and a final extension at 72 ◦C for 2 min. The PCR 
products were verified on a 1% agarose gel and sent for sequencing. The 
sequenced reads were blasted against the NT database on the NCBI 
website, and the species names were obtained. 

2.3. Multispectral image acquisition and data extraction 

The multispectral imaging data of fish slices was recorded in a Vid
eometerLab4 (Videometer A/S, Herlev, Denmark), which contained 19 
monochrome light-emitting diodes (LEDs). The reflectance of 19 
discontinuous bands from ultraviolet A to near infrared ray was 
collected, i.e., 365, 405, 430, 450, 470, 490, 515, 540, 570, 590, 630, 
645, 660, 690, 780, 850, 880, 940, and 970 nm (Wang et al., 2021). 

Before collecting the spectral data, water was removed from the 
surface of the fish flesh in a Petri dish with paper towels. After MSI data 
recording was conducted, VideometerLab software is used to import the 
multispectral image files and following processing. The background was 
removed, and individual fish image was segmented before exporting 
RGB images (Fig. 1 and Fig. S1A). We split the MSI images into small 
images of 52*52 pixels and finally obtained 8988 spectral images. 
Among them, 8588 spectral images were used as training and testing 
data for the modeling (Fig. S1B). The datasets were divided into 70% 
training set and 30% test set. For each species, 20 MSI images were used 
for the final validation. It takes approximately 30 s to take a multi
spectral operation that captures 19 images corresponding to 19 bands. 

2.4. Classification models 

In this study, a multispectral differential analysis was first under
taken, involving the evaluation of mean spectral reflectance and the 
execution of multiple comparisons grounded in Scheffe’s test, specif
ically at wavelengths of 365 nm and 970 nm. Subsequently, normalized 
canonical discriminant analysis (nCDA) integrated in VideometerLab 
was used for binary classification (Wang et al., 2023). nCDA is a su
pervised Fisher linear classifier based on MSI transformation of the 
images, and nCDA binary analysis was conducted using VideometerLab 
software. Thereafter, the generalization abilities of SVM, RF, LDA, QDA, 
CNN, XGBoost, CatBoost, and LightGBM were compared with the 
training and test data. Some models require parameter adjustment by 
grid search. However, after grid search, we found that it could not detect 
the overfitting problem during parameter adjustment, so we artificially 
constrain the range of certain parameters to eliminate overfitting as 
much as possible (Table S1). 

RF, CatBoost, LightGBM and XGBoost algorithms are all predictive 
models based on decision trees. But they belong to different integrated 
learning methods. The RF algorithm by assembling multiple decision 
trees, each trained on random subsets of data samples and features. 
Predictions are made by averaging the vote outcomes from these trees. 
This approach concurrently provides multi-variable feature importance 
scoring with low computational expense. A key evaluation metric 
employed is the mean decrease Gini, it assesses the importance of 
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variables by calculating the effect of each variable on the heterogeneity 
of the observations at every node of a classification tree. CatBoost, 
LightGBM, and XGBoost are all gradient boosting decision tree (GBDT) 
algorithms, with CatBoost enhancing handling of categorical features 
and missing values. LightGBM focuses on reducing computational and 
memory demands, whereas XGBoost optimizes computational effi
ciency, supports parallel computing, and incorporates regularization 
into its objective function to control model complexity and overfitting. 

SVM are widely-used machine learning techniques that map original 
data points into a high-dimensional feature space through a kernel 
function, creating a maximum-margin separating hyperplane with 
minimal distance to all data points. 

LDA is an extension of Fisher’s linear discriminant, functioning both 
as a supervised dimensionality reduction technique and a classification 
method. LDA aims to maximize between-class variance while mini
mizing within-class variance. QDA, a variant of LDA, separates classes 
non-linearly by estimating individual covariance matrices for each class, 
distinguishing itself as a non-linear classifier but lacking the dimen
sionality reduction capability of LDA. 

The CNN is a promising deep learning method that has been used to 
analyze various spectral data. In this study, the CNN was used a 
sequential model from the Keras library (Table 1). The hidden layer 
consists of four convolutional layer (Conv) and one full connection layer 
(FC), in which "relu" is used as the activation function for all convolu
tional layers, and "softmax" is used as the activation function for the FC 
layer. Conv1 represents the initial convolutional layer with 64 filters of 
size 1 × 7. Conv2 comprises three convolution and pooling layers: two 
maximum pooling layers and one global average pooling layer. Dropout 
(0.5) refers to the random dropping of 50% of the neurons in the pre
vious layer during training. Using the CNN model above, we added the 
groups parameter to implement deep convolution (groups = 64) and set 
the kernel_size and groups parameters to implement point convolution 
(kernel_size = 1, groups = 1). Combining deep convolution and point 
convolution forms the convolution operation of DS-CNN. The CNN was 
run for the training data with the parameters of “optimizer = ‘adam’, 
loss = ‘sparse_categorical_crossentropy’, metrics = ‘acc’, epochs = 1000, 
and batch_size = 64”. Running of all the models was performed using an 
AMD Ryzen 5–5600 processor with 6 cores at 3.3 GHz and 16 GB of 
RAM. 

2.5. Model evaluation scheme 

The optimal model parameters were selected using a grid search and 
10-fold cross-validation, and then the overfitting is adjusted manually. 
Accuracy (1) represents the overall accuracy of the classification. The 
precision (2) value is the correctly classified samples divided by all 
correct samples in a model. The recall (3) value is the correctly classified 
sample numbers divided by all the samples by the COI gene to measure 
the fraction of positive samples that are correctly classified. Fβ repre
sents the harmonic mean between recall and precision values, while the 
F1 (β = 1) score (4) considers both equally important (Hossin and 
Sulaiman, 2015). 

With multi-classification models, the overall evaluation is generally 
performed using micro- or macro-averaged methods. A macro-averaged 
evaluation indicates that the same weight of each category, and a micro- 
averaged evaluation indicates that the same weight of each copy. Owing 
to the imbalance of the data size in this study (Fig. S1B), we chose 
macro-averages for evaluation with the same degree of emphasis on 
different categories (Takahashi et al., 2022), referring to the arithmetic 
average of each statistical index value for any class (Zhang et al., 2021). 
Therefore, this study evaluated the model using the Accuracy, Macro-P 
(Macro-Precision) (5), Macro-R (Macro-Recall) (6), and Macro-F1 (7) 
using the caret package (v6.0.93) in RStudio. Macro-P, Macro-R, and 
Macro-F1 represent the average precision, recall, and F1, respectively. 
The equations used are as follows: 

Accuracy=
TP + TN

TP + TN + FP + FN
(1)  

P=Precision =
TP

TP + FP
(2)  

R=Recall =
TP

TP + FN
(3)  

F1=2
P • R
P + R

(4)  

Macro − P=
1
n
∑n

i=1
Pi (5)  

Macro − R=
1
n
∑n

i=1
Ri (6)  

Macro − F1=
1
n
∑n

i=1
F1i (7)  

Here, TP represents true positive, positive samples successfully pre
dicted; FP represents false positive, negative samples falsely predicted to 
be positive; TN represents true negative, negative samples successfully 
predicted to be negative; and FN represents false negative, false pre
diction of negative samples. 

3. Results 

3.1. Species determination 

The COI gene was amplified from fish samples using universal 

Fig. 1. Flow chart of fish prediction model based on flesh slices and MSI.  

Table 1 
The internal structure of CNN model.   

CNN architecture 

Conv1 Layers.Conv1D (64, kernel_size = 7, activation = ‘relu’, padding =
‘same’) 

Conv2 Layers.Conv1D (64, kernel_size = 7, activation = ‘relu’, padding =
‘same’) 
Layers.MaxPooling1D (pool_size = 3) 
Layers.Conv1D (64, kernel_size = 7, activation = ‘relu’, padding =
‘same’) 
Layers.MaxPooling1D (pool_size = 3) 
Layers.Dropout (0.5) 
Layers.Conv1D (64, kernel_size = 7, activation = ‘relu’, padding =
‘same’) 
Layers.GlobalAveragePooling1D 

FC Layers.Dense (20,activation = ‘softmax’) 
output output categories 

Total 
params 

88020  
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primers, and sequences of 675-bp PCR products with a total of 278 
variation sites were subjected to Blastn against the nucleotide database 
on the NCBI website to determine species names. It was discovered that 
most samples could be assigned a unique species name, whereas two 
sequences matched two species with very close scores, and only the 
genus could be determined for these four samples, that is, Cleisthenes 
pinetorum vs. Cleisthenes herzensteini, and Takifugu rubripes vs. Takifugu 
pseudommus. It is believed that Cleisthenes pinetorum and Cleisthenes 
herzensteini belong to the same species, and Takifugu rubripes and Taki
fugu pseudommus belong to a single species (Park et al., 2020; Song et al., 
2001; Vinnikov et al., 2018). The sequence alignment results were all 
greater than 99%, and the sequences were uploaded to NCBI to obtain 
the GenBank accession numbers. The fish samples were assigned to 20 
species from 17 families and 10 orders (Table S2). 

3.2. Spectral differences for fish flesh 

Multispectral data from 19 bands showed significant differences 
among the samples (Fig. S2A), which were useful for fish classification. 
ONk showed a sharp increase in the average reflectance between 540 nm 
and 630 nm, which differed significantly from that of the other fish. 
Furthermore, 365 nm and 970 nm were selected to conduct multiple 
comparisons of the average reflectance of each species (Fig. S2B, 
Fig. S2C), which revealed significant differences among the samples (P 
< 0.01). For example, COm, TRIj, and GAm were similar at 365 nm, but 
differed at 970 nm (P < 0.01). In addition, the transformation of nCDA 
was conducted for pairwise species based on MSI data (Fig. S3), which 
showed that 20 species had spatial and spectral variations. Therefore, 
MSI data was potentially sufficient to classify fish flesh samples. 

3.3. Stability assessment and classification of multiple classification 
models 

To evaluate the effect and stability of the models, we conducted a 10- 
fold cross-validation for each model under the optimal parameters. The 
standard deviations of CatBoost, LightGBM, XGBoost and RF models 
were bigger (0.0183–0.0256) than those of <0.01 in CNN, SVM, QDA, 
and LDA (Table S3). The prediction performance of each model was 
consistent with the cross-validation results of the overall evaluation 
(Table 2). Among them, the accuracies of CatBoost, LightGBM, XGBoost, 
and RF models in the overall evaluation were 65.85–77.42%. The 
overfitting of the RF model could not be corrected by adjusting the pa
rameters. In addition, Macro-R, macro-P, Macro-F1 in these four models 
were between 0.6125 and 0.7493, indicating poor classification ability 
for some categories. The accuracies of SVM, QDA, and CNN were greater 
than 95%, and the scores of Macro-R, Macro-P, and Macro-F1 ranged 
from 0.95 to 0.99, indicating a good classification ability. QDA achieved 
the training time in less than 1 s under the default parameters. 

As a supervised dimension-reduction method, LDA can be used to 
visualize classification results. The results of LDA dimensionality 
reduction showed that ONk was completely isolated from all species, 
and there was also partially distinguishable from other species, 

especially LOi, CHs, and TRAj, with a high degree of differentiation 
(Fig. 2). 

3.4. Test accuracy for individual species 

The distribution of test data is shown in Fig. S4. The prediction of 
ONk in all models was almost the easiest, which is in accordance with 
the spectral curve of ONk (Fig. S2A). The prediction accuracy of Cat
Boost, LightGBM, XGBoost, and RF models for each species ranged from 
5.4% to 100%, with similar patterns. For example, the classification 
accuracies of these four models for CHs, CLp, and THm were all poor. In 
contrast, the classification accuracies for PAa, SCn, and LOi were rela
tively high (Fig. S5). The classification accuracy of LDA for each species 
was between 77.4% and 100%, and the accuracy of 12 species was 
greater than 90%, while the classification of SVM was from 88.5% to 
100% (Fig. S6). The prediction performance of QDA was good for all 
species, and obviously, CNN was with >96% accuracies for all species 
(Fig. 3). 

With the best classification effect and stability, CNN was run with a 
slightly longer model training time. CNN realizes efficient feature 
extraction from input data through the collaborative action of its con
volutional layers, pooling layers, and activation functions, among 
others. We extracted the CNN features before being input into the FC 
layer, with filters = 4, to make use of 4-dimensional data (Table S4). The 
LDA visualization results showed that 20 species were highly distin
guishable in the two-dimensional level (Fig. 4). We confirmed that the 
CNN model combined with MSI was reliable for species classification. 

3.5. Feature selection 

To specify the wavelengths sufficient for classification, feature se
lection was performed for the two best models: QDA and CNN. The 
traditional ANOVA method was not optimized for effective feature 
screening; therefore, we chose feature selection in the RF model based 
on the importance ranking of the Gini index (Fig. 5A). The first 8–12 
features were used to train the two models and predict the accuracy of 
the test set. The results showed that the CNN classification results were 
better than those of QDA (Fig. 5B). When the number of features was less 
than eight, the accuracies in both models decreased significantly. With 
an accuracy threshold of 98%, the first 11 features were selected in the 

Table 2 
Comparison of eight classification models.  

model Test data prediction Model 
training 
duration 

Training 
data 
accuracy Accuracy Macro- 

R 
Macro- 
P 

Macro- 
F1 

CatBoost 71.44% 0.7043 0.6604 0.6817 83.5s 74.53% 
LightGBM 65.85% 0.6401 0.6125 0.626 0.4s 79.49% 
XGBoost 68.45% 0.6664 0.6351 0.6504 3.1s 77.96% 
CNN 99.61% 0.9947 0.9945 0.9946 505.64 s 99.75% 
RF 77.42% 0.7186 0.7493 0.7279 1.714 s 100% 
SVM 97.97% 0.9694 0.9749 0.9718 4.3418 s 99.53% 
LDA 90.52% 0.9107 0.8854 0.8969 0.2011 s 89.40% 
QDA 99.37% 0.9914 0.9925 0.9919 0.6976 s 99.45%  

Fig. 2. Visualization of LDA results with LD1 and LD2 dimensions. (Refer to 
Table S2 for the full names of the fish species.). 
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CNN. Due to the reduction in features, some parameters of the CNN 
should be changed to obtain better results. Therefore, the CNN param
eters in this section were adjusted with a convolution kernel size (i.e. 
kernel_size) of 3, a dropout of 0.3, and a training period (i.e., epoch) of 
1000. To verify the prediction stability of the model prediction after 
dimensionality reduction, 400 spectral validation data points not 
involved in training and testing were used. The results showed that the 
accuracy reached 99.75%, with only one prediction error. 

4. Discussion 

The results of this study show that MSI combined with machine 
learning is an up-and-coming method for fish identification. In addition 
to DNA barcoding, scientists have developed ways to quickly detect fish 
by different means, including computer vision based on morphological 
and textural features of fish (Monteiro et al., 2022; Rauf et al., 2019), 

DNA extraction and PCR (Kappel et al., 2020; Li et al., 2021b; Naaum 
et al., 2021); mass spectrometry (De Graeve et al., 2023; Rigano et al., 
2019) and spectral fusion (Ren et al., 2023). Disadvantages of these 
methods included high time-cost, use of organic reagents, and cumber
some data preprocessing (Table S5). Our efforts were in accordance with 
the previous reports on flesh adulteration and freshness assessment 
based on MSI and machine learning (Fengou et al., 2021a; Spyrelli et al., 
2021, 2022). Research employing MSI combined with machine learning 
techniques for categorizing sections of fish bodies also demonstrate the 
investigational potential of MSI (Monteiro et al., 2023). Indeed, there 
are also studies presenting divergent viewpoints, asserting that Multi
spectral Imaging (MSI) is less efficacious compared to Fourier Transform 
Infrared (FT-IR) Spectroscopy in assessing the microbial quality of fish 
fillets (Govari et al., 2022). 

Our data analysis pipeline involved a series of steps, including MSI 
image segmentation, statistical analysis of spectral data, nCDA binary 
classification, and up to eight multi-classification models were utilized. 
Based on identification of 20 fish species, we obtained >95% of classi
fication accuracy for the three models (SVM, QDA, CNN), and even 
>99% for QDA and CNN. We further narrowed the spectral bands to 
make a light data analysis with acceptable results. The use of CNN 
feature extraction reduced the data processing time, and with 11 bands, 
CNN still can reach 98% accuracy. It represents a new effort to resolve 
the fast identification of fish flesh in a non-destructive way. 

ONK samples with distinct appearance (color) performed best in all 
models, as the multispectral reflectance peaks at 540 nm and 630 nm 
matched the absorption peak of astaxanthin at 450–600 nm (Dissing 
et al., 2011). The 11 key bands selected in this study contain wave
lengths of 365, 405, 430, 450, 470, 490, 570, 590, 630, 940 and 970 nm, 
which showed association with flesh nutrients, including 545, 575, and 
635 nm associated with myoglobin and its derivatives (Liu et al., 2003); 
880 and 940 nm with fat content, and 970 nm with water content 
(Sendin et al., 2018; Zhang et al., 2020). Research has indicated that the 
spectral region for animals muscle identification ranged from 400 nm to 
at least 970 nm, incorporating wavelengths such as 405, 435, 450, 470, 
505, 525, 570, 590, 630, 645, 660, and 970 nm. The absence of wave
lengths typically associated with fat content (880 nm, 940 nm), can 
likely be attributed to the lower fat levels present in the sampled spec
imens (Fengou et al., 2021b). The multispectral imaging employed in 
this study did not include wavelengths of >1000 nm in its optimization, 
such as the 1100–1250 nm, which is fat-related spectral region (Pu et al., 
2015). Incorporating such wavelengths might supplement additional 

Fig. 3. Prediction accuracy of two models for fish flesh. (A) QDA model confusion matrix; (B) CNN model confusion matrix. (Refer to Table S2 for the full names of 
the fish species.). 

Fig. 4. Visualization of LDA results in LD1 and LD2 dimensions based on CNN 
extraction features. (Refer to Table S2 for the full names of the fish species.). 
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information, thereby potentially enhancing the accuracy of fish species 
identification using multispectral imaging. 

The 5-layer CNN model performed the best, probably because it 
conducts achieve nonlinear classification based on a combination of 
spectral and spatial data (Kiranyaz et al., 2021; Voigtlaender, 2023). 
Compared with 2D-CNN, 1D-CNN does not need to transform images, 
which not only reduces the time of data preprocessing but also greatly 
reduces the computational complexity (Kiranyaz et al., 2021). Mean
while, as DS-CNN model is a combination of depth-wise and point-wise 
convolutions (Shaheed et al., 2022), we tested the performances of 
DS-CNN (data not shown) on fish flesh in this study. However, it took the 
training time 4–5 times longer than that by CNN, and it might be due to 
efficiency of data usage in neural network in terms of time cost on 
memory access (Ma et al., 2018). 

Fish identification method based on MSI established in this study is a 
fast and non-destructive detection method, and the CNN model has a 
high prediction accuracy. Our results are of great help for the develop
ment of portable identification equipment and the improvement of 
reporting fraud in the fish market. The scripts have been uploaded into 
the GitHub website (https://github.com/xunzhuoran/MSI-ML). 
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