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Abstract: Biofabrication is an emerging multidisciplinary field that makes a revolutionary impact on the researches on life 
science, biomedical engineering, and both basic and clinical medicine, has progressed tremendously over the past few years. 
Recently, there has been a big boom in three-dimensional (3D) printing or additive manufacturing (AM) research worldwide, 
and there is a significant increase not only in the number of researchers turning their attention to AM but also publications 
demonstrating the potential applications of 3D printing techniques in multiple fields. Biofabrication and bioprinting hold great 
promise for the innovation of engineering-based organ replacing medicine. In this mini review, various challenges in the field 
of tissue engineering are focused from the point of view of the biofabrication - strategies to bridge the gap between organ 
shortage and mission of medical innovation research seek to achieve organ-specific treatments or regenerative therapies. Four 
major challenges are discussed including (i) challenge of producing organs by AM, (ii) digitalization of tissue engineering 
and regenerative medicine, (iii) rapid production of organs beyond the biological natural course, and (iv) extracorporeal organ 
engineering.
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1. Introduction and Backgrounds of 
Biofabrication (Bioprinting)
Organ failure is a critical issue in the health-care sector 
and there are currently millions of people waiting for 
organ transplants throughout the world[1-7]. The demand for 
organ transplantation has increased over time. Although 
organ donation can save the lives of many needy patients, 
the problem is, there simply are not enough organ 
donors to meet demand[8,9]. Hospitals and health centers 

with organ transplant facilities have been facing critical 
shortage of donor organs and the scale of the problem is 
getting worse every year all over the world. There has been 
a tremendous increase in the number of patients on organ 
transplant waiting list as well as a sharp rise in the number 
of patients dying while awaiting lifesaving organ transplant 
operations for years. As a result, one in 10 on transplant 
waiting list dies before organ is found and millions of people 
die due to the lack of available organs for transplant[10-13].
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The fundamental concepts and the recorded use of the term 
tissue engineering, as it is applied today in biomedical field, 
was originally published by Langer and Vacanti (1993) 
in Science[14]. Since then, tissue engineering research 
has grown exponentially due to the recognition that 
tissue engineering base strategies have the potential to 
replace, repair, and regenerate tissue/organs for a variety 
of biomedical applications including transplantation, 
therapeutic investigation, bioassay, disease modeling, 
drug development, and delivery. The rapidly evolving 
cross-disciplinary field of tissue engineering along with 
its intimately intertwined field of regenerative medicine 
continues to develop and advance.
The most intrinsic purpose, mission, and goal of tissue 
engineering and regenerative medicine (TERM) is to 
provide alternate solutions for restoring, replacing, and 
maintaining of organ functions of the problematic tissue/
organ of interest using applied science and engineering 
approaches[14,15]. The crucial difference between TERM 
and general science is that TERM is not a traditional way 
of doing science or to simply elucidate the origins and 
mechanisms of natural phenomenon based on intellectual 
curiosity but has a practical purposes of producing 
bioartificial organs that make possible medical treatments 
for patients with serious tissue/organ diseases/injuries 
and offers new hope to many patients who are suffering 
from end-stage organ failure.
During recent years, a large number of scientists, researchers, 
clinicians, and biomedical engineering companies 
have been actively engaged in tissue engineering and 
regenerative medicine research. Simple tissues (e.g., skin 
and engineered cartilage) have already been developed 
and being used clinically[16-20]. Several other less complex 
tissues manufactured from a variety of biomaterials using 
a plethora of engineering approaches are at different 
stages of development. Despite scientific progress in 
tissue engineering, there are still several big obstacles 
in producing complex, functional, and large-sized three-
dimensional (3D) tissues/organs, especially the tissues of 
the vital organs that are urgently required for experimental 
and clinical transplantation applications.

2. Final Mission of 
Biofabrication - Bioprinting
The challenging fields of biofabrication-bioprinting 
have emerged as revolutionary approaches to break the 
limitations of conventional TERM methods by offering 
potential technological solution. In brief, bioprinting can 
be defined as the manufacturing process by employing 
computer-aided two-dimensional (2D)/3D printing 
techniques to create 2D/3D patterns and to construct 
complex 3D structures with living and non-living 
biological raw materials to produce 2D or 3D tissues 
and organs of interest[21,22]. The official definition of the 

term “biofabrication” for TERM was recently proposed 
by the International Society for Biofabrication (ISBF)[23]. 
According to ISBF, biofabrication can be defined as “the 
automated generation of biologically functional products 
with structural organization from living cells, bioactive 
molecules, biomaterials, cell aggregates such as 
microtissues, or hybrid cell material constructs, through 
bioprinting or bioassembly and subsequent tissue 
maturation processes.” In a more narrow sense, emerging 
field of biofabrication basically enables the researchers 
to use or to combine advanced fabrication technologies 
including 2D/3D printing, biomanufacturing, and 
bioassembly of living 3D functional biological products 
using smart and cytocompatible biomaterials.
Recently, there has been a big boom in 3D printing or 
additive manufacturing (AM) research, and various 
3D printers have been developed, commercialized, 
and distributed worldwide. Today, many researchers 
from different backgrounds (science, engineering, and 
medical) have joined the interdisciplinary research 
field of bioprinting and biofabrication to open the doors 
to previously unimaginable possibilities in medicine 
or to search possible application of 3D printing in the 
biomedical field. 3D fabricated plastic organ models have 
become very popular for medical education. In TERM 
research field, biological 3D tissue models are one of the 
most attractive topics of application of the bioprinting and 
biofabrication, such as 3D tissue models for drug screening, 
disease models, tissue or organ on a chip, medical sensors, 
and biological actuators[24-26]. Such research studies are 
certainly very useful and effective for drug discovery, drug 
development, and pharmaceutical industry.
Although drug administration is the first choice for 
treating patients with diseased/injured organs or organ 
failure, drugs are effective only in the early stages of 
the disease or minor injuries. Moreover, for the patients 
who require organ replacement or artificial organs for 
transplantation, generally, no significant effect can be 
expected for drug treatment.
Thus, the biomanufacturing of complex tissue/organ 
substitutes that fully mimic the natural physiological 
conditions of particular tissues/organs could help to 
alleviate organ failure/replacement issue. In the recent 
past, there has been a substantial and commendable 
progress in the field of TERM[27-35]. Although successful 
fabrication of various tissue models has been reported, 
taking the engineered complex tissues/organ constructs 
from the bench to the bedside still needs focused efforts on 
scientific as well as potential technological fronts[2,31,36-50].

3. Biofabrication Bioprinting Solving 
Various Challenges
As mentioned above, the main focus of bioprinting and 
biofabrication research is to overcome various challenges 
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of tissue engineering and future studies could prove 
“whether human beings can produce organs using printing 
and manufacturing techniques.” In this mini review paper, 
we have focused on various challenges which need to be 
overcome by bioprinting and biofabrication to produce 
organ or organ substitutes.

3.1. Challenge of Producing Organs by AM
In bioprinting and biofabrication, 3D tissues and organs are 
constructed by aligning living cells and biomaterials and 
by stacking or laminating them in 3D[51,52]. Such bottom-up 
fabrication method of building 3D structures is called AM. 
Most of the conventional manufacturing techniques used 
to build 3D objects are based on molding and subtractive 
methods. By traditional manufacturing, 3D shapes can be 
made by starting from an object having an initial size or 
shape, materials are often molded, carved out, or removed 
by a sharp cutting tool until product of the desired shape is 
formed. However, there are still challenging issues 
associated with these methods, especially the inability to 
create or control the internal structure of the 3D objects. 
When it comes to manufacturing of 3D structures 
that specifically mimic human tissue- and organ-
specific microarchitecture, these conventional approaches 
certainly are not useful because all vital organs are highly 
complex in nature, and each individual organ possesses 
its own specialized microsized histological, anatomical, 
and morphological structures which are very essential to 
perform all organ-specific physiological activities[53].
Therefore, the technologies to construct 3D structure 
both internal and external structures simultaneously 
are highly needed for TERM research. As such, any 
structure we fabricate needs to exactly match that level 
of complex structural heterogeneity. Thus, the only 
hope for generating such structures is AM technology. 
For this reason, bioprinting and biofabrication have 
ever being challenged to produce organs or their spare 
bioparts by AM approach. As mentioned in Groll 
et al. (2016), bioprinting is a complimentary strategy 
within biofabrication. With bio-AM, this term can be 
used for describing a holistic approach that combines 
both bioprinting and biofabrication technologies for 
constructing engineered tissues/organs. Indeed, bio-AM 
has the potential to transform global health care and 
medicine, but bio-AM is still in its infancy and there are 
several obvious challenges that need to be overcome. 
Since such AM techniques have been only recently 
proposed and developed, only limited research is reported 
on their application for realizing truly biologically 
inspired new engineering solutions for clinical health 
care and bioindustry.
Although biological materials, especially living cells, can 
be regarded as the key materials for bio-AM, several 
other well-controlled and biocompatible biomaterials, 

and adequate integration of biological tissue components 
with their application contexts are also needed to obtain 
biologically active 2D/3D tissues and organs or related 
bioproducts, but as yet, such materials have never been 
utilized in usual AM purposes[54-57]. There is no doubt that 
all of the AM procedures required to be carried out in 
biologically safe environment. Although bio-AM can be 
helpful for the biomanufacturing, there are practically no 
established 3D biofabrication machines which can realize 
the manufacturing of arbitrary 3D structures. Therefore, 
it is necessary to develop advanced biofabrication 
machines to achieve the goal of arranging several different 
materials (including cells) in 3D space for engineering of 
multicellular constructs (tissues/organs) or bioproducts 
on demand. Apparently, a growing number of 3D printers 
have entered into the mainstream biomanufacturing 
technology, but only extrusion-based bioprinting (EBB) 
is rapidly growing[21,22,24,37,43,45]. Even though EBB is 
considered to be the most accepted technique in tissue 
engineering field to date, this technique also suffers 
from several limitations. For example, the resolution 
of extrusion type printers is still very poor (more than 
500 μm)[41,44,58-78]. On the other hand, an average human 
cells range in size from about 10 to 30 µm, while very 
fine capillary vessels, which are the essential tissue 
components are on the order of 10 µm in diameter. 
Therefore, 3D bioprinters with sufficient resolution 
ability are needed, ultimately.
In addition, diverse bioink formulation is also one of the 
challenging aspects of this field. Typical adult human 
body consists of myriad of cell populations, tissue 
components, and microstructures that work together to 
perform particular body functions. At present, effective 
materials for bioink of 3D bioprinting or biofabrication 
are extremely limited, the reader is referred to more 
specialized reports[54,56,57,79]. Therefore, the development 
and formulation of effective bioinks are necessary 
for the clinical application of bioprinting technology. 
More importantly, novel kind of hydrogel materials 
exhibiting remarkably favorable properties, including 
compatibility with different bioprinting methods, rapid or 
instantaneous gelling properties, flexibility and stability 
in medium, cytocompatibility, or biofunctionality, are still 
needed for proper cell growth, differentiation, and tissue 
formation or regeneration during bioprinting processes 
(pre-bioprinting, bioprinting, and post-bioprinting). 
The formulation of wide range of the biomaterials 
to design a variety of bioinks exhibiting the above-
mentioned properties remains an important research 
direction for biofabrication research. Nowadays, bioink 
is one of the emerging and hot topics in bioprinting and 
biofabrication[80,81]. Expanding biofabrication technology 
and fostering the invention of new biomanufacturing 
machines and development of novel bioink materials 
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could advance the reliability of bio-AM, and only bio-
AM can potentially deal with the increasing demand for 
replacing/regenerating tissues/organs. In the end, such 
developments could be promising in on-demand tissue 
engineering or bioindustrial applications using bio-AM 
technologies.

3.2. Challenge of the Digitalization of TERM
The rate at which biofabrication research is being carried our 
worldwide reflects remarkable technological achievements. 
Printers (including 3D printers) are considered as 
excellent output devices[21,23,61,77,80-82]. Recent trends in 
implementation of bioprinters in biofabrication technology 
within the field of TERM have shown that the number of 
research papers has significantly grown, while bioprinting 
and biofabrication have become more popular research 
areas[23,81].
Broadly speaking, biofabrication is complex technology 
comprised several techniques including computer-aided 
design (CAD), computer-aided engineering (CAE), and 
biological processes and subprocesses. CAD, CAM, 
and CAE terminologies for biofabrication have been 
proposed to parallel similar strategies in other engineering 
fields. However, there are several big and important 
distinctions between the disciplines. To avoid confusion, 
we propose that for biofabrication (bioengineering of 
complex tissues/organs), these terms should be used as 
bio-CAD, bio-CAM, and bio-CAE (Figure 1).
Bio-CAD, bio-CAM, and bio-CAE approaches are 
generally regarded as promising future technology for 
the biomanufacturing of complex and heterogeneous 
bioconstructs. Bio-CAD process can be used to design 
tissue and organ blueprints, bio-CAM process can 

be to manufacture biological products, and bio-CAE 
process can be used to create complex bioarchitectures, 
and validate and optimize biomanufacturing tools and 
bioproducts. Effective implementation of bio-CAD, bio-
CAM, and bio-CAE processes (biofabrication) depends 
on the combination of several interrelated components/
parameters, such as biomaterials, biomolecules, cells, 
and tissues, integrated with computational approaches 
(e.g., digital designing, information mapping, 
sophisticated virtual product modeling, 3D simulation, 
and data mining).
Digitization of bio-CAD, bio-CAM, and bio-
CAE processes are the key issues of the day for 
biofabrication scientists and researchers. Indeed, the 
current biofabrication initiatives are possible, but computer 
programmers and technologists will undoubtedly have 
to invent highly inclusive digital technologies that 
involve integrating imaging, database, and computer 
numerically controlled bioprinting machines and artificial 
intelligence[83-91]. If all these parameters will function in a 
coordinated way, then we can achieve the final objective 
of digital fabrication in TERM or automated production 
of biologically functional human tissues and organs for 
transplantation and commercialization purposes[92-105].

4. Challenge to Rapid Production of Organs 
beyond the Biological Natural Course
The human body with its interconnected organ systems 
is the most advanced and complex living structure in 
the known universe. In the natural process inside our 
bodies, organ developmental phenomena are strictly 
controlled by natural laws of embryology and anatomy. 

Figure 1. The sketch shows a schematic drawing of the potential strategy for digitalization of tissue engineering and regenerative medicine.
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All of organs arise through a process that begins with the 
fertilized egg which undergoes through cell divisions, 
differentiation processes resulting in the formation of 
organs and ends with a new individual living entity. From 
a pragmatic point of view, there are several factors which 
directly or indirectly influence the continued growth and 
development of organs (differentiation of the cells into 
two or more histologically specialized structures that 
organize to form specific organs and organs systems) 
to the time of delivery. The rate of organ growth and 
development varies individually and is dependent on 
multiple sequential and reciprocal interactive influences 
mediated by genetic structure, genetic information 
and genetic diversity traits, maternal traits, and 
internal environmental control mechanisms of the body.
Morphology, histology, and functional anatomy are 
largely limited to the hierarchical level of organs. Thus, 
the anatomical and histomorphologic features build up 
continually according to the growth of the organ and 
whole body through many complicated processes across 
respective assembly locations in the body. For example, 
if you see the complex embryology of heart, it forms 
initially in the embryonic disc as a simple paired tube 
inside the forming pericardial cavity. However, as it 
develops four chambers with four valves, the complexity 
creates even more complex dynamics of the physiological 
systems[106-109].
In the natural process inside our bodies, tissue and 
structures originate and mature as an individual grows. 
Therefore, it is not so easy to establish feasible organs 
substitute through natural processes because it takes 
many years for an individual and its organs to grow, 
develop, and generate sufficient functions. In contrasts, 
patients who require organ transplants cannot wait for 
organs for such a long time. For this reason, organs or 
organ substitutes for transplantation should be provided 
as soon as possible, ideally within a few months. There 

are many excellent scientific researches on generation 
of organs based on the embryological phenomena[110-113]; 
however, it seems difficult to provide enough organs 
for patients with organ failure/disease during the waiting 
period. For these reasons, natural process is generally 
considered as unsuitable option for complex tissue and 
organ regeneration (Figure 2).
Although several tissue engineering approaches have been 
implemented for various biomedical research strategies, 
differences in the natural formation of living human tissues/
organs with their unique shapes and material properties, 
hierarchical, morphological, anatomical, and physiological 
biochemical features limit the ability of conventional tissue 
engineering approaches to regenerate complex metabolic 
organs. In other words, tissues/organs require more 
sophisticated biomimetic 3D microenvironments capable 
of providing multilayer information to differentiating 
cells. Novel biomanufacturing methodologies and 
biomimetic materials still need to be developed and be 
used to assemble microscale building blocks capable of 
accurately mimicking/replacing 3D complex Humanscale 
living vascularized tissue/organ analogs with optimal 
physiological activity.
Therefore, bio-AM is the only hope to overcome 
these challenges and to simultaneously construct 
fully functional organ analogs with great complexity 
(including histologically essential structures) by 
applying 2D/3D printing and related AM strategies. 
Although available biofabrication methods have several 
features and capabilities, still there are limitations to 
exploit the exact structure/function of the native tissue 
organ. More complex material distribution and 
construction of anatomically and physiologically relevant 
tissues/organs may not be easily achieved without 
advanced biofabrication approaches. To produce a 
substitute for natural organ or autologous tissue graft that 
is ready to be transplanted, improvements in biofabrication 

Figure 2. The sketch shows a schematic drawing of the strategy of rapid production of the organs beyond the biological natural course.
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technologies for facilitating the precise programmable 
designing, computer-controlled efficient biofabrication, 
and post-fabrication incubation are urgently needed. There 
is still a long way to go in fabricating bioartificial organs 
on demand, but these technologies are achievable. If 
biofabrication approaches will work out, it will become 
possible to fabricate not only Humanscale patient-
specific tissue grafts/organs at a rapid pace (irrespective 
of organ size) but it will also shorten the time required of 
growth performance and development of organs. Then, no 
patient will ever have to wait on lengthy transplant lists 
for donor organs, and no patient will ever have to take 
powerful, debilitating and potentially fatal drugs to treat 
chronic pains and to prevent their immune systems 
from rejecting new body parts or from attacking the 
transplanted organ when the organ is not closely matched.

1.5. Challenge to Extracorporeal Organ Engineering
In conventional TERM methods including cell 
transplantation and the scaffold-based tissue repair 
strategies, morphogenesis of tissue architectures and 
regulation of essential biochemical and physiological 
processes all depends on the regenerative ability of 
cells and the recipient in vivo. While modern tissue 
engineering approaches are good at making tissues in the 
laboratory, we still cannot control the important processes 
of complex tissue and organ after implantation. Here 
comes the role of bio-AM filed to make extracorporeal 
systems having the capability to repair/return organ 
function permanently or for implantation. Broadly 
speaking, bio-AM is aiming at challenges of producing 
extracorporeal organ reconstruction systems, in which 
the important tissue structures can be printed, fabricated, 
assembled, cultured, and matured before implantation. 
In addition, ideally, the functions of engineered organs 
should also be established before implantation.

It is often thought that the in vivo approaches are 
physiologically better and look realistic enough. 
However, this is not necessarily true and in vivo approaches 
are not always better for organ engineering. One of the main 
limitations of in vivo approaches for tissue engineering 
research is the regeneration of only fibrous tissues. It 
has been demonstrated that fibroblasts and inflammatory 
cells are the most strongly proliferating cells in the living 
body consuming large amount of nutrients and oxygen to 
provide energy for proliferation of metabolically active 
cells[114-116]. Therefore, the transplanted cells cannot 
survive without a blood supply, sufficient supply of 
essential nutrients, or adequate means for waste product 
removal. Instead, outside the body, the desired tissues or 
organs can be grown without pro-fibrogenic environment. 
Therefore, better in vitro strategies are really needed to 
support, instruct, and maintain cells inside immune-
privileged 3D microenvironments, where cultured cells 
do not lose their unique intrinsic characteristics (Figure 3).
As mentioned above, bioprinting is the only hope for 
fabricating appropriate environments for cells to be 
able to effectively produce spare parts of the human 
tissue/organs beyond the limits attained in vivo. For 
instance, biofabricated organs can be incubated in the 
environment under the high or low oxygen tension, high 
or low growth factors, and exposure of drugs which 
have high pharmacological activity. Control of such 
incubating parameters is impossible in vivo situations 
due to harmful effects on the recipients. Therefore, the 
concept of extracorporeal system is clinically appealing 
and advanced extracorporeal systems are necessary for 
biofabrication research. Such systems may enable precise 
spatial and temporal control arbitrarily without affecting 
the recipients. Building on this momentum, the next 
regenerative medicine frontier lies in how biofabrication 
researchers can better develop novel extracorporeal 

Figure 3. The sketch shows a schematic drawing of the general culture strategy and organ perfusion bioreactor technology.
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systems and bioprocess engineering aims. However, no 
one has ever succeeded to produce functional engineered 
organs. One of the reasons is because we cannot do 
anything with natural process at all after implantation. 
Thus, biofabrication is aiming at extracorporeal organ 
engineering, in which tissue formation can be controlled 
and facilitated under human control.

2.6. Conclusion
In this mini review, four major challenges by bioprinting 
and biofabrication are focused and explained from the 
views from the final mission. These challenges were 
started just from the beginning of this research field but 
are still important issues urgently needed to be addressed. 
Based on our more than 15 years of research endeavors in 
this field, we anticipate that biofabrication (bioprinting) 
holds great promise for the development of artificial 
tissue/organs. There are indeed still many technological 
issues; however, such problems are also essential to 
better understand potential limitations of conventional 
methods, overcome challenges, and produce organs 
or organ substitutes. Even though we cannot foresee 
the use of available biofabrication approaches for 
fabricating fully functional organs in the near future, 
there is great potential and promise for the applications of 
biofabrication approaches in the research area of TERM. 
We conclude with the quote of Theodor von Karman who 
once said “Scientists study the world as it is; engineers 
create the world that has never been.” Tissue engineers’ 
worldwide have been doing amazing research and putting 
their efforts on the development and implementation of 
advance biofabrication technologies (e.g., bioprinting) to 
create the world of biomedicine that has never been.
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