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G protein-coupled receptors (GPCRs) are the largest and most versatile family of
transmembrane receptors in the cell and they play a vital role in the regulation of multiple
physiological processes. The family Miridae (Hemiptera: Heteroptera) is one of the most
diverse families of insects. Until now, information on GPCRs has been lacking in Miridae.
Apolygus lucorum, a representative species of the Miridae, is an omnivorous pest that
occurs worldwide and is notorious for causing serious damage to various crops and
substantial economic losses. By searching the genome, 133 GPCRs were identified in
A. lucorum. Compared with other model insects, we have observed GPCR genes to be
remarkably expanded in A. lucorum, especially focusing on biogenic amine receptors and
neuropeptide receptors. Among these, there is a novel large clade duplicated from known
FMRFamide receptors (FMRFaRs). Moreover, the temporal and spatial expression profiles
of the 133 genes across developmental stages were determined by transcriptome analysis.
Most GPCR genes showed a low expression level in the whole organism of A. lucorum.
However, there were a few highly expressed GPCR genes. The highly expressed LW
opsins in the head probably relate to nocturning of A. lucorum, and the expression of Cirl at
different times and in different tissues indicated it may be involved in growth and
development of A. lucorum. We also found C2 leucine-rich repeat-containing GPCRs
(LGRs) were mainly distributed in Hemiptera and Phthiraptera among insects. Our study
was the first investigation on GPCRs in A. lucorum and it provided a molecular target for the
regulation and control of Miridae pests.

Keywords: identification, GPCRs, Apolygus lucorum, expansion, phylogenetic analysis
1 INTRODUCTION

G protein-coupled receptors (GPCRs) are in a large family of protein cell surface receptors that
detect molecules outside the cell and activate cellular responses (1, 2). GPCRs are found only in
eukaryotes, namely, yeast, choanoflagellates, and animals (3). Based on sequence homology and
functional similarity, GPCRs can be grouped into six families (4, 5): Family-A (rhodopsin-like);
Family-B (secretin receptor family); Family-C (metabotropic glutamate/pheromone); Family-D
n.org November 2021 | Volume 12 | Article 7736691
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(fungal mating pheromone receptors); Family-E (cyclic AMP
receptors); and Family-F (frizzled/smoothened). These receptors
are involved in a wide variety of physiological processes (6),
namely, visual sensation (7), taste (8), smell sensation (9),
behavioral and mood regulation (10), regulation of immune
system activity and inflammation (11, 12), and autonomic
nervous system transmission (10, 13). Because of their crucial
roles in the regulation of multiple physiological processes,
GPCRs are an important drug target (14) and approximately
34% (15) of all Food and Drug Administration (FDA) approved
drugs target 108 members of this family.

With the continuous innovation of next-generation
sequencing technology and bioinformatics, systematic
identification research about GPCRs has been reported in
several insects (16–21). Among Hemiptera, it has been
reported in Acyrthosiphon pisum (22), Aphis craccivora (23),
Cimex lectularius (24), Diaphorina citri (25), Nilaparvata lugens
(26), and Rhodnius prolixus (27). The family Miridae
(Hemiptera: Heteroptera), which includes plant bugs, leaf bugs,
or grass bugs, is one of the most diverse families of insects,
including over 11,000 species in more than 1,300 genera (4, 28).
It is the largest family of true bugs belonging to Hemiptera and
new members of Miridae are being described constantly. Mirids
exhibit a wide range of food preferences and behaviors, including
phytophagy, carnivory, and omnivory. Some mirids exhibit
significant economic impacts and some are pests of food and
fiber crops, whereas others are beneficial species used as
biological control agents (29). Although Miridae is the largest
family of Hemiptera and exhibits a complex habit, there has been
little information reported on GPCRs.

Apolygus lucorum (Miridae) is an omnivorous pest that
occurs worldwide and is notorious for the serious damage it
causes in various crops and its substantial economic losses (30,
31). Recently, the genome of A. lucorum had been reported,
which provided convenient in-depth studies of this pest (32). In
the present research, using bioinformatics analysis, we screened
the genes encoding GPCRs from the genome of A. lucorum. The
expression profiles of all GPCRs were also determined by using
public transcriptome data. These results allowed us to make
comparisons of GPCR systems in different insect species and to
provide relevant information for further functional studies in A.
lucorum. Our study was the first investigation of GPCRs in A.
lucorum, which may become the basis for further investigation of
the function of miridae GPCRs.
2 MATERIALS AND METHODS

2.1 Identification of A. lucorum GPCRs
A. lucorum protein sequences were retrieved from the NCBI
Genome database (https://www.ncbi.nlm.nih.gov/assembly/
GCA_009739505.2/) (32). Based on previous studies and
records in Flybase (http://www.flybase.org/) (33), the GPCRs of
Drosophila melanogaster (34), A. pisum (22), Bombyx mori (17),
Tribolium castaneum (16), and Pediculus humanus humanus
(18) were collected. By using D. melanogaster GPCRs as
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references and A. lucorum protein sequences as queries, BLASTP
searches (35) were performed with a cut-off e-value of 1e−5 to look
for all GPCR candidates. Then, seven-transmembrane (7TM)
domain and annotation information was adopted as the basic
criteria for all GPCR candidates. The GPCR candidates in which
the number of 7TMdomains wasmore than four or the annotation
information indicated it was a GPCRwere retained. The remaining
GPCR candidates were also confirmed by means of BLASTX
analysis in the UniProtKB/Swiss-Prot database. Using all GPCRs
that we collected, pre-phylogenetic analysis with the maximum
likelihoodmethodwas thefinal criteria toremovenon-GPCRs from
candidate pools. If a candidate showed fewer genetic relationships
with knownGPCRs by phylogenetic analysis and the hit sequences
in BLASTX analysis indicated they were not GPCRs, they were
classified as a non-GPCR and removed from our analysis.

2.2 Structural Analyses,
Annotation Information, and
Gene Locations of GPCRs
The 7TM domains for all GPCR candidates were predicted with
the server TMHMM (v2.0) (36) from the Centre for Biological
Sequence Analysis (http://www.cbs.dtu.dk/services/TMHMM/).
Functional annotations of the target proteins were done using
InterProScan (37). In addition, the chromosomal location of
each GPCR candidate was extracted from the genome annotation
file of A. lucorum.

2.3 Phylogenetic Analysis
Partial GPCRs of R. prolixus and C. lectularius that also belonged
to Heteroptera were also obtain based on previous study (24, 27).
GPCRs from D. melanogaster, A. pisum, C. lectularius, and R.
prolixus were assigned to a family/subfamily according to
previous results (22, 24, 27, 34). Putative A. lucorum GPCRs
were classified into different families/subfamilies according to the
families to which their orthologous proteins were assigned.
Amino acid sequences of the putative A. lucorum GPCRs in
each family/subfamily were aligned with receptors of the same
family/subfamily inD. melanogaster, A. pisum, C. lectularius, and
R. prolixus using MAFFT v7 (38). Phylogeny tests were
accomplished using the bootstrap method with 1,000
replications to reconstruct maximum likelihood (ML) trees
using IQ-TREE (39) and the best-fit tree model was
determined with ModelFinder (40). It should be noted that the
GPCRs of R. prolixus and C. lectularius were uncompleted, which
were composed of opsins, biogenic amine receptors, and
neuropeptide GPCRs. For the Drosophila sequences, the name
of the GPCRs were used, while for A. pisum and R. prolixus, the
protein names were same as in previous work (22, 27), and for C.
lectularius, the accession numbers in NCBI were used. The
GPCRs of A. lucorum identified in this work were numbered
according to their families.

2.4 Expression Analysis
To study the expression profiles of the GPCRs, a total of 39
transcriptome data of A. lucorum were downloaded from the
genome project of A. lucorum (Accession: PRJNA526332) in the
November 2021 | Volume 12 | Article 773669
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NCBI Sequence Read Archive (SRA) database (https://www.ncbi.
nlm.nih.gov/sra/) (30, 41), which included egg and different
tissues (leg, head, body, mouthpart, wing, and gut) of nymphs
and adults. Each tissue contained three biological replicates. In
detail, we downloaded the SRA data first and then we used an
SRA-Toolkit to split the paired-end reads. Clean reads were
obtained from the raw data using Trimmomatic (42) to remove
reads with quality scores lower than 10 and adapter sequences.
To analyze gene expression profiles, clean reads of each sample
were mapped to A. lucorum gene sets using hisat2 (43), and then
the TPM value (44) of each putative GPCR gene was calculated
with featureCounts (45). These TPM expression values were
scaled and served to generate a cross-sample normalized
trimmed mean of the M-values (TMM) gene expression matrix
(46). Finally, the heatmap was drawn in ITOL (https://itol.embl.
de) (47) using the normalized matrix. The value used for each
sample was the mean of three independent biological replicates.

2.5 Classification of Gene
Duplication Types
MCScanX (48) was used to classified the duplication types of
different duplicate GPCR genes. First, the homology with
different genes in the genome of A. lucorum was determined
by a whole-genome BLASTP analysis with a max target seqs of 5
and a cut-off e-value of 1e−5. Then, the homology with different
genes and the chromosomal location were combined and all
genes were classified into various types, including the segmental
duplication, and tandem duplication. Finally, the duplication
types of GPCRs were extracted based on these results. All
visualized works were accomplished in TBtools (49).
3 RESULTS

A total of 133 putative GPCRs were identified in A. lucorum.
These GPCRs were classified into four families and included 98
family-A members, 21 family-B members, 10 family-C members,
and four family-F members (Tables 1–4 and Table S1). Based on
the protein sequences, phylogenetic trees were reconstructed for
each GPCR family/subfamily of A. lucorum, R. prolixus, A.
pisum, and D. melanogaster. All GPCRs were quantified with
the TPM values obtained from transcriptomic data. The
expression profile of each GPCR across developmental stages
was also present in the phylogenetic trees of each GPCR family/
subfamily (Figures 1–3, and Figures S1–S3). The chromosomal
locations of all GPCRs are shown in Figure 4.
3.1 Family-A GPCRs
Insect family-A GPCRs include opsins, biogenic amine receptors,
neuropeptide and protein hormone receptors, and purine
GPCRs (17, 18, 22). In this study, 98 family-A GPCRs were
identified in the genome of A. lucorum, and these receptors were
composed of seven opsins, 30 biogenic amine receptors, 58
neuropeptide and protein hormone receptors, and three purine
GPCRs (Tables 1, 2).
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3.1.1 Opsins
Color vision in insects is based on the expression of different
opsins in photoreceptive cells. Opsins are members of the family-
A GPCRs and are coupled to light-sensitive chromophores in
animal photoreceptors (50). Three groups of opsins have been
reported in D. melanogaster: one related to long-wavelength
(LW) vision (including Rh1, Rh2, and Rh6), another group
related to short-wavelength (SW) vision (Rh3, Rh4, and Rh5),
and a third group including only Rh7 (34, 51). A fourth group of
invertebrate opsins, named pteropsins, has been found in Apis
mellifera (50) and R. prolixus (27), which was missing from the
genome of D. melanogaster and A. pisum.

In this study, seven putative opsins were identified in A.
lucorum. The phylogenetic analysis suggested that A1 and A2 are
related to the LW opsin, A3 is related to the SW opsin, A4 and
A5 belong to a third group, and A6 and A7 are close to
pteropsins (Figure 1). Four groups of invertebrate opsins were
also identified in the A. lucorum genome. According to the
expression profile, opsins were expressed at the highest levels
in the head and mouthpart tissue, which is corresponding to
their biological function. Among the four types of opsins
detected in A. lucorum, the A1 showed the highest expression
in the head tissue of adults with a transcripts per kilobase of exon
model per million mapped reads (TPM) of 28,787 (Figure 5)
followed by A3 with a TPM of 770.

3.1.2 Biogenic Amine Receptors
The known biogenic amines that act as ligands for GPCRs in
insects contain acetylcholine, dopamine, serotonin, octopamine,
and tyramine (27). Here, we identified 30 biogenic amine
receptors in A. lucorum. Based on phylogenetic analysis and
sequence similarity, A8–11 are receptors for acetylcholine; A12–
16 are dopamine-like receptors; A17–24 are orthologs of the
octopamine receptors; A26–33 and A35–36 were identified as the
serotonin-like receptors; and A25 is the GPCR that could be
stimulated by two structurally related endogenous ligands,
octopamine and tyramine (Figure S1). Additionally, A34 and
A37 are orphan receptors of this subfamily in A. lucorum, and
are orthologs of RPRC011175 and CG13579, respectively.
However, two tyramine receptors (TyrR and TyrRII) are likely
to be missing in all three heteropteran insects. A25 is the only
tyramine receptor in A. lucorum. Compared with opsins, the
expression level of biogenic amine receptors is much lower. A36
showed the highest expression in gut tissues of adults with a
TPM of 11. In FlyBase (33), we found 5-HT7, the ortholog gene
of A36 in D. melanogaster, was also expressed in the
digestive system.

3.1.3 Neuropeptide and Protein Hormone Receptors
The rhodopsin-like neuropeptide and protein hormone
receptors are the largest subfamily in the rhodopsin-like family
(17, 22, 52). In this subfamily, 58 putative A. lucorum sequences
were identified. Like other insects, A. lucorum rhodopsin-like
neuropeptide and protein hormone receptors can be classified
into 25 groups based on their ligands; i.e., adipokinetic hormone
receptors (AKHR), AKH/corazonin-related peptide (ACP)
November 2021 | Volume 12 | Article 773669
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TABLE 1 | Opsin and biogenic amine receptors in A. lucorum.

Homology search in Swissport (blastp)

-value Description Species

0 Opsin-1 Schistocerca gregaria

0 Opsin Sphodromantis sp.

0E−165 UV-sensitive opsin Apis mellifera

0E−77 Opsin-2 Manduca sexta

8E−73 Opsin Rh3 D. melanogaster

3E−48 Pinopsin Columba livia
1E−70 GQ-rhodopsin Mizuhopecten

yessoensis

0E−160 mAChR DM1 D. melanogaster

4E−57 mAChR gar-2 Caenorhabditis
elegans

8E−27 mAChR gar-2 Caenorhabditis
elegans

7E−23 D(1B) DopR Rattus norvegicus
0 Dop1R1 D. melanogaster

0E−164 Dop1R2 D. melanogaster
3E−61 Dop2R D. melanogaster

0E−103 Dop2R D. melanogaster
9E−24 G-protein coupled

receptor 52
Mus musculus

0E−109 Oamb D. melanogaster
3E−29 Oamb D. melanogaster
0E−104 Octbeta1R D. melanogaster
8E−91 Octbeta2R D. melanogaster
7E−54 Alpha-2C

adrenoreceptor
Danio rerio

0E−76 Octbeta2R D. melanogaster
0E−100 Octbeta3R D. melanogaster
9E−44 Octbeta3R D. melanogaster
0 OctR Heliothis virescens

0E−107 5-HT receptor Bombyx mori
0E−103 5-HT receptor Heliothis virescens
1E−51 5-HT receptor Heliothis virescens
6E−41 5-HT receptor Bombyx mori
5E−29 5-HT-2C Canis lupus familiaris
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No. Accession
number

Putative
Endogenous

ligand

Orthologue of D.
melanogaster

Orthologue of A.
pisum

Predicted
TMHs

Annotation by InterProScan

E

Opsin
A1 KAF6206346.1 Orphan Rh6 ACYPI009332 Complete (IPR000276) GPCR, rhodopsin-like; (IPR001760) Opsin;

(IPR001391) Opsin lateral eye type
A2 KAF6206345.1 Orphan Rh6 ACYPI009332 Complete (IPR000276) GPCR, rhodopsin-like; (IPR001760) Opsin;

(IPR001391) Opsin lateral eye type;
A3 KAF6207755.1 Orphan Rh3, Rh4 ACYPI002544,

ACYPI004442
Complete (IPR000276) GPCR, rhodopsin-like; (IPR001760) Opsin;

(IPR000856) Opsin RH3/RH4
1.0

A4 KAF6207831.1 Orphan Rh7 ACYPI001006,
ACYPI005074

Complete (IPR000276) GPCR, rhodopsin-like 1.

A5 KAF6207832.1 Orphan Rh7 ACYPI001006,
ACYPI005074

Complete (IPR000276) GPCR, rhodopsin-like; (IPR001760) Opsin 1.

A6 KAF6205310.1 Orphan na na 5 (IPR000276) GPCR, rhodopsin-like 4.
A7 KAF6208054.1 Orphan na na 6 (IPR000276) GPCR, rhodopsin-like; (IPR001760) Opsin 2.

Biogenic amine receptors
A8 KAF6211999.1 Acetylcholine mAChR-A ACYPI005180 Complete (IPR000276) GPCR, rhodopsin-like; (IPR000995)

Muscarinic acetylcholine receptor family
4.1

A9 KAF6206451.1 Acetylcholine mAChR-B ACYPI001255 6 (IPR000276) GPCR, rhodopsin-like 2.

A10 KAF6206450.1 Acetylcholine mAChR-B ACYPI001255 2 (IPR000276) GPCR, rhodopsin-like 1.

A11 KAF6202800.1 Acetylcholine mAChR-C na Complete (IPR000276) GPCR, rhodopsin-like 1.
A12 KAF6209068.1 Dopamine Dop1R1 ACYPI006935 Complete (IPR000276) GPCR, rhodopsin-like; (IPR000929)

Dopamine receptor family
A13 KAF6217029.1 Dopamine Dop1R2 ACYPI009241 6 (IPR000276) GPCR, rhodopsin-like 4.6
A14 KAF6204820.1 Dopamine Dop2R ACYPI007415 2 (IPR000276) GPCR, rhodopsin-like; (IPR001671)

Melanocortin/ACTH receptor
2.

A15 KAF6204823.1 Dopamine Dop2R ACYPI007415 2 (IPR000276) GPCR, rhodopsin-like 2.2
A16 KAF6201362.1 Dopamine,

Ecdysteroids
DopEcR ACYPI005538 Complete (IPR000276) GPCR, rhodopsin-like 5.

A17 KAF6209377.1 Octopamine Oamb ACYPI005578 5 (IPR000276) GPCR, rhodopsin-like 5.2
A18 KAF6209376.1 Octopamine Oamb ACYPI005578 3 (IPR000276) GPCR, rhodopsin-like 2.
A19 KAF6209232.1 Octopamine Octbeta1R ACYPI007386 5 (IPR000276) GPCR, rhodopsin-like 2.9
A20 KAF6209392.1 Octopamine Octbeta2R ACYPI004658 3 (IPR000276) GPCR, rhodopsin-like 4.
A21 KAF6209465.1 Octopamine Octalpha2R ACYPI010155 4 (IPR000276) GPCR, rhodopsin-like 4.

A22 KAF6209394.1 Octopamine Octbeta2R ACYPI004658 4 (IPR000276) GPCR, rhodopsin-like 6.
A23 KAF6209913.1 Octopamine Octbeta3R ACYPI010025 5 (IPR000276) GPCR, rhodopsin-like 6.0
A24 KAF6209915.1 Octopamine Octbeta3R ACYPI010025 3 (IPR000276) GPCR, rhodopsin-like 2.
A25 KAF6199206.1 Octopamine/

Tyramine
Oct-TyrR ACYPI007379 Complete (IPR000276) GPCR, rhodopsin-like; (IPR002002)

Octopamine receptor
A26 KAF6209650.1 Serotonin 5-HT1A, 5-HT1B XP_001949725 4 (IPR000276) GPCR, rhodopsin-like 4.8
A27 KAF6210093.1 Serotonin 5-HT1A, 5-HT1B XP_001949725 4 (IPR000276) GPCR, rhodopsin-like 8.6
A28 KAF6208815.1 Serotonin 5-HT1A, 5-HT1B XP_001949725 2 (IPR000276) GPCR, rhodopsin-like 1.
A29 KAF6209646.1 Serotonin 5-HT1A, 5-HT1B XP_001949725 2 (IPR000276) GPCR, rhodopsin-like 1.
A30 KAF6204179.1 Serotonin 5-HT2A ACYPI008969 2 (IPR000276) GPCR, rhodopsin-like 5.
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receptors, allatotropin receptor (AT-R), allatostatin-A receptors
(AstA-R), allatostatin-B receptors (AstB-R), allatostatin-C
receptors (AstC-R), bursion receptor, corazonin receptors
(CrzR), neuropeptide F receptors (NPFR), short neuropeptide
F receptors (sNPFR), proctolin receptors (Proc-R), pyrokinin
receptors (PK-R), leukokinin receptors (Lkr), cholecystokinin-
like receptors (CCKLR), tachykinin receptors (TkR), CAPA
receptors (CapaR), crustacean cardioactive peptide receptors
(CCAP-R), CNMamide receptors (CNMaR), CCHamide
receptors (CCHa-R), ecdysis triggering hormone receptors
(ETHR), FMRFamide receptors (FMRFaR), GPA2/GPB5
receptors, SIFamide receptors (SIFaR), relaxin receptors,
RYamide receptors (RYa-R), and several orphan GPCRs
(Figure 2). Most of these neuropeptide receptors displayed
one-to-one orthologous relationships between A. lucorum, R.
prolixus, C. lectularius, A. pisum, and D. melanogaster, and all
subtypes of leucine-rich repeat-containing GPCRs (LGR) were
observed in A. lucorum (Figures 2 and 6). However, several
duplications and losses of neuropeptide receptor genes were also
observed in A. lucorum. It is worth mentioning that as many as
nine A. lucorum GPCRs (A54–62) displayed strong evidence of
an evolutionary kinship with the FMRFaRs of R. prolixus, C.
lectularius, A. pisum, and D. melanogaster, indicating that a large
clade may have duplicated from FMRFaRs in A. lucorum
(Figures 2 and 7). Duplications of eight neuropeptide receptor
genes (CapaR, CCAP-R, CNMaR, ETHR, Lkr, NPFR, PK1-R, and
SIFaR) were identified in A. lucorum, and duplications of Lkr,
PK1-R, ETHR, CCAP-R, NPFR, and SIFaR were also observed in
R. prolixus or C. lectularius. The trapped in endoderm 1 (Tre1)
receptors, trissin receptors (TrissinR), myosuppressin receptors
(MsR), and other six orphan receptors were not found in the
genome of A. lucorum. Instead, we found six orphan receptors
(A89–92 and A94–95) that have not been reported in A. lucorum.
The expression levels of neuropeptide and protein hormone
receptors were higher than in biogenic amine receptors. The
expression of A65 (LGR) in the bodies of nymphs was the highest
in this subfamily with a TPM of 41. Moreover, A50 (CCAP-R)
and A86 (moody) showed high expression levels in multiple
tissues (TPM >10 at least in five tissues).

3.1.4 Purine GPCRs
Only one receptor in this subfamily, adenosine receptor (AdoR),
has been previously classified in this subfamily (17, 53). Here,
three putative A. lucorum GPCRs (A96–98) were identified as
AdoR, whereas there was only one member in D. melanogaster
and A. pisum (Table 2). Purine GPCRs are activated by the
binding of purine nucleotides or their derivatives (principally
adenosine or ADP/ATP) (54, 55). Duplication of AdoR suggests
that purinergic neural transmission may play a more important
role in A. lucorum.

3.2 Family-B GPCRs
Family-B GPCRs play vital roles in many biological processes,
including growth, development, and reproduction. They are
characterized by long N-terminal domains, and they form a
small group of receptors that are structurally and functionally
divergent from other groups of GPCRs (56). Within this family,
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TABLE 2 | Neuropeptide and protein hormone receptors and purine GPCRs in A. lucorum.

Homology search in Swissport (blastp)

E-value Description Species

4.74E−31 GnRHR II Clarias gariepinus

5.09E−49 GnRHR II Clarias gariepinus

5.02E−41 AstA-R Bombyx mori
n 2.45E−79 AstA-R Bombyx mori

1.27E−81 Somatostatin
receptor type 4

Rattus norvegicus

1.17E−85 CapaR D. melanogaster
, 6.22E−102 Cap2bR D. melanogaster

7.23E−131 CCHa1-R D. melanogaster
NA NA NA

9.79E−14 FMRFaR D. melanogaster
3.56E−59 GnRHR Octopus vulgaris
3.69E−158 CCAPR D. melanogaster

1.9E−156 CCAPR D. melanogaster

1.73E−137 CCAPR D. melanogaster

2.19E−44 TRH-R Gallus gallus

r
4.21E−16 TRH-R Bos taurus

1.75E−130 FMRFaR D. melanogaster

;
5.96E−45 FMRFaR D. melanogaster

, 4.53E−40 FMRFaR D. melanogaster

5.5E−45 FMRFaR D. melanogaster
h 2.25E−31 FMRFaR D. melanogaster

9.69E−35 FMRFaR D. melanogaster
1.13E−33 FMRFaR D. melanogaster
3.58E−26 FMRFaR D. melanogaster
2.55E−29 FMRFaR D. melanogaster
2.6E−103 LH/CG-R Mus musculus
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No. Accession
number

Putative endogenous
ligand

Orthologue of D.
melanogaster

Orthologue of
A. pisum

Predicted
TMHs

Annotation by InterProScan

Neuropeptide and protein hormone receptors
A38 KAF6210560.1 AKH/corazonin-related

peptide
na na 4 (IPR000276) GPCR, rhodopsin-like; (IPR000405) Galanin

receptor family
A39 KAF6216586.1 Adipokinetic hormone AkhR ACYPI002471 Complete (IPR027417) P-loop containing nucleoside triphosphate

hydrolase;
A40 KAF6198962.1 Allatostatins-A AstA-R1, AstA-R2 ACYPI008623 4 None predicted
A41 KAF6198963.1 Allatostatins-A AstA-R1, AstA-R2 ACYPI008623 4 (IPR000276) GPCR, rhodopsin-like; (IPR005390) Neuromed

U receptor
A42 KAF6206708.1 Allatostatins-C AstC-R1, AstC-R2 ACYPI002528 Complete (IPR000276) GPCR, rhodopsin-like; (IPR002131)

Glycoprotein hormone receptor family; (IPR036055) LDL
receptor-like superfamily; (IPR032675) Leucine-rich repeat
domain superfamily

A43 KAF6202370.1 CAPA CapaR ACYPI007245 Complete (IPR000276) GPCR, rhodopsin-like
A44 KAF6216164.1 CAPA CapaR ACYPI007245 Complete (IPR000276) GPCR, rhodopsin-like; (IPR019427) 7TM GPC

serpentine receptor class w (Srw)
A45 KAF6210431.1 CCHamide CCHa2-R ACYPI004781 Complete (IPR000276) GPCR, rhodopsin-like
A46 KAF6201633.1 CNMamide CNMaR ACYPI008027 2 (IPR000276) GPCR, rhodopsin-like; (IPR000611)

Neuropeptide Y receptor family
A47 KAF6201631.1 CNMamide CNMaR ACYPI008027 Complete (IPR000276) GPCR, rhodopsin-like
A48 KAF6205178.1 Corazonin CrzR ACYPI002471 Complete (IPR000276) GPCR, rhodopsin-like
A49 KAF6198396.1 Crustacean

cardioactive peptide
CCAP-R ACYPI062442 Complete (IPR000276) GPCR, rhodopsin-like; (IPR001634) Adenosine

receptor
A50 KAF6211684.1 Crustacean

cardioactive peptide
CCAP-R ACYPI062442 6 (IPR000276) GPCR, rhodopsin-like

A51 KAF6213085.1 Crustacean
cardioactive peptide

CCAP-R ACYPI062442 Complete (IPR008429) Cleft lip and palate transmembrane 1

A52 KAF6209917.1 ETH ETHR BK008727 Complete (IPR000276) GPCR, rhodopsin-like; (IPR000611)
Neuropeptide Y receptor family

A53 KAF6209916.1 ETH ETHR BK008727 3 (IPR000276) GPCR, rhodopsin-like; (IPR000611)
Neuropeptide Y receptor family; (IPR036241) NSFL1 cofacto
p47, SEP domain superfamily

A54 KAF6209916.1 FMRFamides FMRFaR ACYPI006053 Complete (IPR000276) GPCR, rhodopsin-like; (IPR000611)
Neuropeptide Y receptor family

A55 KAF6205268.1 FMRFamides FMRFaR ACYPI006053 5 (IPR027417) P-loop containing nucleoside triphosphate
hydrolase; (IPR042035) DEAH helicase, winged-helix domai
(IPR012340) Nucleic acid-binding, OB-fold

A56 KAF6200840.1 FaRP na na 6 (IPR000276) GPCR, rhodopsin-like; (IPR019427) 7TM GPC
serpentine receptor class w (Srw)

A57 KAF6215133.1 FaRP na na 5 (IPR000276) GPCR, rhodopsin-like
A58 KAF6202705.1 FaRP na na Complete (IPR000276) GPCR, rhodopsin-like; (IPR032675) Leucine-ric

repeat domain superfamily; (IPR008112) Relaxin receptor
A59 KAF6199396.1 FaRP na na 5 (IPR000276) GPCR, rhodopsin-like
A60 KAF6212897.1 FaRP na na Complete (IPR000276) GPCR, rhodopsin-like
A61 KAF6203114.1 FaRP na na 6 (IPR000276) GPCR, rhodopsin-like
A62 KAF6204912.1 FaRP na na Complete (IPR000276) GPCR, rhodopsin-like
A63 KAF6216165.1 GPA2/GPB5 Lgr1 ACYPI004597 Complete (IPR000276) GPCR, rhodopsin-like
i
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TABLE 2 | Continued

Homology search in Swissport (blastp)

E-value Description Species

7.46E−112 LGR5 Rattus norvegicus
2.26E−116 Relaxin receptor

2
Mus musculus

0 GPCR GRL101 Lymnaea stagnalis

2.25E−40 TkR99D D. melanogaster

5.04E−34 QRFP-like
peptide receptor

Branchiostoma
floridae

1.66E−25 NPYR type 2 Cavia porcellus
4.36E−27 DmNPFR1 D. melanogaster

8.96E−16 NPFR D. melanogaster

- 4.33E−117 PK1-R D. melanogaster

2.91E−42 PK1-R D. melanogaster

, 1.14E−101 PK1-R D. melanogaster

3.98E−25 FMRFaR D. melanogaster

1.52E−122 RYa-R D. melanogaster
8.27E−107 SIFaR D. melanogaster

e
4.69E−101 SIFaR D. melanogaster

n 1.15E−62 NPY2-R Homo sapiens

3.65E−147 SPR D. melanogaster

3.51E−29 CCK-XLR Xenopus laevis

4.57E−50 TkR86C D. melanogaster
2.1E−93 TkR99D D. melanogaster
2.38E−55 moody D. melanogaster

NA NA NA

5.19E−143 moody D. melanogaster
1.52E−14 NPY2-R Mus musculus
1.14E−10 Melatonin

receptor type
1A

Gallus gallus
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No. Accession
number

Putative endogenous
ligand

Orthologue of D.
melanogaster

Orthologue of
A. pisum

Predicted
TMHs

Annotation by InterProScan

A64 KAF6215698.1 Bursicon rk ACYPI000221 Complete (IPR008365) Prostanoid receptor
A65 KAF6211436.1 Insulin-like peptide 7

and 8
Lgr3 ACYPI008291 5 (IPR000276) GPCR, rhodopsin-like

A66 KAF6202512.1 Insulin-like peptide 7
and 8

Lgr4 na Complete (IPR000276) GPCR, rhodopsin-like

A67 KAF6211616.1 Leucokinin Lkr ACYPI010083,
ACYPI000762

5 (IPR000276) GPCR, rhodopsin-like; (IPR001681) Neurokinin
receptor

A68 KAF6205586.1 Leucokinin Lkr ACYPI010083,
ACYPI000762

5 (IPR000276) GPCR, rhodopsin-like

A69 KAF6212176.1 Neuropeptide F NPFR ACYPI007664 4 (IPR000276) GPCR, rhodopsin-like
A70 KAF6209720.1 Neuropeptide F NPFR ACYPI007664 4 (IPR000276) GPCR, rhodopsin-like; (IPR000611)

Neuropeptide Y receptor family
A71 KAF6212186.1 Neuropeptide F NPFR ACYPI007664 2 (IPR000276) GPCR, rhodopsin-like; (IPR000611)

Neuropeptide Y receptor family
A72 KAF6213141.1 Pyrokinin-1 PK1-R ACYPI000735,

ACYPI005805
Complete (IPR000276) GPCR, rhodopsin-like; (IPR002120) Thyrotropin

releasing hormone receptor
A73 KAF6213123.1 Pyrokinin-1 PK1-R ACYPI000735,

ACYPI005805
3 (IPR000276) GPCR, rhodopsin-like; (IPR000611)

Neuropeptide Y receptor family
A74 KAF6213143.1 Pyrokinin-2 PK2-R2 na Complete (IPR000276) GPCR, rhodopsin-like; (IPR019427) 7TM GPCR

serpentine receptor class w (Srw)
A75 KAF6210859.1 Proctolin Proc-R ACYPI30716 Complete (IPR027417) P-loop containing nucleoside triphosphate

hydrolase
A76 KAF6207650.1 RYamide RYa-R ACYPI002886 Complete (IPR000832) GPCR, family 2, secretin-like
A77 KAF6211457.1 SIFamide SIFaR ACYPI008341,

BK008728
Complete (IPR000276) GPCR, rhodopsin-like; (IPR002131)

Glycoprotein hormone receptor family; (IPR032675) Leucine
rich repeat domain superfamily

A78 KAF6213872.1 SIFamide SIFaR ACYPI008341,
BK008728

3 (IPR008429) Cleft lip and palate transmembrane 1;
(IPR030434) Cleft lip and palate transmembrane protein 1-lik
protein

A79 KAF6209074.1 short neuropeptide F sNPF-R ACYPI005474 Complete (IPR000276) GPCR, rhodopsin-like; (IPR005390) Neuromed
U receptor

A80 KAF6215350.1 Allatostatin-C AstC-R ACYPI003290 Complete (IPR000276) GPCR, rhodopsin-like; (IPR032675) Leucine-ric
repeat domain superfamily; (IPR002131) Glycoprotein
hormone receptor family

A81 KAF6198907.1 Sulfakinin CCKLR-17D1,
CCKLR-17D3

na 3 (IPR000276) GPCR, rhodopsin-like

A82 KAF6213654.1 Tachykinin TkR86C ACYPI001103 3 (IPR000276) GPCR, rhodopsin-like
A83 KAF6210188.1 Tachykinin TkR99D ACYPI002917 4 (IPR000276) GPCR, rhodopsin-like
A84 KAF6211953.1 Orphan CG4313 ACYPI005234 5 (IPR000276) GPCR, rhodopsin-like
A85 KAF6198896.1 Orphan CG32547 ACYPI000671 3 (IPR000276) GPCR, rhodopsin-like; (IPR001817) Vasopress

receptor
A86 KAF6211940.1 Orphan moody ACYPI006293 6 (IPR000276) GPCR, rhodopsin-like
A87 KAF6198937.1 Orphan na ACYPI40167 Complete (IPR000276) GPCR, rhodopsin-like
A88 KAF6216499.1 Orphan na ACYPI38121 Complete (IPR000276) GPCR, rhodopsin-like
-
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TABLE 2 | Continued

Predicted
TMHs

Annotation by InterProScan Homology search in Swissport (blastp)

E-value Description Species

6 (IPR000276) GPCR, rhodopsin-like 1.02E−12 Melatonin
receptor type
1A

Gallus gallus

2 (IPR000276) GPCR, rhodopsin-like 1.17E−13 Somatostatin
receptor type 5

Homo sapiens

Complete (IPR000276) GPCR, rhodopsin-like 5.87E−12 Prostaglandin
E2 receptor EP4
subtype

Bos taurus

Complete (IPR000276) GPCR, rhodopsin-like; (IPR001556) Bombesin
receptor-like

1.75E−41 RYa-R D. melanogaster

Complete (IPR000276) GPCR, rhodopsin-like; (IPR005390) Neuromedin
U receptor

8.144E−89 Orexin receptor
type 2

Mus musculus

5 (IPR000276) GPCR, rhodopsin-like 1.53E−53 TRHR Gallus gallus
Complete (IPR000276) GPCR, rhodopsin-like 2.03E−13 Cadherin EGF

LAG seven-pass
G-type receptor
1

Mus musculus

3 (IPR000276) GPCR, rhodopsin-like; (IPR001817) Vasopressin
receptor

1.34E−29 AdoR A2a Equus caballus

6 None predicted 1.46E−57 AdoR A2a Equus caballus
3 (IPR000276) GPCR, rhodopsin-like 4.05E−21 AdoR A2a Gallus gallus
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No. Accession
number

Putative endogenous
ligand

Orthologue of D.
melanogaster

Orthologue o
A. pisum

A89 KAF6200805.1 Orphan na na

A90 KAF6202756.1 Orphan na na

A91 KAF6205087.1 Orphan na na

A92 KAF6208108.1 Orphan na na

A93 KAF6215130.1 Allatotropin na na

A94 KAF6215334.1 Orphan na na
A95 KAF6215529.1 Orphan na na

Purine receptor
A96 KAF6207107.1 Adenosine AdoR ACYPI24713

A97 KAF6207108.1 Adenosine AdoR ACYPI24713
A98 KAF6207109.1 Adenosine AdoR ACYPI24713

na, not annotated or applicable, Complete means there is a complete 7TM structure.
f
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TABLE 3 | Family-B GPCRs of A. lucorum.

Homology search in Swissport (blastp)

E-value Description Species

36445)
domain

4.8E−74 Calcitonin gene-
related peptide type
1 receptor

Danio rerio

36445)
domain
tic

5.79E−68 DH-R Acheta domesticus

5.51E−46 DH-R Acheta domesticus
6.16E−49 PDF receptor D. melanogaster

6.82E−26 PDF receptor D. melanogaster

36445)
domain

1.12E−52 Calcitonin receptor Oryctolagus
cuniculus

6.2E−21 Corticotropin-
releasing factor
receptor 1

Mus musculus

36445)
domain

4.18E−84 Calcitonin gene-
related peptide type
1 receptor

Danio rerio

36445)
domain

6.86E−75 PTH2 receptor Homo sapiens

36445)
domain
nose
1234)

0 Latrophilin Drosophila
ananassae

1.59E−80 stan D. melanogaster
amily;
13783)
mily 2,
ily;
family

2.6E−111 Adhesion GPCR A3 Danio rerio

1.2E−128 Mth-like 5 D. melanogaster
2.45E−12 Probable Mth-like 4 D. melanogaster
1.91E−50 Mth2 Drosophila simulans
3.21E−26 Mth2 Drosophila yakuba
6.91E−21 Probable Mth-like 3 D. melanogaster

(Continued)
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No. Accession
number

Putative endogenous
ligand

Orthologue of D.
melanogaster

Orthologue of
A. pisum

Predicted
TMHs

Annotation by InterProScan

SUBFAMILY B1
B1 KAF6209407.1 Diuretic hormone 31 Dh31-R ACYPI007222,

ACYPI001361
Complete (IPR000832) GPCR, family 2, secretin-like; (IPR

GPCR family 2, extracellular hormone receptor
superfamily

B2 KAF6209957.1 Diuretic hormone 44 Dh44-R1, Dh44-R2 ACYPI54924 5 (IPR000832) GPCR, family 2, secretin-like; (IPR
GPCR family 2, extracellular hormone receptor
superfamily; (IPR002001) GPCR, family 2, diure
hormone receptor

B3 KAF6209955.1 Diuretic hormone 44 Dh44-R1, Dh44-R2 ACYPI54924 2 (IPR000832) GPCR, family 2, secretin-like
B4 KAF6198455.1 Pigment-dispersing

factor
Pdfr ACYPI46431 2 (IPR000832) GPCR, family 2, secretin-like

B5 KAF6198460.1 Pigment-dispersing
factor

Pdfr ACYPI46431 2 (IPR000832) GPCR, family 2, secretin-like

B6 KAF6210210.1 Diuretic hormone 31 hec ACYPI009569 4 (IPR000832) GPCR, family 2, secretin-like; (IPR
GPCR family 2, extracellular hormone receptor
superfamily

B7 KAF6210211.1 Diuretic hormone 31 hec ACYPI009569 3 (IPR000832) GPCR, family 2, secretin-like

B8 KAF6210212.1 Diuretic hormone 31 Dh31-R ACYPI007222,
ACYPI001361

Complete (IPR000832) GPCR, family 2, secretin-like; (IPR
GPCR family 2, extracellular hormone receptor
superfamily

B9 KAF6204739.1 Parathyroid hormone na na 5 (IPR000832) GPCR, family 2, secretin-like; (IPR
GPCR family 2, extracellular hormone receptor
superfamily

SUBFAMILY B2
B10 KAF6216792.1 a-latrotoxin Cirl ACYPI005705 Complete (IPR000832) GPCR, family 2, secretin-like; (IPR

GPCR family 2, extracellular hormone receptor
superfamily; (IPR043159) D-galactoside/L-rham
binding SUEL lectin domain superfamily; (IPR03
Latrophilin-1

B11 KAF6198557.1 Orphan stan ACYPI001529 Complete (IPR000832) GPCR, family 2, secretin-like
B12 KAF6198871.1 Orphan CG15744 na Complete (IPR032675) Leucine-rich repeat domain super

(IPR000832) GPCR, family 2, secretin-like; (IPR
Immunoglobulin-like fold; (IPR036445) GPCR fa
extracellular hormone receptor domain superfa
(IPR036179) Immunoglobulin-like domain supe

SUBFAMILY B3
B13 KAF6217262.1 Orphan mthl5 ACYPI003439 Complete None predicted
B14 KAF6207251.1 Orphan mthl na 5 (IPR000832) GPCR, family 2, secretin-like
B15 KAF6215469.1 Orphan mthl na Complete (IPR000832) GPCR, family 2, secretin-like
B16 KAF6197298.1 Orphan mthl na Complete (IPR000832) GPCR, family 2, secretin-like
B17 KAF6207182.1 Orphan mthl na Complete (IPR000832) GPCR, family 2, secretin-like
0

0

0

0

0

0

f
0
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r
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family-B GPCRs can be further subdivided into three
subfamilies: B1–B3, which are greatly divergent in both
function and structure. In total, 21 family-B GPCRs were
identified from the genome of A. lucorum in this study, which
consisted of nine B1 subfamily members, three B2 subfamily
members, and nine B3 subfamily members (Table 3
and Figure 3).

The B1 subfamily is made of largely classical hormone
receptors. It comprises three types of hormone receptors in D.
melanogaster: diuretic hormone 31 receptor (DH31-R/hector),
CRF-like diuretic hormone 44 (DH44-R), and pigment
dispersing factor receptor (Pdfr) (57–60). In our study, all
three types of hormone receptors were identified. The
parathyroid hormone receptor (PTHR), which is involved in
the calcium and phosphate homeostasis and bone growth in
vertebrates, is also a subfamily-B1 GPCR (58). There are two
PTHRs in mammals, which are involved in calcium and
phosphate homeostasis and bone growth (61, 62). In insects,
PTHR-like (PTHRL) have been identified from T. castaneum, A.
mellifera, P. h. humanus, and N. lugens (18, 26, 57), but its
counter-parts in D. melanogaster, B. mori, A. pisum, and A.
gambiae are not found (17, 22, 34, 63). T. castaneum has two
distinct PTHRLs (57), N. lugens possesses a pair of homologous
PTHRLs (26), and A. mellifera only has one PTHRL (57). In our
study, we also identified one PTHRL, B9, which shared a low e-
value (1e−104 and 1e−111) with two PTHRLs in N. lugens. These
results showed that genes coding for PTHR are divergent
among insects.

The B2 subfamily is characterized by a long extracellular N-
terminal domain and a GPCR proteolytic site (57, 58, 64). Based
on phylogenetic analysis and sequence similarity, three receptors
(B10–12) were classified in the B2 subfamily, which correspond
to a calcium-independent receptor for a-latrotoxin (Cirl), starry
night (stan), and CG15744, respectively. However, the orthologs
for CG11318 and CG15556 were not identified in the genome of
A. lucorum.

There is only one group of receptors in the B3 subfamily; i.e.,
Methuselah (mth)/Methuselah-like (mthl) (57, 58). This gene
family is involved in the modulation of life span and stress
responses. No counterpart for the mth gene family has been
identified in vertebrates (57). In insects, the number in the B3
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TABLE 4 | The number of A. lucorum GPCRs of each family in comparison with
the other four insects.

A.
lucorum

A.
pisum

D.
melanogaster

T.
castaneum

B.
mori

Family-A 98 62 73 68 69
Opsin 7 5 7 2 6
Biogenic amine
receptors

30 18 21 20 16

Neuropeptide and
protein hormone
receptors (contained
the purine GPCRs)

58 39 45 46 47

Family-B 21 10 26 21 12
Family-C 10 7 10 10 9
Family-F 4 3 5 4 3
Total 133 82 113 103 93
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subfamily is highly variable (18, 57). In D. melanogaster, this
subfamily can be divided into two groups based on their
structure, 12 mth ectodomain‐positive members (mth, mthl2,
mthl3, mthl4, mthl6, mthl7, mthl8, mthl9, mthl10, mthl11,
Frontiers in Endocrinology | www.frontiersin.org 11
mthl12, and mthl13) and four mth ectodomain‐negative
members (mthl1, mthl5, mthl14, and mthl15) (65). In our
study, nine receptors (B13–21) were identified in this family.
Based on phylogenetic analysis, B13 and B20 may belong to the
FIGURE 1 | Phylogenetic tree reconstruction of opsin GPCRs from D. melanogaster (green square), A. pisum (blue star), R. prolixus (orange right triangle), C.
lectularius (purple left triangle), and A. lucorum (red circle) inferred from maximum likelihood (ML) analysis. Numbers at nodes on the tree were the bootstrap values
(below 50 are not shown). The tree was rooted by the D. melanogaster biogenic amine receptor 5-HT1A. Expression profiles of A. lucorum GPCR genes from
different tissues are shown in the corresponding branch side. The transcription level of each gene is represented by a square with a color that codes for the values of
Lg (TPM+1). N, nymph; A, adult.
FIGURE 2 | Phylogenetic tree reconstruction of neuropeptide and protein hormone receptors from D. melanogaster (green square), A. pisum (blue star), R. prolixus
(orange right triangle), C. lectularius (purple left triangle), and A. lucorum (red circle) inferred from maximum likelihood (ML) analysis. Numbers at nodes on the tree
were the bootstrap values (below 50 are not shown). The tree was rooted by the D. melanogaster opsin GPCR Rh6. Expression profiles of A. lucorum GPCR genes
from different tissues are shown in the corresponding branch side. The transcription level of each gene is represented by a square with a color that codes for the
values of Lg (TPM+1). N, nymph; A, adult.
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mth ectodomain‐positive group, and others may be members of
the mth ectodomain‐negative group. At the mRNA level, B13,
B18, and B21 showed a higher expression level than other mthl
members, which indicated these three members of the B3
subfamily may play a more important role in A. lucorum.

3.3 Family-C GPCRs
Family-C GPCRs possess a large ligand-binding extracellular
domain and form constitutive dimers (34, 66–68). There are
three types of GPCRs in family-C, the glutamate and g-amino
butyric acid (GABA-B) receptors, the bride of sevenless (boss-
type) receptors, and the metabotropic glutamate (mGlu)
receptors. Until now, nine family-C GPCRs from D.
melanogaster and seven from A. pisum have been reported. By
using these reference sequences, 10 family-C members (Table S1
nad Figure S2) of A. lucorum were identified here.

Like A. pisum (22), there are two GABA-B receptors (C1 and
C2) in A. lucorum. C1 shares a 78% sequence similarity with D.
melanogaster GABA-B-R1, while C2 has a 44% sequence identity
with D. melanogaster GABA-B-R2. The orthologous gene to D.
melanogaster GABA-B-R3 has not been found in two Hemiptera
insects. The boss-type receptor was first identified as a ligand for
Frontiers in Endocrinology | www.frontiersin.org 12
sevenless tyrosine kinase, which was involved in eye
differentiation in D. melanogaster. Subsequently, boss has been
implicated in the glucose-response (69, 70). It has been reported
in D. melanogaster (34), A. gambiae (63), A. pisum (22), and T.
castaneum (16), but not in B. mori (17), A. mellifera, N.
vitripennis, and P. humanus corporis. Here, C3 was identified
as the orthologous gene to boss. These results indicated that boss
has been randomly lost in insects during their evolutionary
process. Moreover, three mGlu receptors (C4, C5, and C6)
were found in A. lucorum, whereas there are only two mGlu
receptors in D. melanogaster (34) and one mGlu receptor in A.
pisum (22). Small expansions of A. lucorummGlu receptors have
been observed. There are some unclassified receptors in this
family. C7 was the orthologous gene to smog. C8 and C9 showed
53 and 38% sequence identities with their counterparts in D.
melanogaster, respectively. As shown in Figure S2, C9 showed a
high expressed level in egg, adult head, and all nymph tissues,
except leg, while the function of its orthologous gene is unclear.
C10 was an orphan receptor that has not been reported in D.
melanogaster and A. pisum (22, 34).

3.4 Family-F GPCRs
Family-F GPCRs comprise the frizzled gene family and the
smoothened gene (34, 71). In this study, four putative A.
lucorum GPCRs were identified in the frizzled/smoothened
GPCR family, which are orthologous to D. melanogaster fz,
fz2, fz3, and smo (Table S1 and Figure S3). Our results
indicated that orthologs for D. melanogaster fz4 were missing
in A. lucorum. Among family-F, F4 (smo) showed the highest
expression in the egg with a TPM of 61.
4 DISCUSSION

In this study, we systematically identified 133 GPCRs from A.
lucorum. Compared with other model insects, we also found the
GPCR genes remarkably expanded among the biogenic amine
receptors, neuropeptide and protein hormone receptors, and the
B1 subfamily (Table 4). Some of them had been reported in R.
prolixus or C. lectularius (24, 27), such as the duplications of 5-
HT7, Lkr, PK1-R, ETHR, CCAP-R, NPFR, SIFaR, and DH31-R.
However, missing TyrR, Tre1, TrissinR, MsR, and some orphan
receptors has also been observed in the genome of A. lucorum
(Tables S2, S3). All these predicted GPCRs were quantified by
transcriptome data. Although most GPCR genes showed a low
expression level in A. lucorum, there were a few highly expressed
GPCR genes, such as the long-wavelength opsin and Cirl. By
comparative analysis, we also found C2 LGR types were widely
distributed in Hemiptera. All these aspects will be discussed in
detail below.

4.1 GPCRs Gene Expansion Occurred
in A. lucorum
Compared with other well-studied insects, we noticed that the
number of genes coding for GPCRs is obviously larger than for
other insects, especially expanded among the biogenic amine
FIGURE 3 | Phylogenetic tree reconstruction of Family-B GPCRs from D.
melanogaster (green square), A. pisum (blue star), R. prolixus (orange right
triangle), C. lectularius (purple left triangle), and A. lucorum (red circle) inferred
from maximum likelihood (ML) analysis. Numbers at nodes on the tree were
the bootstrap values (below 50 are not shown). The tree was rooted by the
D. melanogaster opsin GPCR Rh6. Expression profiles of A. lucorum GPCR
genes from different tissues are shown in the corresponding branch side. The
transcription level of each gene is represented by a square with a color that
codes for the values of Lg (TPM+1). N, nymph; A, adult.
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receptors, neuropeptide and protein hormone receptors, and B1
subfamily (Table 4). There were 26 GPCRs duplicated in A.
lucorum. Twenty-three of them were classified into the three
subfamilies mentioned above. By MCScanX analysis, we found
six tandem duplication events occurred among Rh6, Rh7, AstA-
R, ETHR, FMRFaR, and AdoR, while most GPCR genes
duplicated dispersedly. Considering the location of GPCR
genes on chromosomes, it suggested that the duplication of
GPCR genes mainly occurred as independent duplications and
transitions (Figure 4).

The duplicate biogenic amine receptors in A. lucorum
included 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT7, Dop2R,
Frontiers in Endocrinology | www.frontiersin.org 13
mAChR-B, Oamb, Octbeta2R, and Octbeta3R. These biogenic
amine receptors can regulate many behaviors including flight
and fight, learning and memory, sleep and wakefulness, feeding,
and social and reproductive behaviors (72–74). For example, 5-
HT1A was related to locomotor activity in B. mori. Injecting the
antagonist of the Bm5-HT1A receptor into larvae caused slow or
weak motility, and adults had lowered courtship vitality or
moving speed (75). mAChRs have also been reported to be
critical in regulation of locomotory behavior in Drosophila (76).
In addition, 5-HT1B mediates hemocyte phagocytosis and
serotonergic signaling performs critical modulatory functions
in immune systems. Moreover, 5-HT7 and Dop2R were shown
FIGURE 4 | Chromosomal locations and tandem duplicated gene pairs of the 133 putative GPCR genes. Each was mapped to the chromosome based on its
physical location. The chromosome number (LG1–LG16, tig00472765) is indicated at the left. The tandem duplicated genes were outlined with red color.
FIGURE 5 | Expression patterns of A1 and B10 in different tissues by transcriptome analysis. The vertical bars indicate standard errors of the mean (n = 3).
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to be associated with learning ability (77, 78) and octopamine
receptors were required for ovulation in D. melanogaster (79).
The ligands of neuropeptide and protein hormone receptors and
the B1 subfamily belong to neuropeptides, which also play an
important role in the regulation of development, reproduction,
feeding, courtship, aggression, olfaction, locomotor activity,
circadian rhythm, and many other physiological processes in
insects (21, 80, 81). The gene expansion of these three
subfamilies indicated that A. lucorum had a more complex
peptidergic signaling system.

Expansions of genes associated with omnivorousness and
mesophyll feeding, such as those related to digestion,
chemosensory perception, and detoxification, were also observed
Frontiers in Endocrinology | www.frontiersin.org 14
inA. lucorum (32).Gustatory receptors (Grs) andodorant receptors
(Ors) are thought to be the most important chemosensory
receptors. Like GPCRs, Ors, and Grs are seven-transmembrane
domain receptors but belong to the chemosensory 7tm receptor
superfamily (82, 83). It has been suggested that the cause of gene
expansion in GPCRs might be similar to that of chemosensory
receptors, also tobetter adapt to the environment (32).A. lucorum is
found in natural and agricultural ecosystems throughout the world
(30), and many of them are generalists, exhibiting diverse feeding
habits or preferences (e.g., feeding on leaf, stem, inflorescences,
nectar, pollen, and fruit) (32). These results indicated the complex
peptidergic signaling system is more favorable for A. lucorum to
adapt to multiple living environments and multiple hosts.
FIGURE 6 | Phylogenetic tree and domains of different LGRs. Numbers at nodes on the tree were the bootstrap values (below 50 are not shown). The tree was
rooted by the D. melanogaster opsin GPCR Rh6. Different LGR types were painted with different colors. Predicted domains of each sequence are shown in the
corresponding branch side. Dc, D. citri; Al, A. lucorum; Ap, A. pisum; Dm, D. melanogaster; Tc, Tribolium castaneum; Bm, B. mori.
FIGURE 7 | Phylogenetic tree reconstruction of FMRFaRs and MsRs from D. melanogaster (green square), A. pisum (blue star), R. prolixus (orange right triangle),
C. lectularius (purple left triangle), A. lucorum (red circle), and other two model insects inferred from maximum likelihood (ML) analysis. Numbers at nodes on the tree
were the bootstrap values. The tree was rooted by the D. melanogaster Proc-R.
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4.2 A. lucorum Appears to Have
Evolved From a Novel Large Clade
of Known FMRFaRs
FMRFamide (FMRFa) is a cardioexcitatory peptide that was first
isolated from the nervous system of the clam, Macrocallista
nimbosa (84), and is active as a tetrapeptide only in mollusks
and annelids. Since the discovery of FMRFa, peptides with
extended length at the N-terminal portion have been reported,
such as myosuppressin (Ms) (85). Here, nine receptors (A54–62)
displayed a certainly evolutionary kinship with the FMRFaR of
D. melanogaster, A. pisum, C. lectularius, and R. prolixus, while
the MsR is missing in A. lucorum (Figure 2). By reconstruction
of the phylogenetic tree of MsR and FMRFaR with more species
(17, 86), we found these receptors were closer to the known
FMRFaRs (Figure 7). Among these, A54 and A55 were clustered
in a single clade with the FMRFaRs that had been identified in
other insects, whereas the other seven receptors are clustered on
the other single clade. The most similar proteins in UniProtKB/
Swiss-Prot of these receptors are both D. melanogaster FMRFaRs
(CG2114). Among these receptors, A54 was the ortholog to the
insect FMRFaRs with the smallest e-value of 1.75E−130, and
A55, which was adjacent located on chromosome 9, is a tandem
duplication that occurred at the beginning of this receptor
expansion. However, the other seven receptors (A56–62) were
scattered across six chromosomes, which indicated these seven
receptors might have arisen from transposition.

By searching in the genome of other heteropteran insects, we
found there are only one or two FMRFaRs in each heteropteran
species. We suggest A54 and A55 should be classified as
FMRFaRs, while the others (A56–62) were named as FMRFaR-
like for the moment. This branch might be another unknown
GPCR or even contain the MsR. Recent research had found that
FMRFaR stimulates intracellular calcium signaling through the
IP3R and helps maintain neuronal excitability in a subset of
dopaminergic neurons for positive modulation of flight bout
durations (87), and the ligand can reduce spontaneous muscle
contractions, such as in the intestinal muscle and the heart rate,
which also have an impact on movements (88, 89). A. lucorum
has great flight capacity and its adults can fly 151.3 km within
48 h (90). A large FMRFaR-like branch evolved in A. lucorum
may help it maintain strong flight capability.
4.3 Only a Few GPCR Genes Showed High
Expression Levels in A. lucorum
In our research, only 23 GPCR genes (17.3% of all GPCR genes)
were expressed highly (TPM >10) in at least one tissue, while
most GPCR genes showed a low expression level in A. lucorum.
This result is consistent with previous studies in which most
GPCRs showed a low endogenous expression level, even at the
mRNA level (91–93). Certainly, a low expression level of GPCRs
does not necessarily equate to functional insignificance (94).

Here, through transcriptome analysis, we found the expression
levels of opsins were higher than in other subfamilies. Opsins that
originated early in metazoan evolution mediate the response to
visual stimuli primarily. When stimulated by light, opsins can
activate a downstream signaling cascade by conformational
Frontiers in Endocrinology | www.frontiersin.org 15
change (95). Most opsin genes are expressed in photoreceptors,
but there are opsins expressed in other tissues, suggesting some
nonvisual functions (96, 97). In A. lucorum, opsin genes (A1–3)
were expressed highly not only in head but also in leg, wing, and
mouthpart, indicating these opsins may execute some nonvisual
functions (Figure 1). Among these, the LW opsin (A1) showed the
highest expression levels in the head tissue of adults (TPM=28,787,
at least 20 times more than other GPCR; Figure 5). The peak
absorbance of the LW opsin is 500–600 nm, which corresponds to
yellow-green light. As night sets in, the natural ambient light is
increasingly dominated by longer wavelengths (98, 99). The
importance of LW opsin had been reported in many nocturnal
insects (100, 101). The adults of the A. lucorum were mainly active
from dusk to early morning (102). High expression levels of LW
opsinmay help the organism adapt to a low light environment.We
found B10, orthologous to Cirl, is themost widely expressed GPCR
gene, which can be tested in all tissues (Figure 5). Cirl belongs to a
unique branch of GPCRs and, specifically, is an adhesion GPCR
(103, 104). The orthologs of Cirl have been discovered in almost all
animals from invertebrates to vertebrates, including humans (105).
There are three homologs of Cirl inmost vertebrates (Cirl‐1, Cirl‐2,
and Cirl‐3) and two in birds and worms, whereas there is only one
homolog in insects—which ismost homologous tovertebrateCirl-2
(103, 106). The expression pattern of insects Cirl, which had been
reported to be expressed inmultiple tissues (103, 107), was also like
vertebrate Cirl-2 (108). Although there is only one Cirlmember in
insect species, Cirl is still involved in multiple physiological
processes, which can regulate sensory, developmental,
reproductive, and immune functions in insects (104, 109).
Here, B10 had been detected in all transcriptomic samples
and its distribution range is wider than in T. castaneum and
D. melanogaster (103, 106). This kind of expression pattern
suggested B10 is crucial in the development of A. lucorum.

4.4 Type C2 LGRs Are Mainly Distributed
in Hemiptera and Phthiraptera Insects
Within the neuropeptide and protein hormone receptor subfamily,
LGRs are a distinct subgroup with important functions in
development and reproduction (110). Three distinct types of
LGRs have been defined based on their structural characteristics
and they are distinguished by the number of leucine-rich repeat
(LRR) motifs, the absence or presence of a low density lipoprotein
receptor domain classA (LDLa)motif, and their type-specific hinge
region. Generally, type B LGRs have about twice the number of
LRRs compared to the other two types. An exclusive feature of the
type C LGRs is the presence of at least one LDLa motif in the
ectodomain. The more general type containing only one LDLa will
be referred to as typeC1, whereas type C2 containedmore than one
LDLa (111).

Type C2 LGRs were first discovered in echinoderms, mollusks,
and inone insect species (Pediculus humanis corporis). In our study,
we found it existed in all hemipteran insects that we studied.
Combining recent work, we mentioned that type C2 LGRs are
reported inmanyhemipteran insects andP. h. humanus (18, 23, 25,
26), and are lost in other orders of insects (16, 17, 63, 86) (Figure 6).
Until now, the presence of type C2 LGRs have been found in all
Hemiptera insects in which their GPCRs have been identified
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(22, 23, 25, 26). Among insects, Phthiraptera is one of the orders
most closely related to Hemiptera (112). Type C2 LGRs may be
present in the common ancestor of these two orders. To clarify the
distribution of type C2 LGRs in insects, we checked all protein
sequences in the non-redundant protein sequences database (nr) of
NCBI. The result showed, except for Hemiptera and Phthiraptera,
type C2 LGRs were also founded in Zootermopsis nevadensis of
Blattodea. In terms offunctionality, LGRshave important functions
in development and reproduction. Type A LGRs and type B LGRs
are stimulated by large dimeric protein hormones (110), regulating
the adult eclosion of insects, and cuticle tanning (113, 114), while
typeC1LGRs are the receptors of insulin-like peptide 7 and insulin-
like peptide 8 and they coordinate organ growth inD.melanogaster
(115–117). At present, the function of type C2 LGRs is
undetermined. The function of type C2 LGRs and the existence of
type C2 LGRs in Phthiraptera need to be explored in future work.
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