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Abstract Generation of autologous human motor neurons holds great promise for cell

replacement therapy to treat spinal cord injury (SCI). Direct conversion allows generation of target

cells from somatic cells, however, current protocols are not practicable for therapeutic purposes

since converted cells are post-mitotic that are not scalable. Therefore, therapeutic effects of

directly converted neurons have not been elucidated yet. Here, we show that human fibroblasts

can be converted into induced motor neurons (iMNs) by sequentially inducing POU5F1(OCT4) and

LHX3. Our strategy enables scalable production of pure iMNs because of the transient acquisition

of proliferative iMN-intermediate cell stage which is distinct from neural progenitors. iMNs

exhibited hallmarks of spinal motor neurons including transcriptional profiles, electrophysiological

property, synaptic activity, and neuromuscular junction formation. Remarkably, transplantation of

iMNs showed therapeutic effects, promoting locomotor functional recovery in rodent SCI model.

Together, our advanced strategy will provide tools to acquire sufficient human iMNs that may

represent a promising cell source for personalized cell therapy.

Introduction
Spinal cord injury (SCI) causes devastating neurological impairments and disabilities (Singh et al.,

2014). SCI leads to the loss of sensory/motor functions and malfunctions in other organs such as

bladder, kidneys and bowel, provoking an enormous impact on physical, psychological and social

behavior of SCI patients (Bradbury and McMahon, 2006; Vismara et al., 2017). Unfortunately,

there is no fully restorative treatment for SCI yet (Silva et al., 2014). Medications or surgical decom-

pression are the only options for SCI treatment, however, these approaches are controversial due to

the severe side effects and limited clinical efficacy (Cristante et al., 2012; Vismara et al., 2017).
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Thus, cell replacement therapy has been proposed as a promising therapeutic intervention to

reconstitute the damaged nervous system and improve functional recovery after SCI (Gold-

man, 2005). A number of studies have shown that transplantation of neural cells derived from plurip-

otent stem cells (PSCs) is effective in functional and histological restoration in SCI animal model

(Lu et al., 2014; Nakamura and Okano, 2013; Tsuji et al., 2010; Vismara et al., 2017). Despite

these encouraging advances, ethical issue of embryonic stem cells (ESCs) and tumorigenic potential

of induced pluripotent stem cells (iPSCs) have impeded their translations into clinical trials

(Deng et al., 2018; Fong et al., 2010; Miura et al., 2009; Ronaghi et al., 2010). To overcome these

limitations, direct conversion of somatic cells into other cell types has been achieved while bypassing

pluripotent state (Park et al., 2019; Park et al., 2020; Xu et al., 2015). However, application of pre-

vious protocols hindered therapeutic translations due to the heterogeneity and low yields, and

involvement of multiple transcription factors which may increase the genetic mutagenesis

(Kang et al., 2015). Most importantly, directly converted cells are fully differentiated post-mitotic

cells which limit the acquisition of cell source in large-scale for therapeutic purpose. Hence, there is

a critical need to develop a new method that enables the large-scale production of highly pure and

functional target cells with consistent quality. In terms of treating SCI, it must be capable of generat-

ing motor neuron (MN) subtypes that are relevant to disease rather than producing general neurons.

In this study, we succeeded in generating induced motor neurons (iMNs) by using a minimal num-

ber of transcription factors, POU5F1(OCT4) and LHX3. POU5F1(OCT4) is known to play an impor-

tant role in regulating pluripotent genes (Shi and Jin, 2010; Wang et al., 2007), and downstream

target genes involved in developmental processes (Shi and Jin, 2010). Previously, overexpression of

POU5F1(OCT4) allowed the generation of blood progenitor cells from fibroblasts (Szabo et al.,

2010) by regulating hematopoietic gene, HOXB4, which is one of the POU5F1(OCT4) targets

(Boyer et al., 2005). Furthermore, a number of studies showed that POU5F1(OCT4) can induce vari-

ous cell fate reprogramming such as neural stem cells into iPSCs (Kim et al., 2009a; Kim et al.,

2009b), and fibroblasts into neural progenitor cells (Mitchell et al., 2014b) as well as oligodendro-

cyte progenitor cells (Kim et al., 2015), defining POU5F1(OCT4) as a versatile reprogramming factor

that confers the plasticity in somatic cells (Mitchell et al., 2014a; Mitchell et al., 2014b). Also, it has

been reported that POU5F1(OCT4) binds to homeodomain transcription factor ISL1 (Boyer et al.,

2005; Jung et al., 2010) which is required for specification of spinal cord MNs (Cho et al., 2014;

Liang et al., 2011). So, we hypothesized that activation of POU5F1(OCT4) might have potential to

generate MNs from somatic cells through regulating ISL1 expression. Here, we introduced the key

cell fate regulator POU5F1(OCT4) and subsequently overexpressed additional MN specification fac-

tor LHX3 to induce fibroblasts toward motor neuronal fate. Importantly, we found that iMNs exhib-

ited typical characteristics of MNs on molecular level, electrophysiological activity, synaptic

functionality, in vivo engraftment capacity and therapeutic effects. In conclusion, our strategy ena-

bles large-scale production of pure iMNs and facilitates the feasibility of iMNs for SCI treatment.

Access to high-yield cultures of human MNs will facilitate an in-depth study of MN subtype-specific

properties, disease modeling, and development of cell-based drug screening assays for MN

disorders.

Results

Generation of induced motor neurons (iMNs) from human fibroblasts
by sequential induction of two transcription factors
To generate induced motor neurons (iMNs) from human adult fibroblasts (HF1), we established an

advanced direct conversion strategy by inducing POU5F1(OCT4) and LHX3 sequentially at different

time points as described in the experimental scheme (Figure 1A). To rule out the possibility that

resulting iMNs are derived from contaminating neural cells in parental fibroblasts, we confirmed that

none of the fibroblasts express neural lineage markers by immunostaining with specific antibodies

(Figure 1—figure supplement 1A). Firstly, we transduced fibroblasts with POU5F1(OCT4) regarding

its critical role in cell fate decision during early development (Yamada et al., 2013). POU5F1(OCT4)-

induced plasticity has been shown to activate the lineage genes in response to lineage supporting

culture condition (Mitchell et al., 2014a; Mitchell et al., 2014b). We cultured POU5F1(OCT4)-

infected cells in our defined neural induction medium. The morphological changes were observed as
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Figure 1. Generation of induced motor neurons (iMNs) from human fibroblasts. (A) The experimental scheme for the generation of iMNs by sequential

transduction of two transcription factors. (B–G) The morphological change of human fibroblasts (HF1) during reprogramming. (B) The morphology of

mock-infected HF1 in neural induction medium. (C) The emergence of cell cluster after 10 days of POU5F1(OCT4) infection in neural induction medium.

(D) The morphology of POU5F1(OCT4)-infected cells after picking. (E) The morphology of iMNICs after passage. (F) Appearance of iMN spheres in

motor neuron induction medium. (G) The morphology of iMNs on PDL/Laminin-coated plate. (G’) Zoomed image of the square in (G) shows complex

axonal processes. Scale bars, 125 mm in (B–G’). (H) Immunofluorescence images of iMNs (HF1-iMN2) converted from iMNICs after 14 days of MN factor

transduction under sphere culture condition. Addition of LHX3 to iMNICs but not any other MN factors enhanced conversion efficiency to generate

Figure 1 continued on next page
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early as day 3, and spindle-shaped cells then formed compact colonies by day 10 (Figure 1C),

whereas mock-infected fibroblasts did not change under the same condition (Figure 1B). From

0.5 � 104 seeded fibroblasts, we could observe 7 ~ 12 colonies (Supplementary file 3). We picked

colonies individually and plated them in separate wells for clonal culture. The neural progenitor-like

cells grew out gradually from attached colonies (Figure 1D). We found that the number of cells

increased over time in neural induction medium. These cells were passaged and maintained as a

monolayer cell line which we named iMN-intermediate cells (iMNICs) (Figure 1E). We could establish

six iMNIC clones from HF1; HF1-iMNIC2, HF1-iMNIC5, HF1-iMNIC6, HF1-iMNIC7, HF1-iMNIC11

and HF1-iMNIC12 (Figure 1—figure supplement 2A and Supplementary file 3). In order to deter-

mine whether the fibroblasts acquired motor neuronal identity after POU5F1(OCT4)-mediated neural

induction, we analyzed the relative mRNA level of MN specification genes ISL1, HB9, NKX6.1 and

LHX3 (Davis-Dusenbery et al., 2014) in POU5F1(OCT4)-infected cells at day 7, day 14 and three

iMNIC clones (Figure 1—figure supplement 2B). Notably, quantitative reverse transcription poly-

merase chain reaction (qRT-PCR) analysis revealed that only ISL1 was dramatically upregulated after

POU5F1(OCT4) induction (Figure 1—figure supplement 2B). Consistently, immunocytochemistry

also showed that iMNICs robustly express ISL1, whereas other MN markers (HB9, NKX6.1 and LHX3)

or neuronal markers (TUJ1 and MAP2) were not detected (Figure 1—figure supplement 2C). For

further MN induction and characterization of general features of MNs, we selected HF1-iMNIC2

which expressed ISL1 gene most highly (Figure 1—figure supplement 2B).

To induce iMNICs into mature iMNs, we plated iMNICs on PDL/Laminin-coated plate in MN

induction medium containing spinal ventralizing morphogen, sonic hedgehog (SHH) (Ericson et al.,

1996; Jessell, 2000). Most of the cells showed neuronal morphology expressing TUJ1 (>95%), and

nearly all TUJI+ cells co-expressed ISL1 at day 28 (Figure 1—figure supplement 3A). These cells

also expressed mature neuronal marker MAP2 and presynaptic marker synapsin1 (SYN1) (Figure 1—

figure supplement 3B). However, terminal MN marker HB9 expressing cells were very rare in popu-

lation (Figure 1—figure supplement 3C). These data indicate that POU5F1(OCT4) induction poten-

tially contributes to MN induction, but not sufficient for complete reprogramming toward mature

MNs.

Given that iMNICs express endogenous ISL1 gene, we hypothesized that additional transcription

factor involved in MN specification might facilitate the conversion of iMNICs toward bona fide MNs.

We selected six candidate transcription factors including PAX6, NKX6.1, OLIG2, LIM1 and LHX3

(Davis-Dusenbery et al., 2014; Jessell, 2000) and transduced iMNICs with each gene individually

(Figure 1I). Also, we employed sphere culture to optimize the culture condition for MN induction.

When we plated iMNICs on non-coated dishes for sphere culture, the cells formed clusters and

became free-floating iMN spheres in MN induction medium (Figure 1F). The iMN spheres were sub-

sequently transferred onto PDL/Laminin-coated dishes for neuronal maturation, then MN-like cells

outgrew from the spheres (Figure 1G). We could observe robust axon projections and dendritic

arborizations, suggesting the neuronal maturation (Figure 1G’). Remarkably, the converted neurons

exclusively expressed TUJ1 and HB9 only after LHX3 induction, but no HB9+ cells were observed in

other transcription factor infected cells (Figure 1H). More than 96% of iMNs co-expressed TUJ1 and

Figure 1 continued

HB9+TUJ1+ iMNs. The cells were co-stained with HB9 (red) and TUJ1 (green), and the nuclei were counterstained with DAPI. Scale bars, 125 mm. (I–J)

Conversion efficiency determined by quantification of TUJ1+ cells (I) and HB9+TUJ1+ cells (J) depending on transduced MN factor and culture

condition. Data are presented as mean ± SD (n = 3), and represent triplicate experimental replicates. Related data can be found in Figure 1—figure

supplements 1–6.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Quantification of TUJ1+/HB9+TUJ1+ iMNs depending on TF, qRT-PCR analysis of MN genes, and qRT-PCT analysis of endogenous

expression of POU5F1, NANOG, and SOX2.

Figure supplement 1. Validation of parental human fibroblasts.

Figure supplement 2. Establishment of iMNIC clones and upregulation of ISL1 expression after POU5F1(OCT4) induction.

Figure supplement 3. Characterization of iMNs converted by POU5F1(OCT4) alone.

Figure supplement 4. Screening transcription factor and optimization of culture condition for generating iMNs from iMNIC clones.

Figure supplement 5. iMNICs possess self-renewal capacity and do not transit neither pluripotent state nor neural progenitor state.

Figure supplement 6. Primary induction of POU5F1(OCT4) outperforms simultaneous induction of POU5F1(OCT4) and LHX3.
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HB9 in sphere culture, while the efficiency was considerably lower in adherent culture (Figure 1H–J

and Figure 1—figure supplement 4A). We applied this to other iMNIC clones, and they were con-

verted into HB9+TUJ1+ iMNs with conversion efficiency of 70 ~ 90% (Figure 1—figure supplement

4B and Supplementary file 4). Addition of other transcription factors rather impeded neuronal mor-

phology, especially PAX6 and OLIG2 known to contribute to the early stage of MN specification

even decreased the efficiency of TUJ1+ cells (Figure 1I and Figure 1—figure supplement 4A).

These results demonstrate that POU5F1(OCT4) and LHX3 with our defined culture condition are suf-

ficient to convert cell fate of human fibroblasts into mature iMNs with high purity.

Direct conversion through self-renewing iMN-intermediate cells
(iMNICs) enables large production of iMNs
As described above, iMNICs exhibited neural progenitor-like morphology and proliferative capacity.

It has been reported that POU5F1(OCT4) can directly convert somatic cells into tripotent neural pro-

genitors (Mitchell et al., 2014b). Considering previous report, we evaluated cellular identity of

iMNICs whether the cells are similar to neural progenitors. Immunocytochemistry analysis showed

that none of iMNICs expressed early neuroectoderm markers (SOX1 and PAX6), neural progenitor

markers (SOX2 and NCAM) or MN progenitor marker (OLIG2), and these markers were never

detected during the entire neural induction process (Figure 1—figure supplement 5A). To deter-

mine whether this cell conversion occurred through pluripotent state or neural progenitor state, we

evaluated the activation of endogenous expression of pluripotent genes (POU5F1(OCT4) and

NANOG) and neural progenitor marker (SOX2) after POU5F1(OCT4) induction (Figure 1—figure

supplement 5B). We found that none of these markers were detected in POU5F1(OCT)-induced

cells, iMNICs and iMNs as confirmed by qRT-PCR. This result implies that fibroblasts transit neither

pluripotent state nor neural progenitor state. Although iMNICs were distinct population from neural

progenitors, these cells were highly proliferative cells and capable of being maintained for more

than 13 passages. We examined the self-renewal capacity of iMNICs. We evaluated iMNICs at early

passage (P2) and late passage (P13). Cellular morphology was very similar at both early and late pas-

sages (Figure 1—figure supplement 5C). The cells sustained the proliferation rate presenting the

mean doubling times (mDT) of 28.4 hr at P2 and 29.4 hr at P13, respectively (Figure 1—figure sup-

plement 5D). In addition, we confirmed that >97% of iMNICs expressed proliferative cell marker

KI67 (Figure 1—figure supplement 5E and F). To verify the continuous capacity of iMNICs to con-

vert into iMNs over multiple passages, we conducted iMN induction using iMNICs at P2 and P13.

iMNICs were successfully converted into mature iMNs at both early and late passage (Figure 1—fig-

ure supplement 5G). Furthermore, to determine whether generation of iMNICs by initial induction

of POU5F1(OCT4) prior to LHX3 induction is necessary, we compared the cellular identity of iMNICs

emerged after induction of POU5F1(OCT4) alone and co-induction of POU5F1(OCT4) and LHX3.

When we infected fibroblasts with POU5F1(OCT4) and LHX3 simultaneously, the majority of infected

cells died and iMNIC colonies were not stably maintained for multiple passages after picking (up to

5 passages) (Figure 1—figure supplement 6A). Proliferation rate and ISL1 gene expression were

also decreased in POU5F1(OCT4)/LHX3 induced iMNICs compared to POU5F1(OCT4)-induced

iMNICs (Figure 1—figure supplement 6B and C). In addition, induction of POU5F1(OCT4) alone

showed higher efficiency in the number of iMNIC colonies (Figure 1—figure supplement 6D). These

data indicate that the sequential induction of two transcription factors is essential for generating

self-renewing iMNICs more efficiently. Together, these results demonstrate that iMNICs generated

by POU5F1(OCT4) are expandable through self-renewing intermediate state which is distinct from

neural progenitor state. Therefore, our method can facilitate the generation of iMNs on large-scale.

Characterization of iMNs
To monitor the cell fate conversion process in live culture and further characterization of iMNs, we

employed reporter system using a lentivirus expressing the green fluorescent protein gene (GFP)

under the control of the HB9 promoter (HB9:GFP) (Marchetto et al., 2008; Toli et al., 2015). After

we transfected iMNICs with LHX3 together with HB9:GFP reporter lentivirus, GFP-positive cells

gradually emerged from the cell clusters under SHH stimulation (Figure 2A). HB9:GFP+ iMNs were

capable of extending long projections (Figure 2A). To identify whether these GFP+ iMNs possess

the typical characteristics of MNs, we evaluated MN marker expression. Immunocytochemistry
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Figure 2 continued on next page
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analysis showed that HB9:GFP+ iMNs co-expressed MN markers including NKX6.1, ISL1, HB9 and

CHAT as well as neuronal markers, TUJ1 and MAP2 (Figure 2B). In contrast, tyrosine hydroxylase

(TH)-positive dopaminergic neurons were rare in population (<0.6%) (Figure 2—figure supplement

1A), and GFAP-positive astrocytes were not detected (Figure 2—figure supplement 1B), suggest-

ing that our reprogramming method is specific to MN lineage rather than other neuronal subtypes

or neural progenitors. Consistent with the immunocytochemistry results, the endogenous mRNA lev-

els of MN marker genes including LIM1, LHX3, NKX6.1, HB9 and ISL1 were upregulated in iMNs rel-

ative to fibroblasts (Figure 2C). Furthermore, we could observe the synaptic activities of HB9:GFP+

neurites expressing presynaptic markers, SYN1 and synaptic vesicle protein 2 (SV2) (Figure 2D,E

and Figure 1—figure supplement 5H). We next confirmed the transgene silencing in iMNs. Exoge-

nous expression of transgenes POU5F1(OCT4) and LHX3 are dramatically decreased in iMNs, as

examined by qRT-PCR (Figure 2—figure supplement 1C and D). Together, these results demon-

strate that iMNs exhibit the typical characteristics of MNs.

iMNs exhibit electrophysiological properties
To determine whether iMNs are fully mature, we identified electrophysiological properties of iMNs

by conducting whole-cell patch clamp recording. 29 out of 48 tested cells (60.42%) exhibited at least

one action potential (AP) firing, while 19 cells (39.58%) were unresponsive to depolarizing current

injection (Figure 3—figure supplement 1A). Among the cells showing AP (29 cells), about half of

the cells (14 cells) generated a multiple number of AP firings and 8 out of 14 cells also showed spon-

taneous firing at resting membrane potential (Figure 3—figure supplement 1A). Those cells dis-

playing multiple APs were further grouped based on the presence of spontaneous firing (group 1 vs.

group 2). We first tested passive properties of neuronal membrane by injecting hyperpolarizing cur-

rent. Both resting membrane potential and input resistance were comparable between group 1 and

group 2 (Figure 3A–D). Next, we compared the active properties of iMNs between the two groups

by injecting depolarizing current (Figure 3E). Likewise, there were no significant differences in AP

threshold, frequency, amplitude, half-width and neuronal excitability between the two groups

(Figure 3F–J), suggesting that these cells are functionally matured regardless of spontaneous firing

at resting membrane potential. In voltage clamp mode, depolarizing voltage steps also induced fast

inward currents. These currents were completely blocked by the bath-application of tetrodotoxin

(TTX). We confirmed that these inward currents were elicited by TTX-sensitive voltage-gated sodium

channels (Figure 3K–M). Together, these data indicate that iMNs are electrophysiologically mature.

iMNs form neuromuscular junctions with myotubes
To evaluate the in vitro functionality of iMNs, we investigated whether iMNs possess the ability to

form neuromuscular junctions (NMJs) with muscles, which is the key feature of spinal MNs. We differ-

entiated mouse myoblasts C2C12 into multinucleated myotubes and co-cultured with iMNs. Exten-

sive axons of HB9:GFP+ iMNs projected along the myotubes (Figure 4A). Noticeably, SV2-positive

vesicles were seen in HB9:GFP+ iMNs and enriched at NMJs showing puncta-like structures

(Figure 4A). At the sites of contacts with myotubes, clusters of postsynaptic acetylcholine receptors

(AChR) on the surface of myotubes were detected by immunocytochemistry with AChR antibody

(Figure 4B) and a-bungarotoxin conjugated with Alexa 555 (a-BTX) (Figure 4C). The formation of

NMJs was also observed with iMNs generated from iMNICs at late passage (Figure 1—figure sup-

plement 5I). Importantly, we could observe the rhythmic contraction of myotubes when co-cultured

with iMNs. The contractions were blocked by antagonist of nicotinic AChR, curare, indicating that

the myotubes contract depending on the activities of iMNs (Video 1). These data demonstrate that

Figure 2 continued

with fold change after normalization by GAPDH. Data are presented as mean ± SD, and represent experimental replicates (n = 3). (D-E)

Immunofluorescence images of HB9:GFP+ iMNs stained with presynaptic markers, SYN1 (D) and SV2 (E). Zoomed images of the square in the figures

show punctate patterns of synaptic terminals. Scale bars, 125 mm. Related data can be found in Figure 2—figure supplement 1.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. qRT-PCR analysis of MN gene expressions in iMNs.

Figure supplement 1. Characterization of iMNs.
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mature iMNs exhibit mature functionality such as the formation of NMJs. To evaluate our iMN direct

conversion method, we generated iMNICs and iMNs from additional human fibroblast line, HF2 (Fig-

ure 4—figure supplement 1A). HF2-derived iMNs (HF2-iMNs) showed typical characteristics of

MNs and functions, such as synaptic activities and NMJ formation (Figure 4—figure supplement

1B–D). We could establish five iMNIC clones from HF2; HF2-iMNIC1, HF2-iMNIC2, HF2-iMNIC4,

HF2-iMNIC6 and HF2-iMNIC8) (Figure 4—figure supplement 1E). These iMNIC clones highly

expressed ISL1gene, and the cells were converted into HB9+iMNs after MN induction (Figure 4—

figure supplement 1F and Figure 4—figure supplement 1G). Taken together, these results confirm

that iMN conversion method is applicable to other lines of human adult fibroblasts.
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Figure 3. Electrophysiological properties of iMNs. (A) Representative recording traces of iMNs by hyperpolarizing current injection under current

clamp-mode. (B) Resting membrane potential (Group1, �73.29 ± 2.65 mV, n = 8; Group2, �61.57 ± 7.04 mV, n = 6; unpaired t-test, t12 = 1.7330,

p=0.1086). (C) Current (I) - voltage (V) relationship in iMNs by hyperpolarizing current step (repeated measures two-way ANOVA, n = 8 for Group1,

n = 6 for Group 2; group effect, F1, 12 = 0.5074, p=0.4899; interaction, F3, 36 = 0.6432, p=0.5923). (D) Input resistance of iMNs (Group1, 692.89 ± 60.60

MW, n = 8; Group2 = 771.43 ± 39.09 MW, n = 6; unpaired t-test, t12 = 1.0050, p=0.3349). (E) Representative recording traces of iMNs by depolarizing

current injection under current clamp-mode. (F) AP threshold (Group1, �46.76 ± 1.58 mV, n = 8; Group2, �47.30 ± 1.94 mV, n = 6; unpaired t-test,

t12 = 0.2187, p=0.8305). (G) AP frequency (Group1, 7.50 ± 0.71 Hz, n = 8; Group2, 5.50 ± 0.99 Hz, n = 6; unpaired t-test, t12 = 1.6920, p=0.1165). (H) AP

amplitude (Group1, 69.81 ± 6.97 mV, n = 8; Group2, 70.55 ± 3.91 mV, n = 6; unpaired t-test, t12 = 0.0840, p=0.9345). (I) AP half-width (Group1,

15.30 ± 1.25 ms, n = 8; Group2 = 11.53 ± 2.09 ms, n = 6; unpaired t-test, t12 = 1.6390, p=0.1271). (J) Neuronal excitability of iMNs (repeated measures

two-way ANOVA, n = 8 for Group1, n = 6 for Group 2; group effect, F1, 12 = 2.9410, p=0.1120; interaction, F4, 48 = 0.0774, p=0.9888). (K–L)

Representative TTX-sensitive sodium currents (K) of iMNs (TTX, 1 mM). (L) Zoomed-in view of TTX-sensitive sodium currents shown in (K). (M) Averaged

current (I)/voltage (V) curve of sodium currents (n = 11). Mean ± SEM is used for all the data described in the figure. Related data can be found in

Figure 3—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Physiological properties of iMNs.
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Global transcriptional profiles of
iMNICs and iMNs by RNA-
sequencing
To examine the identity of iMNICs and iMNs, we

performed RNA-sequencing (RNA-seq) analysis

to compare global gene expression profiles of

iMNICs and iMNs to that of parental fibroblasts

(HF1 and HF2), fetal NPCs (NPC) (Kim et al.,

2009a), wild type motor neurons (wtMNs)

derived from human ESC (wtMN-

1) (Amoroso et al., 2013) and iPSC (wtMN-2)

(Ng et al., 2015) and fetal spinal cord (Fetal-SC)

(Kumamaru et al., 2018). Heatmap analysis

demonstrated that the global gene expression

patterns of iMNICs and iMNs were similar to

wtMNs, but distinct from fibroblasts and fetal

NPCs (Figure 5A). The hierarchical clustering

and principal component analysis (PCA) showed

that iMNICs, iMNs and wtMNs are tightly corre-

lated, whereas distinct from NSCs (Figure 5B

and C). The 1st principal component (PC1)
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Figure 4. iMNs form neuromuscular junctions with myotubes. (A–C) Representative immunofluorescent analysis of neuromuscular junctions (NMJs)

formed between HB9:GFP+ iMNs and C2C12 myotubes in co-culture. Presynaptic axons and post-synaptic acetylcholine receptor (AChR) are stained

with antibodies against SV2 (A) and AChR (B), and the multinucleated myotubes are stained with myosin heavy chain (MHC). (C) NMJs are labeled with

a-bungarotoxin conjugated with Alexa 555. Zoomed images of the square in (C) show the NMJs, indicated by white arrows. Scale bars, 75 mm. Related

data can be found in Figure 4—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Generation of iMNs from additional human fibroblasts (HF2).

Video 1. Contraction of C2C12 myotubes co-cultured

with iMNs. C2C12 myotubes started rhythmic

contraction after co-culture with iMN for 3 weeks. To

block the acetylcholine receptor on the myotubes

specifically, 100 mM curare (final concentration) was

added to the culture.

https://elifesciences.org/articles/52069#video1
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Figure 5. Global gene expression profiles of iMNICs and iMNs. (A) Heatmap analysis of global gene expression profiles in HF-1, HF-2, NPCs, HF1-

iMNICs, HF2-iMNICs, HF1-iMNs, HF2-iMNs, wtMN-1 and wtMN-2 as determined by RNA-seq. The color bar codifies the gene expression in log2 scale.

Red indicates upregulated genes and blue indicates downregulated genes. (B) Hierarchical clustering of HF2, HF1, NPCs, HF2-iMNICs, HF1-iMNICs,

wtMN-2, wrMN-1, HF2-iMNs and HF1-iMNs. (C) PCA of global gene expression in HF1, HF2, HF1-iMNICs, HF2-iMNICs, HF1-iMNs, HF2-iMNs, NPCs,

Figure 5 continued on next page
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captures 39% of the gene expression variability and the 2nd principal component (PC2) captures

26% of the variability. Moreover, pairwise scatter plots showed high similarity between iMNICs vs

fetal spinal cord and iMNs vs wtMNs, especially in HOX genes (HOXC4, HOXC6, HOXC8, HOXC9,

HOXA9 and HOXD9) and MN-enriched genes (HB9, ISL1, NKX6.1, TUJ1, MAP2 and CHAT)

(Figure 5D). In contrast, we could observe low similarity between iMNICs vs NPC and parental fibro-

blasts vs iMNICs/iMNs, especially NPC marker genes (SOX2, OLIG2, PAX6 and SOX1) and fibroblast

genes (COL5A1 and COL1A1) (Figure 5D and Figure 5—figure supplement 1A). Furthermore, we

could observe high level of similarity in HOX gene clusters and MN genes in our iMNICs and iMNs

compared to wtMNs, which were not expressed in NPCs (Figure 5E,F and Figure 5—figure supple-

ment 1B). In addition, iMNICs and iMNs expressed similar level of HOXC clusters and ISL1 with

wtMN-1, but SOX2 expression was not detected in iMNICs and iMNs (Figure 5—figure supplement

1D). In contrast, the expression of NPC genes (SOX2, PAX6, OLIG2, ASCL1, FABP7 and EMX), fibro-

blast-specific genes (COL1A1, COL5A1, SNA1 and SNAI2) and pluripotent genes (NANOG, POU5F1

(OCT4) and TDGF1) were not detectable in iMNICs and iMNs (Figure 5F and Figure 5—figure sup-

plement 1C). To validate the RNA-sequencing data, we conducted qPCR to analyze mRNA expres-

sion of HOX genes in our iMNICs and iMNs. Consistent with RNA-sequencing data, cervical and

thoracic spinal cord specific genes (HOX4-9) were upregulated in iMNICs and iMNs as confirmed by

qRT-PCR (Figure 5G). Together, these results indicate that iMNs generated from two fibroblast lines

acquired motor neuronal identity and showed a high degree of similarity with wtMNs or fetal spinal

cord tissues.

Therapeutic potential of iMNs in spinal cord injury (SCI) model in vivo
In order to examine the in vivo functionality and therapeutic effects of iMNs, we transplanted HB9:

GFP+ iMNs into adult rat SCI models (Figure 6A). We induced compressive damage to thoracic ver-

tebrae 9 (T9) of the spinal cord and injected 1 � 106 iMNs into the upper (T8) and lower (T10) verte-

brate after 1 week of injury. We could observe the engraftment of transplanted HB9:GFP+ iMNs in

the spinal cord (Figure 6B). To evaluate the cellular features of iMNs in vivo, the spinal cord tissue

was immunostained with neuronal marker (TUJ1) and oligodendrocyte marker (MBP). Most of the

GFP+ cells co-expressed TUJ1 (Figure 6C–E) and were surrounded by host myelinating MBP+ oligo-

dendrocytes (Figure 6F–H). To confirm the tissue recovery of the injury site, we conducted hematox-

ylin and eosin (H and E) staining of sagittal sections of the spinal cord after 8 weeks of

transplantation to detect the cavity size. Transplanted tissue show less cavity of injured site com-

pared to control (Figure 6I and J). Next, we evaluated the motor function recovery of the hind limbs

by measuring Basso–Beattie–Bresnahan (BBB) scores for 8 weeks in rat SCI models that were treated

either with PBS (control) (n = 6) or with iMNs transplantation (n = 10). iMN-transplanted rats were

improved in BBB scores from week 4 that persisted steadily through week showing significant

improvement in locomotor recovery (Figure 6K,L and Video 2). To assess the risk of tumor forma-

tion, iMNICs and iMNs were subcutaneously transplanted into immune-deficient nude mice and no

tumors were observed for 12 months of experiment period (n = 4) (Figure 6—figure supplement

1A). These results showed that iMN transplantation significantly improved functional recovery after

SCI.

Figure 5 continued

wtMN-1 and wtMN-2. (D) Pairwise scatter plots of global gene expression of Fetal-SC vs HF1-iMNICs/HF2-iMNICs, wtMN-1 vs HF1-iMNs/HF2-iMNs and

NPCs vs HF1-iMNICs/HF2-iMNICs. The HOX genes (HOXC4, HOXC6, HOXC8, HOXC9, HOXA9 and HOXD9), MN genes (HB9, ISL1, NKX6.1 MAP2,

TUJ1 and CHAT), fibroblast genes (COL5A1 and COL1A1) and NPC genes (SOX2, OLIG2, PAX6 and SOX1) are highlighted with yellow circles. The

black lines indicate the boundaries of 4-fold changes in log2 scale. (E and F) Heatmap analysis of (E) HOX genes, (F) MN genes, NPC genes and

fibroblast genes in HF1, HF2, NPCs, HF1-iMNICs, HF2-iMNICs, HF1-iMNs, HF2-iMNs and wtMN-1. The color bar codifies the gene expression in log2

scale. Red indicates upregulated genes and blue indicates downregulated genes. (G) qRT-PCR analysis of mRNA expression level for cervical HOX

genes (HOXC4, HOXC5, HOXC6, HOXA7 and HOXC8) and thoracic HOX genes (HOXA9 and HOXC9) in HF1-iMNINs, HF1-iMNs, H9-MNs and NPCs.

Bars represent fold changes relative to fibroblasts after normalization to GAPDH. Data are presented as means ± SD (n = 3). Related data can be found

in Figure 5—figure supplement 1.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. qRT-PCR analysis of cervical and thoracic HOX genes.

Figure supplement 1. RNA-seq analysis of iMNICs and iMNs.
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Figure 6. Therapeutic effects of iMNs in rat spinal cord injury model in vivo. (A) The experimental scheme of in vivo study. (B) Immunofluorescence

image of transplanted iMNs in sagittal section of spinal cord. (B’) Zoomed image presents integration of transplanted cells. Scale bars, 125 mm. (C–E)

Confocal images of iMNs after transplantation. HB9:GFP+ cells co-express neuronal marker, TUJ1 (white arrowheads). (F–H) iMNs are surrounded by

host MBP+ myelinating cells forming ensheathment (white arrowheads). Scale bars, 30 mm. (I-J. H and E staining analysis of spinal cords after 8 weeks of

Figure 6 continued on next page
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Discussion
In this study, we established an advanced direct conversion strategy to generate induced motor neu-

rons (iMNs) from human fibroblasts in large-scale with high purity, thereby providing a cell source

for the treatment of spinal cord injury (SCI). Previously, we succeeded in generating oligodendrocyte

progenitor cells (OPCs) from somatic cells by POU5F1(OCT4) (Kim et al., 2015). In line with this, we

hypothesized that combination of POU5F1(OCT4) and defined supplements may convert cell fate

toward motor neurons (MNs) which is developmentally derived from the same origin with OPCs,

pMN progenitors of the ventral spinal cord (Ravanelli and Appel, 2015). POU5F1(OCT4) could effi-

ciently generate TUJ1-positive neuronal cells under MN induction conditions, however, most of the

cells could not reach to HB9 positive mature MNs. Nonetheless, we found that endogenous expres-

sion of ISL1, an important transcription factor for MN specification (Liang et al., 2011), was activated

in fibroblasts after POU5F1(OCT4) induction under our defined culture condition. Based on this

observation, we assumed that an additional transcription factor is required for complete iMN conver-

sion. By screening the MN specification factors, we found that inclusion of LHX3 significantly

increased the reprogramming efficiency of HB9 positive iMNs. This result is consistent with the previ-

ous report that the LIM complex composed of ISL1 and LHX3 specify spinal MNs by inducing MN

gene HB9 in development (Lee et al., 2012). To our knowledge, this is the first time showing that

POU5F1(OCT4) can initiate cellular reprogramming toward MN lineage by activating ISL1. This is

correlated with previous reports that LIM homeodomain transcription factor ISL1 has been detected

as POU5F1(OCT4) targets in human pluripotent cells (Boyer et al., 2005; Jung et al., 2010).

This result has an important implication on how we minimized the transcription factors for gener-

ating iMNs. Previously, iMNs were generated by either eight transcription factors (ASCL1, BRN2,

MYT1L, LHX3, HB9, ISL1, NGN2, and NEUROD1) (Son et al., 2011) or four transcription factors

(NGN2, SOX11, ISL1, and LHX3) (Liu et al., 2016). In ; contrast to previous methods, we identified

the minimal two transcription factors, POU5F1(OCT4) and LHX3, for generating iMNs, so that our

iMNs would be safer than multiple transcription factors-derived iMNs for therapeutic applications in

terms of lower chance of viral integrations (Kim et al., 2009b). Moreover, previous studies have not

verified the in vivo functionality or therapeutic potential of human iMNs.

In addition, RNA-sequencing analysis revealed that our iMNs exhibited transcriptional profiles of

motor neuronal identity similar with wtMNs. Importantly, iMNICs and iMNs expressed spinal cord

specific HOX5-9 gene clusters, whereas NPC genes were not detected in these cells. The ability to

generate autologous iMNs with motor neuronal identity can facilitate disease modeling and cell-

based therapy for MN diseases or spinal cord disorders. A critical prerequisite for achieving these

goals is obtaining the pure population of subtype-specific neurons in high number. However, previ-

ous methods have not been feasible since directly converted neurons are terminally differentiated

cells that are not scalable. This limitation could be overcome by generating expandable neural pro-

genitors; however, neural progenitors could produce a mixture of heterogeneous neurons

(Lujan et al., 2012; Ring et al., 2012; Thier et al., 2012). Herein, sequential introduction of two

transcription factors enabled the large production of pure iMNs. We could obtain self-renewing cell

line iMNICs after POU5F1(OCT4) induction by clonal reprogramming method as we have demon-

strated previously in generating OPCs from fibroblasts (Kim et al., 2015). iMNICs were proliferative,

expandable and retained conversion capacity to mature iMNs for long-term culture (>13 passages);

however, they were distinct from neural progenitors. Therefore, our method is ‘direct conversion’

rather than indirect conversion or redifferentiation through pluripotent state or neural progenitor

state.

Figure 6 continued

transplantation (I; Control, J; iMN-transplanted) (I,J; Scale bars, 400 mm, I’,I’’,J’,J’’; Scale bars, 125 mm). (K) The position of hindlimbs in control rat and

iMN-transplanted rat after 8 weeks of transplantation. (L) BBB score evaluation of hindlimbs during 8 weeks after transplantation. Data are presented as

mean ± SD, and represent experimental replicates (Control; n = 6, iMN sphere; n = 9, iMN; n = 10). *p<0.05, one-way ANOVA. Related data can be

found in Figure 6—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Tumor formation analysis of iMNICs and iMNs in vivo.
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Previously, Mitchell et al. generated iNPC

from POU5F1(OCT4)-induced fibroblasts by cul-

turing the cells in reprogramming media (RM) for

8 days before inducing in classical NPC media

(Mitchell et al., 2014a; Mitchell et al., 2014b).

They reported that RM step is essential to induce

SOX2+ NPCs after POU5F1(OCT4) induction. In

contrast, SOX2 was not activated in POU5F1

(OCT4)-infected cells and failed to generate

iNPCs when cultured directly in NPC media

(Mitchell et al., 2014a). Consistent with previous

report by Mitchell et al., our iMNICs which were

generated without RM step did not express neu-

ral progenitor marker (Mitchell et al., 2014a;

Mitchell et al., 2014b). This finding indicates

that extracellular environment and timing for

appropriate stimuli are critical for cell identifica-

tion of POU5F1(OCT4)-induced cells.

Several studies have reported that transplanta-

tion of MNs or MN precursors differentiated from

pluripotent stem cells (PSCs) showed functional

benefits to injured spinal cord (Rossi et al., 2010;

Wyatt et al., 2011). However, translation of these cells to the clinic is limited due to the challenges

including differentiation efficiency, scalability, purity, and especially tumorigenecity from undifferen-

tiated cells (Nori et al., 2015). Moreover, transplantation of MN precursors remain poorly defined

because of stem cell heterogeneity (Trawczynski et al., 2019). In this study, we could obtain pure

iMNs in large number and found that hindlimb functional recovery depends on maturity and purity

of iMNs. When we transplanted selected HB9+ mature iMNs, BBB score was higher compared to

transplanting iMN spheres. We also observed that our iMNs exhibited integration properties when

transplanted into injured spinal cord. Transplanted HB9+ iMNs still expressed neuronal markers and

interacted with host neural cells such as oligodendrocytes in vivo. We could observe ensheathment

by myelinating host oligodendrocytes surrounding our iMNs. Notably, transplantation of iMNs con-

tributed histological and functional recovery in SCI model without tumor formation, and this is the

first report demonstrating the therapeutic effects of human iMNs in vivo.

In conclusion, this proof-of-concept study shows that our functional iMNs can be employed to

cell-based therapy as an autologous cell source. iMNs possessed spinal cord motor neuronal identity

and exhibit hallmarks of spinal MNs such as neuromuscular junction formation capacity and electro-

physiological properties in vitro. Importantly, transplantation of iMNs improved locomotor function

in rodent SCI model without tumor formation. Although further investigation on mechanism respon-

sible for cell fate conversion may be needed, our strategy is a safer and simpler methodology that

may provide new insights to develop personalized stem cell therapy and drug screening for MN dis-

eases or spinal cord disorders.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Cell line
(Homo sapiens)

H9 WiCell Cat.# WA09
RRID:CVCL_9773

Control

Cell line
(Homo sapiens)

NPCs DOI: 10.1038/
nature08436,
Kim et al., 2009a

Control

Continued on next page

Video 2. Functional recovery after iMN transplantation

in rat SCI model. Transplantation of iMNs facilitated

the recovery of hindlimb motor functions after 8 weeks

in rat SCI model. PBS injected control group exhibited

no hindlimb movement.

https://elifesciences.org/articles/52069#video2
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Cell line
(Homo sapiens)

HF1 (Female) DOI: 10.4172/2157-
7633.1000336
Singhal et al., 2016

Parental cells

Cell line
(Homo sapiens)

HF2 (Male) DOI: 10.4172/2157-
7633.1000336.
Singhal et al., 2016

Parental cells

Antibody Anti-HB9
(Mouse
Monoclonal)

DSHB Cat.# 81.5C10
RRID:AB_2145209

ICC(1:100)

Antibody Anti-ISLT1/2
(Mouse
Monoclonal)

DSHB Cat.# 39.4D5
RRID:AB_2314683

ICC(1:300)

Antibody Anti-SV2
(Mouse
Monoclonal)

DSHB Cat.# SV2
RRID:AB_2315387

ICC(1:100)

Antibody Anti-beta III
Tubulin
(Rabbit
polyclonal)

Millipore Cat.# ab18207
RRID:AB_444319

ICC(1:500)

Recombinant
DNA reagent

Lenti-HB9:GFP
(plasmid)

Addgene ID# 37080
RRID:Addgene_37080

Recombinant
DNA reagent

PAX2 (plasmid) Addgene ID# 12260
RRID:Addgene_12260

Recombinant
DNA reagent

VSVG (plasmid) Addgene ID# 8454
RRID:Addgene_8454

Recombinant
DNA reagent

Lenti-hOCT4 Addgene ID# 130692
RRID:Addgene_130692

Recombinant
DNA reagent

Lenti-hLHX3 Addgene ID# 120456
RRID:Addgene_120456

Recombinant
DNA reagent

Lentiviral backbone Addgene
DOI: 10.1038
Warlich et al., 2011

ID# 12252
RRID:Addgene_12252

Peptide,
recombinant
protein

SHH Peprotech Cat.# 100–45 100 ng/ml

Peptide,
recombinant
protein

bFGF Peprotech Cat.# 100-18B 20 ng/ml

Peptide,
recombinant
protein

EGF Peprotech Cat.# AF-100–15 10 ng/ml

Peptide,
recombinant
protein

IGF-1 Peprotech Cat.# 100–11 10 ng/ml

Peptide,
recombinant
protein

NT3 Peprotech Cat.# 450–03 10 ng/ml

Peptide,
recombinant
protein

BDNF Peprotech Cat.# 450–02 10 ng/ml

Peptide,
recombinant
protein

GDNF Peprotech Cat.# 450–10 10 ng/ml

Peptide,
recombinant
protein

CNTF Peprotech Cat.# 450–13 10 ng/ml

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Other a-Bungarotoxin Invitrogen Cat.# B35451 1:200

Software,
algorithm

Matlab RRID:SCR_001622

Study plan and ethics
This study was designed to establish an advanced direct lineage reprogramming strategy to gener-

ate autologous iMNs from human fibroblasts by overexpressing POU5F1(OCT4) and LHX3. We fur-

ther investigated the therapeutic effects of iMNs for treating traumatic spinal cord injury using

rodent spinal cord injury model. The experiments were repeated at least three times, and the repli-

cates are indicated in each figure and legend. N values represent the number of animals in the

experiment. Quantifications are analyzed by randomly imaging the positions of culture dishes to

determine the reprogramming efficiency. Animals used for experiments were assigned randomly to

groups. The behavioral tests were performed by blinded observer. The experiments were carried

out in accordance with documented standards of the Institutional Review Board of Ulsan National

Institute of Science and Technology (UNIST) (UNISTIRB-15–17 C) for human cell experiments. All ani-

mal experimental and surgical procedures on animals were performed in accordance with institu-

tional protocols approved by the Institutional Animal Care and Use Committee of Yonsei University

College of Medicine (2015–0327) for rat experiments, and the Institutional Animal Care and Use

Committee of Ulsan National Institute of Science and Technology (UNIST) (UNISTIACUC-17–34) for

mouse experiments.

Cell culture
Human adult fibroblast lines, HF1 and HF2 were obtained from surgical resectates (Singhal et al.,

2016), which have been obtained with the informed consent (Haridass et al., 2009). Parental fibro-

blasts were maintained in fibroblast medium (high-glucose DMEM (GIBCO) containing 10% fetal

bovine serum (FBS) (GIBCO), 1% penicillin/streptomycin, 1 mM l-glutamine, 1% non-essential amino

acids (NEAA) (GIBCO), and 0.1 mM b-mercaptoethanol (GIBCO)). Fibroblast information is summa-

rized in Supplementary file 3. 293 T cells used for virus production were maintained in high-glucose

DMEM containing 10% FBS, penicillin/streptomycin, l-glutamine. Human ESCs H9 (WiCell) were

maintained on irradiated CF1 mouse feeder layers in human ESC medium (knockout DMEM (Invitro-

gen) supplemented with 20% knockout serum replacement (GIBCO), 1 mM l-glutamine, 1% non-

essential amino acids, 0.1 mM b-mercaptoethanol, 1% penicillin/streptomycin and 5 ng/ml human

basic fibroblast growth factor (bFGF) (Peprotech). Human fetal NPCs (Kim et al., 2009a) were cul-

tured in DMEM/F12 (GIBCO) supplemented with N2 (GIBCO), penicillin/streptomycin, 20 ng/ml

bFGF (Peprotech) and 8 mg/ml heparin and 10 ng/ml. Cell lines were authenticated using PCR detec-

tion kit. The cells were routinely tested for mycoplasma contaminations, and we used mycoplasma-

free cells for experiments.

Virus construction and production
The cDNAs of candidate MN transcription factors were amplified by PCR, and individually subcloned

into the lenitiviral vector backbone (Addgene ID#12252) (Warlich et al., 2011). Plasmids carrying

human OCT4 and LHX3 cDNAs were purchased from Addgene (OCT4; ID#130692, LHX3;

ID#120456). Also, plasmid carrying the HB9 promoter and GFP protein were purchased from Addg-

ene (ID#37080) (Marchetto et al., 2008).

The viruses were produced and harvested as previously described (Zaehres and Daley, 2006). In

short, 293 T cells were seeded at 40–50% confluency on 10 cm plates prior to transfection. Individual

transfer plasmids, packaging plasmid (PAX2, Addgene ID#12260), and envelope plasmid (VSV-G,

Addgene ID#8454) were transfected into 293 T cells using X-treme GENE9 DNA transfection

reagent (Roche) according to manufacturer’s instructions. After 48 hr of transfection, virus containing

supernatants from two 10 cm plates were collected and filtered through 0.45 mm membrane. Virus

particles were concentrated by ultracentrifugation (1.5 hr at 80,000 g, 4˚C) and resuspended in 200
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ml of fresh DMEM (virus soup). For cell conversion, we applied 15 ml of virus soup per well (six-well

plates). Materials and reagents are available upon request.

Generation of iMNs
Human fibroblasts were seeded at 0.3–1 � 104 cells on gelatin-coated 6-well plates. On the next

day, the fibroblasts were infected with 2 ml of 15 ml virus soup (lentiviral vector carrying human

OCT4) and fibroblast medium mixture containing 6 mg/ml protamine sulfate. The medium was

replaced with fresh fibroblast medium after 24 hr of infection. At 3 days post-infection, the medium

was switched to neural induction medium (DMEM/F12 (GIBCO) supplemented with N2 (GIBCO),

penicillin/streptomycin, 10 ng/ml bFGF (Peprotech), and 10 ng/ml epidermal growth factor (EGF,

Peprotech) and 10 ng/ml laminin). Morphologically changed infected cells (compact colonies of neu-

ral progenitor-like cells) were mechanically isolated by a glass micropipette and transferred into new

wells individually. The cells were expanded in neural induction medium and iMNICs were established

after 1 or 2 passages. For further MN induction, we used two methods, sphere culture and adherent

culture.

[Sphere culture method] iMNICs were seeded at 5 � 104 cells on gelatin-coated six-well in neural

induction medium. On the next day, seeded iMNICs were infected with 2 ml of 15 ml virus soup (len-

tiviral vector carrying human LHX3) and neural induction medium mixture containing 6 mg/ml prot-

amine sulfate. After 24 hr, the medium was replaced with defined MN induction medium (DMEM/

F12 and neurobasal medium (GIBCO) supplemented with N2 (GIBCO), B27 (GIBCO), penicillin/strep-

tomycin, 50 ng/ml SHH (Peprotech), and 10 ng/ml IGF-1). By 5–7 days, the cells formed clusters and

MN spheres appeared. The floating MN spheres were re-plated on PDL/laminin-coated plate in MN

maturation medium (DMEM/F12 and neurobasal medium (GIBCO) supplemented with N2 (GIBCO),

B27 (GIBCO), penicillin/streptomycin, 50 ng/ml SHH (Peprotech), 10 ng/ml IGF-1, 10 ng/ml BDNF,

10 ng/ml GDNF, 10 ng/ml CNTF and 10 ng/ml NT3). MN-like cells outgrew gradually and further

matured for additional 7–14 days.

[Adherent culture method] iMNICs were seeded at 5 � 104 cells on PDL/laminin-coated plate in

neural induction medium. On the next day, seeded iMNICs were infected with 2 ml of 15 ml virus

soup (lentiviral vector carrying human LHX3) and neural induction medium mixture containing 6 mg/

ml protamine sulfate. After 24 hr, the medium was switched into MN induction medium for 7 days.

In this process, the MN spheres did not appear. We switched the medium into MN maturation

medium and matured for additional 7–14 days.

Immunocytochemistry (ICC)
Immunostaining was performed as previously described (Kim et al., 2015). The primary antibodies

used for ICC are listed in Supplementary file 1. The secondary antibodies were diluted in PBS and

applied for 1 hr: Alexa Fluor 488/555/568/594 anti-mouse IgG, IgG1, IgM, anti-chicken IgY, anti-rab-

bit IgG, and anti-goat IgG (Invitrogen, 1:1,000). Nuclei were stained with DAPI (Invitrogen).

C2C12 myotube co-culture
C2C12 myoblasts (ATCC) were expanded in DMEM with 10% FBS and penicillin/streptomycin. When

the culture reached 70% confluency, the medium was switched to 2% horse serum containing

medium to induce multinucleated myotubes. iMNs were added to the myotubes in motor neuron

medium to induce formation of neuromuscular junctions and spontaneous contractions. After 3–4

weeks, the myotube contractions were observed under the microscope and were inhibited by add-

ing 100 mM curare (Sigma). Neuromuscular junctions were observed by labeling with a-bungarotoxin

conjugated with Alexa 555 (Invitrogen, 1:200) and immunostaining with myosin heavy chain (MHC,

DSHB), acetylcholine receptor (AChR, DSHB), and synaptic vesicle 2 (SV2, DSHB).

RT–PCR and quantitative RT–PCR
DNA-free total RNA of iMNs was extracted using the RNeasy mini kit (Qiagen). Total RNA (500 ng)

was used to synthesize cDNAs using SuperScript III reverse transcriptase (Invitrogen). RT–PCR was

performed using recombinant Taq DNA polymerase (Invitrogen). qRT–PCR analysis was conducted

on a LightCycler 480 instrument with SYBR Green I Master mix (Roche). The experiments were per-

formed in triplicate, and expression was normalized to the housekeeping gene GAPDH. Gene
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expression was measured by calculating Ct values. All of the experiments were conducted according

to the manufacturer’s instructions. The sequences of the primers used are listed in

Supplementary file 2.

Electrophysiology
Motor neurons induced from human fibroblasts were placed in a recording chamber and recognized

visually by IR-DIC optics. Induced motor neurons were continuously perfused with artificial cerebro-

spinal fluid (ACSF) containing 125 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 25 mM NaHCO3, 15

mM glucose, 2 mM CaCl2, and 1 mM MgCl2 oxygenated with 95% O2% and 5% CO2 at 30–32˚C.

Borosilicate glass pipettes (2.5–3.5 MW) were pulled (P-1000, Sutter Instrument) and filled with

potassium-based internal solution containing 133 mM KMeSO3, 3 mM KCl, 10 mM HEPES, 1 mM

EGTA, 0.1 mM CaCl2, 8 mM Na2-phosphocreatine, 4 mM Mg-ATP, 0.3 mM Na3-GTP (290–300

mOsm, pH 7.3 with KOH) to make whole-cell configuration. Whole-cell patch clamp recording was

performed by using Multiclamp 700B (Molecular Devices) and recording signals were filtered at 2

kHz, digitized at 10 kHz (PCI-6221, National Instruments). Recording data were monitored, acquired

by WinWCP (Strathclyde Electrophysiology Software) and further analyzed offline by Clampfit 10.0

(Molecular Devices) and Prism 7.0 (GraphPad). To evaluate passive membrane properties of iMNs,

hyperpolarizing step current (50 pA increment, 1000 ms duration) was injected in current clamp

mode. To check active membrane properties of iMNs and generate AP, depolarizing step current

(50 pA increment, 1000 ms duration) was injected. Electrophysiological properties of AP (threshold,

frequency, amplitude, half-width) were analyzed from AP firings induced by 50 pA current injection.

To isolate sodium current, whole-cell recording was conducted under voltage clamp mode and volt-

age was stepped from a holding potential of �70 mV to test potentials from �70 to �25 mV in 5

mV increments (200 ms duration). After recording sodium currents, tetrodotoxin (1 mM, Tocris) was

bath-applied and voltage steps were repeated to confirm TTX-sensitivity of sodium currents

measured.

Growth curve and mean doubling time
Motor neuron intermediate cells (1 � 104 cells) at P2 and P13 were seeded onto 12-well plates and

cultivated for 10 days. The cells were collected from triplicate wells and manually counted every 24

hr using a hemacytometer (Marienfeld). The average cell numbers on each day were plotted, and

the mean doubling time (mDT) was calculated based on the growth curve.

Establish of compression spinal cord injury model
All animal experimental procedures were approved by Institutional Animal Care and Use Committee

of Yonsei University College of Medicine (Seoul, Korea). Adult male Sprague-Dawley rats (Orient,

Seongnam, Korea), weighing 200–220 g were used. Rats were housed in individual cages under stan-

dard laboratory conditions of 24–3C and 40–60% humidity, with 12 hr light–12 hr dark cycles, and

enrichment conditions. All animals anesthetized with ketamine (100 mg/kg; Yuhan, Korea), xylazine

(10 mg/kg; Bayer korea, Korea) and isotropy 100 (Troikaa Pharmaceuticals Ltd, India). A laminectomy

was performed to expose the spinal cord, and the spinal cord was compressed at thoracic level 9

using self-closing forceps (Fine Science Tools, Canada) for 40 s. Following the injury, the muscle and

skin were sutured with 3–0 Vicryl (Johnson and Johnson, Peterborough, Canada). Body temperature

was maintained constant at 37C with a heating pad during surgery and the recovery period. After

the procedure, cefazolin (25 mg/kg; Chong Kun Dang, Korea) was injected for 5 days. For immune

suppression, Cyclosporine A (10 mg/kg, Chong Kun Dang, Korea) was administered to all animals

until sacrifice. Also, animals were taken care of bladder system for urination.

Transplantation of iMNs were transplanted at 7 days after SCI. The animals were randomly

divided into 3 groups: (1) control group that injected PBS (5 ml); (2) iMN spheres 1 � 10̂6/5 ml; (3)

HB9:GFP+ iMNs 1 � 10̂6 /5ml. The pervious wound was reopened and cell injected by 27 gauge can-

nula connected to Hamilton syringe.

Behavior test
All animals underwent behavioral analysis every week for 8 weeks after SCI to measure locomotor

recovery. The Basso, Beattie, and Bresnahan (BBB) motor score was used to evaluate the quality of
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hind limb movement during open field locomotion. In the first recovery phase, the range of joint

movement and the presence of the foot closure on the floor were checked. In the second phase,

recovery of weighted stepping was observed. In the third phase, gait coordination and tail move-

ment were observed.

Teratoma formation assay
All mice were purchased from Hyochang Science (Daegu, Korea). Animal handling was in accordance

with animal protection guideline of Ulsan National Institute of Science and Technology (Ulsan,

Korea). Teratoma formation assay was performed by subcutaneously injecting iMNICs (n = 4) and

iMNs (n = 4) respectively on dorsal flank of athymic nude mice (1 � 106 cells/mouse). After 12

months after injection, mice were sacrificed for analysis of teratoma formation.

Isolation of iMNs
To isolate pure iMNs for analysis, we designed the plasmid containing puromycin resistance gene

under expression of HB9 promoter. After transfection, cells expressing HB9 were selected by cultur-

ing in the presence of 0.5 mg/ml of puromycin for 5 days.

Histology and immunohistochemistry (IHC)
For histological analysis, the rats were deeply anesthetized and perfused with PBS followed by 4%

paraformaldehyde as well. The spinal cords were isolated and post-fixed in 4% paraformaldehyde

overnight, and then immersed in 30% sucrose for 3 days. The tissues were embedded in frozen sec-

tion compound (Leica) and sectioned at 16 mm in sagittal plane by a cryostat. IHC was performed as

previously described (Kim et al., 2015). The primary antibodies used for IHC are listed in

Supplementary file 1.

For hematoxylin and eosin (H and E) staining, the spinal cords were embedded in paraffin blocks.

The paraffin blocks were sectioned at 4 mm in sagittal plane. Sections were immersed in Harris hema-

toxylin solution (Sigma) for 2 min to stain nucleus. Slides were then immersed briefly in 1% acid alco-

hol (1% HCl in 70% ethanol) and blued in 0.2% ammonium hydroxide, followed by staining with

eosin Y solution (Sigma) for 30 s. Each step was followed by several washings with distilled water.

The slides were dehydrated with ethanol, cleared with xylene, and mounted with mounting solution

(Leica).

Statistical analysis
All data in this article are presented as the means ± SD (standard deviation). Data from at least three

independent samples were used for statistical analysis. ANOVA with post hoc testing was performed

to compare BBB score. A p-value less than 0.05 was considered statistically significant. Statistical

analysis was carried out using EXCEL, and SigmaPlot software.

RNA-seq preparation and data analysis
Total RNAs were extracted from cells using the RNeasy mini kit (Qiagen) according to manufac-

turer’s instructions. The quality of RNA was examined using Agilent 2100 Bioanalyzer. RNA integrity

number (RIN) of all samples were higher than 8. Library sequencing was carried out on NovaSeq

6000 instrument. We generated 100 bp paired-end reads, with each library sequenced up to depth

of 40 million fragments. We used HISAT2 (Pertea et al., 2016) to align the RNA-seq reads to the

human reference genome GRCh38, and Cufflinks (Trapnell et al., 2012) to annotate them. We calcu-

lated the counts of aligned reads to each gene with HTSeq (Anders et al., 2015). We equalized the

data and stabilized them through the log2 transform of the data plus one. RNA-seq data sequence

summary is provided in Supplementary file 5, and related codes are provided in

Supplementary files 6 and 7.

RNA-seq data integration analysis
To complement the RNA-seq data generated in this work, we collected RNA-seq data from the

Sequence Read Archive (SRA) database for wild-type motor neurons MN, wtMN-2 (SRR2038215)

(Ng et al., 2015), wtMN-1 (SRR606336) (Amoroso et al., 2013) and human ESC H9 (SRR3647179)

(Kumamaru et al., 2018). As with our own samples, we used HISAT2 to align the RNA-seq reads to
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the human reference genome GRCh38, Cufflinks to annotate the mapped reads, and HTSeq to cal-

culate the counts. We equalized the data and stabilized them through the log2 transform of the data

plus one. To reduce the batch effect of the data integration, we used ComBat (Johnson et al.,

2007). We used in-house software to merge the expression results into a single text file used in the

downstream analysis in Matlab (MathWorks).

Transcriptomics global analysis
The heatmap of the most highly variable transcripts, the hierarchical clustering dendrograms (calcu-

lated using the unweighted pair group method with arithmetic mean and Euclidean distance mea-

sure), and the Principal Component Analysis (PCA) were performed using in-house functions

developed in Matlab (MathWorks).

Gene-coverage count track plots
We sorted the alignment bam files with samtools (Li et al., 2009) and produced the bed files with

bedtools (Quinlan and Hall, 2010). We developed a function in Matlab (MathWorks) that for each

gene of interest takes the exon boundary information from the basic annotation file in gtf format

from Gencode (https://www.gencodegenes.org/human/) version 33, and plots the gene-coverage

count track plots, preserving the same scale for the tracks of the same gene in all the samples.

Data availability
The data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus

(Edgar et al., 2002) and are accessible through GEO Series accession number GSE149664 .
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