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Drug resistance poses a significant challenge in antifungal therapy since resistance has
been found for all known classes of antifungal drugs.The discovery of compounds that can
act synergistically with antifungal drugs is an important strategy to overcome resistance.
For such combination therapies to be effective, it is critical to understand the molecular
basis for the synergism by examining the cellular effects exerted by the combined drugs.
Genomic profiling technologies developed in the model yeast Saccharomyces cerevisiae
have been successfully used to investigate antifungal combinations.This review discusses
how these technologies have been used not only to identify synergistic mechanisms but
also to predict drug synergies. It also discusses how genome-wide genetic interaction stud-
ies have been combined with drug–target information to differentiate between antifungal
drug synergies that are target-specific versus those that are non-specific.The investigation
of the mechanism of action of antifungal synergies will undoubtedly advance the develop-
ment of optimal and safe combination therapies for the treatment of drug-resistant fungal
infections.
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INTRODUCTION
Currently available antifungal drugs belong to four major drug
classes: polyenes (e.g., amphotericin B), azoles (e.g., flucona-
zole), echinocandins (e.g., caspofungin), and pyrimidine analogs
(e.g., 5-fluorocytosine; reviewed in Petrikkos and Skiada, 2007;
Pasqualotto and Denning, 2008; Denning and Hope, 2010). These
drug classes disrupt membrane integrity, ergosterol biosynthesis,
cell wall function, and DNA synthesis respectively. While they
are used extensively in the clinic, the drugs within each class
suffer from various limitations including toxicity (polyenes), resis-
tance (azoles), narrow spectrum of activity (echinocandins), and
lack of efficacy as a single agent (5-fluorocytosine). Drug resis-
tance in particular has been a major concern for the fungistatic
azole drugs and also more recently for echinocandins such as
caspofungin (reviewed in Sanglard, 2002; Maertens, 2004; Per-
lin, 2007). In fact, drug resistance has been found for all known
drug classes and poses a significant challenge in antifungal ther-
apy (reviewed in Pemán et al., 2009; Mukherjee and Wang, 2010).
One of the ways to overcome drug resistance is by administer-
ing combination therapy. Combination treatments offer several
advantages including the ability to (i) reduce doses, and there-
fore reduce toxicity, (ii) increase spectrum of activity, and (iii)
convert a fungistatic drug to a fungicidal drug, thereby facil-
itating clearance of the pathogen and decreasing the chance
for the development of resistance (reviewed in Johnson et al.,
2004; Mukherjee et al., 2005). Several studies, including work
from our group, have shown the ability of various compounds,
many of which are natural products, to improve the activity of

azole antifungal drugs (e.g., Jacob et al., 2003; Onyewu et al.,
2003; Niimi et al., 2004; Li et al., 2006; Digirolamo et al., 2009;
Pfaller et al., 2009; Ahmad et al., 2010; Gamarra et al., 2010;
Sharma et al., 2010; Wei et al., 2011). However, for the devel-
opment of an effective drug combination regimen, it is important
to understand the molecular mechanism behind the combined
drug effect. Such an understanding will not only be invaluable
in predicting adverse drug interactions and toxic side-effects, but
will also be useful in developing chemical probes for explor-
ing biological pathways targeted by the drug combination. This
review focuses on chemogenomic profiling and genetic interac-
tion technologies developed in the model yeast Saccharomyces
cerevisiae, and discusses the applications of these technologies
in predicting drug synergies, elucidating drug synergy mecha-
nisms, and differentiating between specific and non-specific drug
synergies.

PREDICTING ANTIFUNGAL SYNERGIES
Jansen et al. (2009) have developed a bioinformatics-driven
approach that predicts synergy between antifungal drug combi-
nations. Their approach makes use of chemogenomic profiling,
a technology in which the cellular response to inhibitory com-
pounds is measured by evaluating the fitness of a library of
genome-wide deletion mutant strains. Strains with reduced fit-
ness in the presence of a compound are identified, and the genes
deleted in those strains provide information on cellular pathways
targeted by the compound as well as pathways that are required
for conferring sensitivity to that compound. Given the availability
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of several whole-genome mutant collections in the model yeast
S. cerevisiae, a large number of chemogenomic profiles have been
generated for a variety of compounds in this organism (reviewed
in Agarwal et al., 2008; Hoon et al., 2008b; Ho et al., 2011). These
profiles have been generated using different methods, two of which
are shown in Figure 1. In the first method, growth of each indi-
vidual mutant is monitored in the presence or absence of a drug
in a microplate format. In the second method, pooled mutants are
analyzed in a single culture, in the presence or absence of a drug.
Survival of the mutant strains is assessed by PCR amplification
of unique tags associated with each mutant, and tag abundance
is measured using a DNA microarray carrying complementary
sequences to the tags. The ratio of signals between drug-treated

and untreated samples gives an indication of the relative fitness of
each mutant.

In a large study conducted by Parsons et al. (2006), chemoge-
nomic profiles were generated for 82 different compounds, and it
was shown that compounds with similar chemogenomic profiles
had similarities in their modes of action. To extend this concept to
synergistic compounds, Jansen et al. (2009) investigated whether
such profiles can be used to predict synergy by assessing if com-
pound pairs with similar profiles are more likely to be synergistic
(Figure 1). The authors compiled chemogenomic profiles from the
literature for ∼1300 genome-wide screens conducted with a broad
range of compounds, and defined a set of hypersensitive genes
for each compound. The authors also generated a chemogenomic

FIGURE 1 | Predicting drug synergies and determining synergy

mechanisms. Chemogenomic profiling is conducted by screening drugs
against collections of yeast deletion mutants. For analyzing individual
mutants, the collection is arrayed in microplates, and the growth of each
strain is examined in the presence or absence of the drug. For analyzing
pooled mutants, the collection is grown in a single culture, with or without
drug, and growth is measured by monitoring the abundance of unique tags

associated with each mutant, using DNA microarrays consisting of tag
complements. Two drugs with similar chemogenomic profiles would be
predicted to exhibit a synergistic interaction (for simplicity, exactly
matching profiles are depicted). If the combination of two synergizing
drugs generates a unique chemogenomic profile of sensitive mutants,
then genes deleted in those mutants provide information on the drug
synergy mechanism.
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profile for the antifungal drug fluconazole, and gene deletions
that were lethal in the presence of fluconazole were identified.
Then, in order to determine if the chemogenomic profile of any
given compound was similar to that of fluconazole,pairwise profile
comparisons were made to assess correlations between the hyper-
sensitive gene sets. This analysis identified eight compounds that
were predicted to be synergistic with fluconazole. These eight com-
pounds were then tested experimentally in dose–matrix response
assays, and five compounds were indeed found to be synergistic
with fluconazole. Interestingly, it was also found that compounds
predicted to be synergistic with fluconazole were also predicted
to be synergistic with each other. These were also tested in dose–
matrix assays, and six compound pairs were identified that were
synergistic, four of which had not been previously reported. To
extend their studies to a fungal pathogen, the authors also analyzed
the drug pairs in Candida albicans, and found that eight synergistic
combinations identified in S. cerevisiae were also synergistic in C.
albicans. Finally, one of the novel synergistic combinations (flu-
conazole + wortmannin) was also tested in a fluconazole-resistant
clinical isolate of C. albicans. This combination was strongly syn-
ergistic in the clinical isolate – it not only inhibited cell growth
in liquid broth, but it was also fungicidal since the cells were not
viable in a recovery assay on agar plates. Thus, this method suc-
cessfully predicted antifungal synergies, and also identified novel
drug relationships. In addition, S. cerevisiae resources were effec-
tive in identifying synergies in C. albicans. This method will serve
as a powerful tool in the discovery of new synergistic drugs and in
evaluating the potential of combination therapies.

DETERMINING THE MECHANISM BEHIND ANTIFUNGAL
SYNERGIES
In addition to predicting drug synergies, chemogenomic profiles
can also be used to evaluate the underlying mechanisms involved in
the effects produced by synergistic drug combinations. As shown
in Figure 1, for any given synergistic drug pair, chemogenomic
profiling can be conducted on cells treated with each drug sepa-
rately and also on cells treated with both drugs simultaneously. If
a unique profile is obtained in the presence of both drugs, then
gene deletions represented in that profile provide information on
the pathways affected or targeted by the drug combination. An
excellent example of the application of this strategy is the study by
Hoon et al. (2008a) in which the authors investigated the synergis-
tic effects of the phosphatase inhibitors cantharidin and calyculin
A. Chemogenomic profiling was performed in the presence of dilu-
ent only, cantharidin, calyculin A, and a cocktail of cantharidin
and calyculin A. Comparison of the profiles obtained indicated
that fewer deletion strains were sensitive to the cocktail, and more
importantly, additional new strains were detected as susceptible
to the cocktail treatment that were not susceptible to the single
drug treatments. The pathways represented in these gene dele-
tions included golgi vesicle transport, chromatin remodeling, and
mRNA polyadenylation. Thus, this study identified new pathways
required for buffering the effects of the combined treatment of
cantharidin and calyculin A.

Another example in which chemogenomic profiling was used to
discover synergistic drug mechanisms is the study by Spitzer et al.
(2011). In this study, six compounds were identified that showed

synergistic interaction with the antifungal drug fluconazole. To
understand the molecular basis for this synergy, the authors gen-
erated chemogenomic profiles for fluconazole and also for each
compound separately. Strains with deletions in genes required
for ergosterol biosynthesis (the pathway targeted by azole anti-
fungals), vesicle-mediated transport, and membrane organization
were sensitive to fluconazole alone. Of the six compounds ana-
lyzed, five inhibited the growth of strains carrying deletions in
genes involved in membrane function, vesicle trafficking, and lipid
biosynthesis, suggesting that these five compounds cause general
membrane perturbation. Thus, these compounds may exert their
synergistic effect on fluconazole by altering its import or export,
or they may impair the import of exogenous ergosterol. The
chemogenomic profile of the sixth compound analyzed indicated
that it interfered with sphingolipid biosynthesis, thus suggesting
an interplay between the ergosterol and sphingolipid biosynthetic
pathways. Based on this result, the authors also tested myriocin,
another sphingolipid biosynthesis inhibitor, and found that myri-
ocin also showed synergistic activity with fluconazole. Thus, this
study shows that understanding the mechanism behind drug syn-
ergies can be useful in predicting new synergistic interactions. In
addition, by revealing that membrane disrupters and sphingolipid
biosynthesis inhibitors can potentiate fluconazole activity, this
study opens up new avenues for the discovery of novel strategies
for antifungal therapy.

In addition to chemogenomics, other “omics”-based technolo-
gies such as transcriptomics, proteomics, and metabolomics that
measure mRNAs, proteins, and metabolites respectively, can also
be used for mechanistic studies on synergistic compounds. For
example, gene expression profiling with the anti-microtubule
agents docetaxel and estramustine in prostate cancer cells iden-
tified new genes affected by both drugs which were not altered
by each drug alone (Li et al., 2005). Proteomic analysis in C.
albicans with fluconazole and berberine revealed that their syner-
gistic interaction is related to increased generation of endogenous
reactive oxygen species (Xu et al., 2009). Metabolomic profiling
to investigate the synergistic anti-leukemic activity of the lipid-
lowering drug bezafibrate and the contraceptive steroid medrox-
yprogesterone acetate identified changes in TCA cycle interme-
diates, supporting the previously known association of reactive
oxygen species in the anti-tumor activities of these two drugs
(Tiziani et al., 2009). These studies validate the usefulness of
genome-wide profiling approaches in elucidating the mechanisms
of drug synergies.

DIFFERENTIATING BETWEEN SPECIFIC AND NON-SPECIFIC
DRUG SYNERGIES
In a recent study (Cokol et al., 2011), the genetic basis of antifun-
gal synergies was explored by evaluating the relationship between
synergistic drug interactions and synergistic genetic interactions.
In a synergistic genetic interaction, the combination of two genetic
perturbations creates a more severe phenotype compared to the
single perturbation alone (Tong et al., 2004). Cokol et al. hypoth-
esized that if two genes have a synergistic genetic interaction, then
two drugs that target those genes may exhibit a synergistic drug
interaction. This prediction would be consistent with the “parallel
pathway inhibition model,” according to which two drugs would
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be synergistic if they inhibit two proteins in parallel pathways (Yeh
et al., 2009). For example, terbinafine and rapamycin exhibit drug
synergy due to a synergistic genetic interaction between their target
genes, ERG1 and TOR1 respectively (Lehár et al., 2007).

In the Cokol et al. study, a comprehensive analysis was con-
ducted to establish the overlap between drug synergies and genetic
synergies. The authors first compiled a list of 113 known drug–
target interactions in S. cerevisiae from the literature, i.e., a list
of known drugs and the target genes affected by those drugs was
generated (Figure 2). This list was then integrated with known
synergistic genetic interactions in this organism. Genetic interac-
tion profiles for approximately 75% of all genes in S. cerevisiae
have been generated using the synthetic genetic array (SGA) tech-
nology (Costanzo et al., 2010). In SGA analysis (Figure 2), a
query mutation is crossed into a set of ∼5000 viable deletion
mutants and the resulting double mutants are screened for fit-
ness defects (Tong et al., 2004; Baryshnikova et al., 2010; Costanzo
et al., 2010). Using the available information from several SGA
studies, Cokol et al. (2011) identified gene pairs that exhibited
severe fitness defects, and examined if these genes were present
in their list of 113 known drug–target interactions. This analy-
sis generated 211 drug pairs that were predicted to be synergistic.
Of these, 38 drug pairs were assessed in dose–matrix response
assays, and 14 drug pairs predicted to be synergistic did indeed
show significant synergy in the assays. These drug pairs thus dis-
played “specific synergy” since genetic interaction profiles of their
targeted genes suggested that the drugs would target parallel path-
ways (Figure 2). In contrast, several drug pairs (33% of the drug
pairs analyzed) that were not predicted to target synergistic gene
products were also found to show synergy, thus representing drugs
displaying “non-specific synergy” (Figure 2). A set of six drugs
were identified that were classified as promiscuous synergizers that
were responsible for 92% of all the synergies discovered. This set
included four drugs that target the biosynthesis of ergosterol, a

cell membrane lipid, thus showing consistency with the “bioavail-
ability model” of drug synergy in which one drug’s action affects
the second drug’s availability in the cell (Zimmermann et al.,
2007). The remaining two promiscuous synergizers are not known
to disrupt the cell membrane, suggesting that their promiscuity
involves a novel mechanism. Interestingly, the predominant form
of drug synergy in this study was promiscuous synergy. There-
fore, promiscuous drugs that enhance the potency of other drugs
would have potential value in driving the search for new synergis-
tic drug combinations. However, from a therapeutic standpoint,
drug combinations that are specific to particular pathways would
be attractive since they would produce less toxic side-effects. Thus,
the ability to differentiate between specific and promiscuous syn-
ergizers will clearly play an important role in the discovery of novel
combination therapies.

CONCLUDING REMARKS
Chemogenomic profiling and genetic interaction studies have
proven to be powerful technologies in investigating the molec-
ular and genetic basis of synergistic drug relationships. However,
it should be noted that just like any other whole-genome technol-
ogy, these technologies suffer from a few drawbacks. For example,
one of the weaknesses of SGA technology is that since it primarily
involves crosses between two haploid mutants, it generally inter-
rogates only non-essential genes. For chemogenomic profiling,
analysis of individual mutants in microplate format requires large
quantities of drug,which can be a limitation when studying natural
products. While chemogenomic profiling of pooled mutants, in
which tag abundance is monitored using DNA microarrays, makes
use of smaller quantities of drug, the disadvantage is the high cost,
the need for DNA microarray facilities, and potential errors in
some tags making them undetectable upon hybridization. With
regards to using chemogenomic profiling in predicting drug syn-
ergies, it is worth noting that an identical chemogenomic profile

FIGURE 2 | Differentiating between specific and non-specific drug

synergies. Comparing drug–target interactions with synthetic genetic
interactions provides information on specific and non-specific drug synergies.
For example, Drug 1 and Drug 3 exhibit specific synergy since the genes
targeted by them (Gene A and Gene C) genetically interact with each other.

On the other hand, Drug 1 and Drug 2 exhibit non-specific synergy since there
is no genetic interaction between the genes targeted by them (Gene A and
Gene B). Finally, an example is shown of two drugs (Drug 1 and Drug 4) that
do not synergize with each other, and also do not show any genetic
interaction between the genes they target (Gene A and Gene D).
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for two drugs does not automatically guarantee that there will be
synergy. If two drugs target the same pathway, synergy may not
be likely to occur – for example, sulfamethoxazole and trimetho-
prim do not show any synergy in Escherichia coli even though both
drugs target the same folate metabolism pathway (reviewed in Jia
et al., 2009). In spite of these limitations, the various examples dis-
cussed in this review do indeed demonstrate that chemogenomic
profiling and SGA technologies have led to greater mechanistic
understanding of synergistic drug interactions and have been use-
ful in predicting drug synergies, and also in distinguishing specific
synergies from non-specific ones. The availability of similar tech-
nologies in fungal pathogens such as C. albicans and Cryptococcus

neoformans will of great value in studying drug combinations
in clinically relevant isolates. Given the ever-growing problem of
drug resistance, continued investigations in drug synergy mech-
anisms are greatly needed for the discovery and development of
new combination therapies for treating fungal infections.
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