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Abstract
Plant species are known to adapt locally to their environment, particularly in moun-
tainous areas where conditions can vary drastically over short distances. The climate 
of such landscapes being largely influenced by topography, using fine- scale models to 
evaluate environmental heterogeneity may help detecting adaptation to micro- 
habitats. Here, we applied a multiscale landscape genomic approach to detect evi-
dence of local adaptation in the alpine plant Biscutella laevigata. The two gene pools 
identified, experiencing limited gene flow along a 1- km ridge, were different in regard 
to several habitat features derived from a very high resolution (VHR) digital elevation 
model (DEM). A correlative approach detected signatures of selection along environ-
mental gradients such as altitude, wind exposure, and solar radiation, indicating adap-
tive pressures likely driven by fine- scale topography. Using a large panel of 
DEM- derived variables as ecologically relevant proxies, our results highlighted the 
critical role of spatial resolution. These high- resolution multiscale variables indeed in-
dicate that the robustness of associations between genetic loci and environmental 
features depends on spatial parameters that are poorly documented. We argue that 
the scale issue is critical in landscape genomics and that multiscale ecological variables 
are key to improve our understanding of local adaptation in highly heterogeneous 
landscapes.
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1  | INTRODUCTION

Sessile plants have been shown to locally adapt to their environment 
(Linhart & Grant, 1996). The high heterogeneity of environmental con-
ditions being considered as the principal trigger of local adaptation 
in face of homogenizing gene flow, fine- scale genetic differentiation 
has commonly been interpreted as a result of strong selection pres-
sures across natural landscapes (Gonzalo- Turpin & Hazard, 2009; 
Gray et al., 2014; Parisod & Christin, 2008; Vekemans & Hardy, 2004). 
Preponderant abiotic factors driving such adaptation have, however, 

rarely been identified, mainly because the ecological conditions acting 
on individual plants are difficult to characterize.

Mountainous areas are ideal to study high genetic differentiation 
and local adaptation at a fine scale (Parisod & Bonvin, 2008; Stöcklin, 
Kuss, & Pluess, 2009). These habitats are indeed highly heterogeneous, 
and topography plays a considerable role in local climatic variability 
(Wilson & Gallant, 2000). Until recently, existing climatic datasets 
were, however, too coarse to account for environmental heterogene-
ity at fine scales. Furthermore, in situ measurements were too labor in-
tensive and subject to several experimental biases, hampering proper 
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investigation of local adaptation in alpine plants. The recent availability 
of very high resolution (VHR) digital elevation models (DEMs) (<1 m) 
has made it possible to effectively approximate ecologically mean-
ingful variables with limited fieldwork, offering the type of fine- scale 
environmental data that are required to assess both the scale of adap-
tive patterns and the underlying factors in heterogeneous landscapes 
(Leempoel et al., 2015). DEM- derived variables such as temperature, 
soil moisture, or solar radiation are easy to compute and have the po-
tential to be widely used as proxies in ecology and evolution (Kozak, 
Graham, & Wiens, 2008; Leempoel et al., 2015; Wilson & Gallant, 
2000). However, such topographic variables have rarely been used in 
landscape genetics and need to be further evaluated (Leempoel et al., 
2017).

It is intuitively expected that the higher resolution of a DEM is 
likely to produce more accurate results, although it appears that a high 
amount of details may blur the output signal (Cavazzi, Corstanje, Mayr, 
Hannam, & Fealy, 2013). Studies in geomorphology have indeed shown 
that the relationship between DEM variables and physical character-
istics of the terrain could only be valid at a specific spatial resolution 
(Kalbermatten, Van De Ville, Turberg, Tuia, & Joost, 2012; Wilson & 
Gallant, 2000). In contrast, research in landscape ecology has rarely 
considered the influence of the spatial resolution of environmental 
data. The relevance of topographic variables in species distribution 
models has been regularly reported (Le Roux, Virtanen, & Luoto, 2013; 
Lefsky, Cohen, Parker, & Harding, 2002; Randin, Vuissoz, Liston, Vittoz, 
& Guisan, 2009). However, some studies showed substantial improve-
ment of models attributed to finer environmental variables (Camathias, 
Bergamini, Küchler, Stofer, & Baltensweiler, 2013), whereas others 
found limited differences (Pradervand, Dubuis, Pellissier, Guisan, & 
Randin, 2014). Noticeably, DEM- derived variables have rarely been 
used in Gene- Environment Associations and, to our knowledge, the 
spatial resolution has never been considered as an influencing param-
eter, which likely leads to incomplete conclusions on local adaptation 
(Manel, Poncet, Legendre, Gugerli, & Holderegger, 2010; Parisod & 
Joost, 2010; Storfer, Murphy, Spear, Holderegger, & Waits, 2010).

In this study, we explored the population structure of the alpine 
plant Biscutella laevigata and performed correlations between local en-
vironmental data and genetic variation. To do so, we used 233 polymor-
phic AFLP markers and 13 VHR DEM- derived variables, demonstrated 
as relevant environmental proxies (Leempoel et al., 2015). Our aims 
were to (i) detect fine- scale population structure, (ii) evaluate to what 
extent DEM- derived proxies of environmental features are powerful 
to detect signatures of selection, (iii) assess the impact of their spatial 
resolution on the detection of signatures of selection. Taking advantage 
of very high resolution, we thus here appraise and discuss the scale 
dependency of microhabitat modeling and of signatures of selection.

2  | MATERIAL AND METHODS

2.1 | Sampling

Biscutella laevigata is a widespread polyploid Brassicaceae spe-
cies that occurs mostly as small patches across the European Alps 

(Parisod & Besnard, 2007). This strictly outcrossing, perennial plant 
has its pollen dispersed by generalist Diptera and Lepidoptera, while 
seeds disperse through gravity and possibly wind (Parisod & Bonvin, 
2008).

The study zone is situated at “les Rochers- de- Naye” (N46°26′00″, 
E6°58′50″), where a natural hybrid zone between closely related 
B. laevigata lineages has been documented along a 1.2- km- long 
ridge at an elevation included between 1,864 and 2,043 m above 
sea level (Parisod & Christin, 2008). Across the whole populated 
area, 361 individuals of B. laevigata were selected using a random 
cluster sampling strategy to represent the spatial distribution of the 
population. Selected areas of 4 × 4 m, separated by random dis-
tances of 0 to 25 m, were subdivided in four 2 × 2 m plots that were 
sampled when at least five individual plants were present. If less 
than five individuals were found in any of the four plots, a new area, 
at least 25 m further along the ridge, was selected. All individuals 
where georeferenced using a differential GPS offering a horizontal 
accuracy of c. 2–3 cm and a vertical accuracy of c. 3–4 cm. Their 
leaves were immediately dried in silica gel for extraction of genomic 
DNA following a standard DNeasy plant extraction mini kit protocol 
from Qiagen AG, Switzerland.

2.2 | AFLP genotyping, scoring, and error estimation

All individuals were genotyped with amplified fragment length poly-
morphisms (AFLPs) following Parisod and Christin (2008). Despite 
limitations inherent to their dominant nature, AFLP loci are widely 
distributed across the genome and support appropriate genotyping 
that is hardly outperformed by current high- throughput approaches 
in polyploids (Mason, 2015). In short, genomic DNA was digested with 
EcoRI and MseI before ligation of adaptors to perform preselective and 
selective amplifications. PCR products amplified with FAM, VIC, NED 
fluorescent dye on the EcoRI primers were pooled with GeneScan 
500 LIZ Size ladder and separated the 3730xl DNA analyzer capillary 
sequencer (Applied Biosystems). Resulting electropherograms were 
scored between 75 and 500 bp with GENEMAPPER v. 4.0 (Applied 
Biosystems) using AFLP default peak detection parameters. The scor-
ing was checked manually, and AFLP loci were recorded as present (1) 
or absent (0) in binary matrices.

After an initial assessment of polymorphism and reproducibility 
of 38 AFLP primer combinations, the six bests (MCAG/EATC, EAGG/
MCGG, MCAG/EAAT, EACT/MCAC, MCGA/EATA, and MCGG/EATA) 
were retained for genotyping. Individuals were randomly distributed 
among plates and the whole procedure was replicated on 15% of the 
samples to evaluate the error rate sensu Bonin, Taberlet, Miaud, and 
Pompanon (2006).

2.3 | Population structure and gene flow

An issue regularly encountered when studying patterns of genetic 
variation and local adaptation in plant populations is recent poly-
ploidy (Meyers & Levin, 2006). As polyploid populations strongly 
violate Hardy–Weinberg expectations, most standard methods in 
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population genetics cannot be applied (Ronfort, Jenczewski, Bataillon, 
& Rousset, 1998). Furthermore, inferential frameworks accounting for 
the evolutionary genetics of polyploids must rely on accurate data-
sets assessing dosage of the multiple alleles at each locus, which still 
is technically challenging with high- throughput genotyping (Mason, 
2015). Accordingly, approaches deprived from population genetics 
pre- requisites should currently be privileged among the applicable 
methods to evaluate local adaptation from genetic data. Under such 
circumstances, the population structure can profitably be described 
using, for example, the K- mean clustering or principal component 
analysis, whereas the detection of signatures of selection can be 
achieved using generalized regressions or mixed models (Parisod & 
Joost, 2010).

Unbiased inference of population genetic structure was here 
assessed using K- means clustering, a data partitioning method im-
plemented in the R package Vegan (Dixon, 2003), with the Calinski 
criterion (Caliński & Harabasz, 2007) to select the most likely num-
ber of genetic clusters (Gompert, Lucas, Fordyce, Forister, & Nice, 
2010). Accordingly, individual AFLP genotypes were assigned to their 
genetic cluster using the fuzzy c- means algorithm (Dunn, 1974) im-
plemented in the package “e1071” in R (Meyer, Dimitriadou, Hornik, 
Leisch, & Weingessel, 2014) with fuzzification parameter optimized at 
1.02. Such a genomic cline approach was successfully used to dissect 
gene flow between polyploid taxa across natural hybrid zones (e.g., 
Senerchia et al., 2016). After a maximum of 1,000,000 iterations, the 
outputs of 1,000 independent runs of this algorithm were combined 
in CLUMPP (Jakobsson & Rosenberg, 2007) using the Greedy search 
method and 10,000 repeats of random input order. The coefficient 
of membership to a cluster was provided by CLUMPP as the mean of 
the independent runs. Such an individual coefficient can be consid-
ered as an admixture score estimated without biological assumptions. 
Accordingly, individuals were considered as belonging to population A 
and population B when their coefficient of membership was below 0.2 
and above 0.8, respectively. Individuals with intermediate scores were 
considered as admixed.

Spatial genetic structure was quantified using SPAGeDi (Hardy & 
Vekemans, 2002), which measures the pairwise relatedness between 
individuals at increasing distance intervals. The mean relationship 
coefficient among loci was computed within 20 balanced intervals 
(i.e., with the same number of pairwise comparisons in each interval), 
and its significance was assessed with 9,999 permutations between 
individuals.

2.4 | Environmental variables

The acquisition of the VHR DEM used in this study is described into 
details in Leempoel et al. (2015). Briefly, a LIDAR point cloud was ob-
tained over the study area (helicopter) and transformed into a DEM 
with a resolution of 0.5 m. The following 13 variables were then de-
rived from this DEM using SAGA GIS (Conrad et al., 2015): northness 
(Cosine of Aspect, Nor), eastness (Sine of Aspect, Eas), slope, vector 
ruggedness measure (VRM) (Sappington, Longshore, & Thompson, 
2007), total solar radiation in June and December (Ti6, Ti12) (Böhner 

& Antonić, 2009), positive and negative topographic openness (TOP 
and TON) (Yokoyama, Shirasawa, & Pike, 2002), sky view factor (SVF) 
(Häntzschel, Goldberg, & Bernhofer, 2005), wetness index (SWI) 
(Beven & Kirkby, 1979), flow path length (FPL) (O’Callaghan & Mark, 
1984), and wind exposure index (WEX) (Conrad et al., 2015). VRM is 
a measure for the unevenness of terrain and distinguishes between 
rocky vs. smooth terrain. TOP and TON express the protection of a 
focal point from the surrounding relief. It is based on the maximum 
angle found at zenith (TOP) or at nadir (TON) from the point, over a 
defined radius. SVF expresses the ratio of the radiation received by a 
planar surface over the radiation emitted by the entire hemispheric 
environment. SWI is the logarithm of the ratio between the catchment 
area and the tangent of slope and quantifies the topographic control 
of hydrological processes. FPL calculates the upstream or down-
stream distance along the flow path for each sample. More details can 
be found in Leempoel et al. (2015).

In order to account for the variability of DEM- derived variables 
due to spatial resolution in association models, each variable was com-
puted at 0.5- , 1- , 2- , 4- , and 8- m resolution by downgrading the original 
VHR DEM at coarser resolutions using a B- spline filter (Kalbermatten 
et al., 2012), implemented in MATLAB (MATLAB Version 12b. Natick, 
MA, USA: The MathWorks Inc., 2010).

The values of the different DEM- derived variables were compared 
between the three groups corresponding to populations A, B, and ad-
mixed individuals (see Results) with Kruskal–Wallis tests performed in 
R.

2.5 | Detection of outlier loci

Association models between the presence of genetic markers and 
the value of DEM- derived variables were processed using gener-
alized linear mixed models (GLMMs) (Bolker et al., 2009; Zuur, 
Ieno, Walker, Saveliev, & Smith, 2009), which are advantageously 
independent of any genetic model. GLMMs are used in Gene- 
Environment Associations studies to account for pseudo- replication 
due to population structure among samples. In our case, we con-
sidered the pixel (i.e., each unit of the DEM grid) to be the random 
effect instead of the sampling plot or the genetic subpopulation. In 
fact, with DEMs at different resolutions, individuals often fall within 
the same pixel (i.e., should be considered as pseudo- replicates) and 
we therefore used pixels’ IDs as the random parameter at each spa-
tial resolution. The coarser the resolution, the more samples are lo-
cated in the same pixel. Hence, samples are present in 295 pixels 
at a resolution of 0.5 m, 227 at 1 m, 140 at 2 m, 99 at 4 m, and 66 
at 8 m. GLMMs were performed using the R package lme4 (Bates 
& Maechler, 2009) between each polymorphic marker and DEM 
variables using a binomial link function. Significance of all associa-
tions was assessed with a log- likelihood ratio test, and AICs were 
compared between a model with a variable and a constant model. 
In addition to these variables, GLMM models were also performed 
with measured altitude (Alt), longitude (X), latitude (Y), as well as 
membership coefficient to population A. In these cases, the plot was 
considered as the random effect.
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F IGURE  1 Population structure of the studied individuals. (a) Coefficients of membership to Population A obtained from C- mean clustering 
are shown in (a) for each individual along the ridge. A semi- circle was added to facilitate the visualization of the coefficients. (b) The Calinski 
Criterion values for the K- mean clustering from 2 to 20 populations indicate that the most likely number of populations is 2. Finally, (c) shows 
the sorted membership coefficient to Population A and the standard error for each individual over the 1,000 iterations of the C- means 
clustering, combined in Clumpp

(a)

(b) (c)
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3  | RESULTS

3.1 | Population structure and gene flow

Genotyping of the 361 individuals of B. laevigata yielded 233 poly-
morphic AFLP loci (frequency of minor variant >0.05) with an error 
rate estimated at 2.93% based on the replication of 15% samples. 
Clustering approaches evaluated the genetic structure based on 
individual genotypes, with the Calinsky criterion of the K- means 
method highlighting two main genetic clusters within the study area 
(Figure 1b). Accordingly, C- means clustering was performed for K = 2 
over 1,000 iterations that were then assembled in Clumpp (Average 
pairwise similarity among replicates is 0.81). A majority of the indi-
viduals were unambiguously assigned to each of these genetically 
homogeneous clusters, whereas 105 admixed genotypes presented 
coefficients of membership between 0.2 and 0.8 (Figure 1c). Standard 
deviation over 1,000 runs was also relatively high for most of these 
admixed individuals.

The spatial distribution of these genetic clusters (i.e., popu-
lations) showed a clear segregation (Figure 1a). Genotypes with 
membership higher than 0.8 (i.e., population A; 107 individuals) 
were mostly located on the upper part of the ridge, separated from 
population B (i.e., genotypes with membership lower than 0.2; 149 
individuals) by a rocky area with very few individuals. Admixed indi-
viduals were reported across the whole area, with a slight bias to-
ward the zone where population B is located. Despite such evidence 
of long- range gene dispersal across habitats in this 1.2- km- long 
population, gene flow appeared consistently limited. Pairwise ge-
netic relationship among individuals indeed declined considerably 
at short distances, after the second distance class (i.e., 7 m), and 
reached nonsignificant values from the fourth distance class (i.e., 
after only 66 m) (Figure 2).

3.2 | Habitat comparison

All DEM- derived variables, except TON, were found to be signifi-
cantly different between populations (Table 1). For instance, popula-
tion A was found to be located at a higher altitude than Population 
B. Population A was also more exposed to wind (WEX), presented a 
lower protection from surrounding relief (i.e., higher openness, TOP), 
a higher sky view proportion (SVF), and higher Terrain ruggedness 
(VRM) than population B. Interestingly, population A receives less 
solar radiation than B in December, but more in June. Regarding hy-
drology, individuals from population A were reported on significantly 
shorter flow path lengths (FPL) but showed higher soil wetness (SWI). 
Nevertheless, it is worth noting that some variables were only differ-
ent among populations at particular resolutions. For example, Eas was 
significantly higher in Pop A than in Pop B at resolutions of 0.5, 1, 2, 4, 
and 8 m, while VRM was only higher in Pop A at 0.5 m.

3.3 | Detection of outliers

Few GLMMs between genetic loci and environmental variables turned 
out to be significant with α = 0.05 after Bonferroni’s correction (sig-
nificance level: 3.3E- 06). Only five genetic markers were significantly 
associated with Alt, TON, Nor, Ti12, and WEX (Table 2). The spatial 
resolution of DEM- derived variables, however, had a strong influence 
on the significance of associations. Indeed, these associations were 
only significant at a specific resolution. Although characterization of 
fine- scale environmental heterogeneity appeared crucial, the highest 
resolution did not necessarily imply the highest significance. For ex-
ample, the association between the locus c1v382 and Ti12 or Nor 
was only significant at 1 m and poorer at other resolutions (Figure 3). 
The two other associations, that is, c1v222 with TON and c1b136 
with WEX, are only significant at the highest resolution but the former 

F IGURE  2 Pairwise relationship coefficient 
for AFLP markers in Biscutella laevigata. Pairwise 
relationships are calculated for 20 intervals of 
distances and are shown in black when significant 
(p- value <.05/20) and in white otherwise
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decreases more sharply at 1 m (see Appendix 1). Noticeably, none of 
the 233 loci were significantly associated with latitude, longitude, and 
membership coefficient to population A.

4  | DISCUSSION

The fine- scale environmental heterogeneity of mountainous regions 
makes such landscapes ideal for the study of patterns of local adapta-
tion. In this research, we report evidence of local differentiation and 
signatures of selection in an alpine plant population of B. laevigata. We 
indeed evidenced a marked spatial genetic structure along a 1.2- km 
ridge on which two coherent gene pools were identified, separated by 
an unsuitable rocky area (Figure 1a). Consistent with a neutral pattern 
under restricted gene flow, genetic similarity between neighboring 

individuals declined abruptly and appeared nonsignificant after 64 m 
only. This result exhibits a particularly high isolation- by- distance in the 
continuously sampled population over the studied ridge. However, 
admixed individuals were highlighted all over the studied area, in-
dicating that homogenizing gene flow is likely at work across the 
population. The habitat of individuals genetically assigned to these 
two populations showed substantial differences in local topographic 
conditions and we further report signatures of selection on specific 
loci due to local environmental factors. Those results are consistent 
with the mosaic distribution of subalpine and alpine lineages reported 
along a regular transect at this ridge (Parisod & Christin, 2008). Among 
the five genetic markers here strongly associated with DEM variables, 
one candidate adaptive locus was associated with solar radiation in 
December and northness and is thus further congruent with prior re-
sults suggesting selection by solar radiation (i.e., degree- days during 

TABLE  1 Comparison of DEM- derived variables between habitats

Variable Habitat A Habitat B Habitat admixed Pvalue AB Significant resolutions

Alt 1,994 (±33) 1,955 (±32) 1,964 (±37) 1.92E- 27

Nor −0.39 (±0.43) −0.57 (±0.48) −0.48 (±0.44) 3.70E- 10 0.5, 1

Eas −0.05 (±0.65) 0.4 (±0.52) 0.31 (±0.62) 1.54E- 08 0.5, 1, 4, 8

Slo 34.661 (±18.751) 44.28 (±16.963) 47.564 (±17.793) 1.46E- 05 8

VRM 0.082 (±0.046) 0.068 (±0.053) 0.068 (±0.05) 9.96E- 05 0.5

TOP 1.472 (±0.1) 1.411 (±0.08) 1.434 (±0.101) 1.08E- 06 1

WEX 1.268 (±0.023) 1.257 (±0.021) 1.257 (±0.024) 1.21E- 06 0.5, 1, 2

SVF 0.8 (±0.1) 0.8 (±0.1) 0.7 (±0.1) 3.12E- 06 1, 8

Ti6 206.099 (±59.745) 169.79 (±70.372) 162.939 (±64.248) 4.07E- 05 8

Ti12 74.7 (±20.776) 86.121 (±21.817) 80.085 (±21.162) 4.38E- 10 0.5, 1, 8

FPL 27.29 (±37.08) 41.6 (±39.08) 41.55 (±42.04) 7.02E- 06 4

SWI 4.9 (±0.7) 4.5 (±0.7) 4.4 (±0.7) 2.18E- 05 8

Variables showing a significant difference between individuals of populations A, B and admixed ones are shown in the table. The mean and the standard 
deviation are given for each habitat. The following column provides the p- value for the most significant Kruskal–Wallis test performed between Habitat A 
and B, and the final column indicates the resolutions at which the test was significant (<0.05 after Bonferroni’s correction for multiple tests), that is, the 
variable in question is significantly different between the two populations at the spatial resolution indicated. Variables acronyms: altitude (Alt), northness 
(Nor), eastness (Eas), slope (Slo), vector rudggedness measure (VRM), positive topographic openness (TOP), wind exposure index (WEX), sky view factor 
(SVF), total insolation in June (Ti6), total insolation in December (Ti12), flow path length (FPL), SAGA wetness index (SWI). Pixel resolution is expressed in 
meters. DEM, digital elevation model

TABLE  2 Significant GLMM models as measured with the log- likelihood ratio

Marker Variable Resolution
Likelihood 
ratio p- value β0 β1

AIC constant 
model

AIC variable 
model

Markers frequencies

Pop A Pop B admixed

c1v492 Alt 7.24E- 16 −9.16 −0.45 453.4 390.3 0.25 0.36 0.37

c1v222 TON 0.5 1.16E- 14 −9.10 −0.47 469.9 412.3 0.31 0.42 0.38

c1v382 Nor 1 2.75E- 07 −0.19 0.72 494.1 469.6 0.51 0.44 0.42

c1v382 Ti12 1 3.75E- 07 −0.20 −0.71 494.1 470.2 0.51 0.44 0.42

c1b376 Alt 5.91E- 07 −1.89 1.12 358.3 335.4 0.33 0.15 0.18

c1b136 WEX 0.5 1.85E- 06 −0.53 5.61 491.4 470.7 0.51 0.45 0.50

p- Value, regression coefficients (β0 and β1), and AICs are provided for each model as well as the frequency of the genetic markers in each population. Both 
the AIC of the constant model and the AIC of the model including the variable are provided. Variables acronyms: altitude (Alt), negative topographic open-
ness (TON), northness (Nor), total insolation in December (Ti12), wind exposure index (WEX). Pixel resolution is expressed in meters. GLMM, generalized 
linear mixed model
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the growing season and total solar radiation) as evidenced by Parisod 
and Joost (2010).

Those results do not unambiguously support local adaptation as 
the unoccupied rocky area may act as a strong barrier limiting gene 
flow. Consequently, it is not unlikely that genetic drift acted on both 
populations independently and that the influence of the clear habitat 
demarcation was not the major driver of the reported genetic differ-
entiation. Accordingly, we found only a limited number of significant 
associations, despite the substantial number of environmental vari-
ables tested and the high number of individuals sampled. In contrast to 
predictions of such neutral model ruled by demography, the reported 
pattern also matched with expectations under weak selection, with 
the spatial distribution of significant associations along environmen-
tal gradients only weakly reflecting the population structure, and thus 
making them plausible signatures of selection. The observation that 
none of the identified genetic markers is correlated with the popula-
tion membership coefficient is further consistent with adaptive pro-
cesses having shaped the distribution of slightly more than 2% of the 
loci being surveyed.

Bearing limitations of the approach in mind, our observations 
demonstrate that VHR DEMs can be suitably used to model fine- scale 
environmental heterogeneity. Among investigated topographic vari-
ables, solar radiation, terrain ruggedness, and wind exposure  appear 
to substantially differ between the two populations. Noticeably, 
they reflect climatic variability at microsite that is only identified by 
fine- scale topographic models, demonstrating their usefulness for 
landscape genomics studies requiring such resolution (Leempoel 
et al., 2015; Manel et al., 2010; Pradervand et al., 2014). Most 
impor tantly, the DEM- derived variables used here were shown to 
be surrogates for relevant ecological features, including temperature 
and snow cover variability in mountainous areas (Böhner & Antonić, 
2009; Leempoel et al., 2015; Lehning, Grünewald, & Schirmer, 2011; 
Wilson & Gallant, 2000). Accordingly, we show here that a large panel 
of variables exist and can likely be expanded to refine environmental 
characterization for many organisms. For instance, vector rugged-
ness measure (VRM) appeared to be the most important predictor 
of soil moisture on the ridge (Leempoel et al., 2015). High- resolution 
VRM thus appears as a suitable proxy for the distribution of stony 
areas and more generally soils with different porosities. Exposure to 
wind was also noticeable in habitat comparisons and in association 
models. As it indirectly affects snow accumulation (Plattner, Braun, 
& Brenning, 2004) and thus the timing of snow removal in alpine 
habitats, which we observed to be correspondingly heterogeneous 
over the study site (pers. obs.), wind exposure represents a useful 
proxy for gathering insights on the start of the growing season or 
exposure to cold during the harsh season. In addition, altitude has 
an important role as two markers identified of six were associated 
with this variable only. Clearly, it remains among the most important 

parameter influencing temperature at any scale in mountainous re-
gions (Leempoel et al., 2015; Wilson & Gallant, 2000).

Multiscale models used here enabled precise analyses, thanks to 
ecologically relevant topographic proxies (Leempoel et al., 2015). For 
both habitat comparisons and association models, we report a high 
sensitivity to spatial resolutions and a generally decreased strength 
of GLMM models at coarser resolutions, which were mostly nonsig-
nificant. It appears that DEM- derived variables computed at a sin-
gle resolution, particularly at coarse ones, do not fully represent the 
topographic control on ecologically relevant variables, and are not 
able to replicate at best the spatial continuum naturally constituting 
landscapes. Noticeably, associations between genetic markers and dif-
ferent environmental variables did not generally converge toward an 
optimal resolution, indicating that the suitable resolution depends on 
the type of DEM- derived variable considered (Leempoel et al., 2015).

Our framework illustrates that ecologically relevant DEM- derived 
proxies are relatively easy to acquire and provide unique information 
on micro- habitats for landscape genomics studies. However, we also 
highlight their sensitivity to changes in spatial resolution and argue that 
the interpretation of results obtained from DEMs at a single resolution 
should be cautiously considered. By no means, a single resolution, 
even the finest, may be sufficient to identify signatures of selection 
in highly heterogeneous landscapes. Accordingly, recommending an 
appropriate scale would likely be misleading and we rather suggest 
that future studies be based on high- resolution models to explore mul-
tiscale derived variables, as we did in this study. While we focused on 
a single species, we expect these recommendations to be valid for a 
broad range of taxa and habitats. On the other hand, coarse resolution 
climatic variables interpolated over homogeneous landscapes may be 
sufficient for specific situations (Fick & Hijmans, 2017) that are un-
likely to benefit from a multiscale approach.
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