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Abstract It remains challenging to understand why some hosts suffer severe illnesses, while

others are unscathed by the same infection. We fitted a mathematical model to longitudinal

measurements of parasite and red blood cell density in murine hosts from diverse genetic

backgrounds to identify aspects of within-host interactions that explain variation in host resilience

and survival during acute malaria infection. Among eight mouse strains that collectively span 90%

of the common genetic diversity of laboratory mice, we found that high host mortality was

associated with either weak parasite clearance, or a strong, yet imprecise response that

inadvertently removes uninfected cells in excess. Subsequent cross-sectional cytokine assays

revealed that the two distinct functional mechanisms of poor survival were underpinned by low

expression of either pro- or anti-inflammatory cytokines, respectively. By combining mathematical

modelling and molecular immunology assays, our study uncovered proximate mechanisms of

diverse infection outcomes across multiple host strains and biological scales.

Introduction
In human malaria, infection outcomes range widely from sub-clinical to fatal. While it is difficult to

disentangle the factors contributing to this variation in resilience to malaria, host genetics is a major

determinant (Hernandez-Valladares et al., 2005; López et al., 2010; Hedrick, 2011). Even in

experimental rodent malaria infections, where environment, diet, and as many other factors as possi-

ble are highly controlled, different mouse strains infected with the same strain of Plasmodium cha-

baudi demonstrate remarkable variation in infection dynamics and malaria mortality. Among eight

strains of inbred laboratory mice (129S1/SvImJ, A/J, C57BL/6, CAST/EiJ, NOD/ShiLtJ, NZO/HILtJ,

PWK/PhJ, WSB/EiJ) that collectively span 90% of the mouse genetic diversity commonly used in lab-

oratory experiments (Roberts et al., 2007), survival from malaria infection ranges from less than 5–

100% (Figure 1). Underlying this survival variation are likely differences in functional properties of

within-host ecology (i.e. parasite growth, parasite clearance, and replenishment of red blood cells

[RBCs]), which are difficult to measure directly. However, longitudinal measurements of host health

and parasite burden can inform processes of within-host ecology (i.e. RBCs and infected red blood

cells (iRBCs), respectively, in malaria infections). For example, a ‘disease curve’ — longitudinal data

of health and parasites plotted against each other in a phase plane — helps visualise the process of

parasite growth, host sickness and recovery at the individual host level (Figure 2; Schneider, 2011).

Furthermore, a mathematical model fitted to these data can predict particular functional mecha-

nisms (e.g. parasite proliferation [Mideo et al., 2011], specific versus non-specific immunity

[Wale et al., 2019] and dose-dependent host responses [Haydon et al., 2003; Metcalf et al., 2011;

Kamiya, Davis, et al. eLife 2021;10:e65846. DOI: https://doi.org/10.7554/eLife.65846 1 of 24

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.65846
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


Kamiya et al., 2020]) that lead to divergent infection dynamics (Mideo et al., 2008a; Metcalf et al.,

2012). These model predictions can then be independently tested by follow-up experiments: for

example, Mideo et al., 2011 chemically manipulated RBC replenishment to interrogate the role of

RBC age structure in parasite growth predicted by a previous model (Mideo et al., 2008b). Cru-

cially, however, model predictions of host immune responses against malaria are rarely examined

together with immunological data. Thus, it remains unclear whether and how modelled responses at

the level of within-host ecology (e.g. rate of parasite clearance) are linked to observable quantities

at the cellular and molecular levels (e.g. cytokines).

The immune system is a critical proximate mechanism of host genetic resilience to infection

(López et al., 2010). Failure to mount a robust immune response can lead to unchecked parasite

proliferation, while dysregulated responses may cause collateral damage, that is, immunopathology.

While the benefit of immune protection often outweighs any costs associated with these responses

(Sorci et al., 2017), severe outcomes of many infectious diseases are a consequence of immunopa-

thology rather than direct damage caused by parasites (Graham et al., 2005). Thus, a ‘healthy’

immune response requires striking a delicate balance.

During the acute phase of blood-stage malaria infection, innate responses target and remove

iRBCs as well as short-lived extracellular parasites known as merozoites (Stevenson and Riley,

2004). In addition, RBCs — regardless of infection status — are susceptible to clearance by immune

effectors such as macrophages (Jakeman et al., 1999; Chua et al., 2013). While the targeted

response removes more iRBCs, data-driven modelling studies highlight the importance of indiscrimi-

nate RBC clearance for lowering parasite burden (Wale et al., 2019; Kamiya et al., 2020;
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Figure 1. Proportion of mice surviving over the course of infections initiated with 105P. chabaudi AJ parasites. Eight mouse strains are shown (with total

sample sizes given in parentheses): WSB/EiJ (30), 129S1/SvImJ (10), NZO/HILtJ (10), C57BL/6 (20), CAST/EiJ (32), NOD/ShiLtJ (15), A/J (15), and PWK/

PhJ (22). The dataset is a compilation of two experiments (Davis et al., 2021 and Gupta et al. unpublished). The lines for WSB/EiJ, 129S1/SvImJ and

NZO/HILtJ are jittered as 100% of mice of each strain survived for 15 days.
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Figure 2. Longitudinal data of infection contain features of within-host ecology that influence infection outcomes. In a phase plot bound by parasite

burden and host health (i.e. disease space, sensu [Schneider, 2011; Torres et al., 2016]), infection progresses clockwise from the top-left corner (i.e.

many RBCs, few iRBCs). Top left panel illustrates common trajectories. Following a rapid parasite growth phase (rightward movement along the x-axis),

host health deteriorates (downward movement along the y-axis) during acute malaria infection. In the meantime, the parasite density starts to decline

due to resource limitation and/or upregulated immunity. If a host is resilient, the trajectory tends towards the starting healthy state as parasites further

decline and RBCs are replenished (path a, light grey). In contrast, the damage to host health may be irreparable in non-resilient hosts (path b, dark

grey) (Schneider, 2011). The small, coloured plots at the bottom show the empirically observed trajectories of the first wave of malaria infection in 80

mice across eight strains in disease space, with the densities of iRBCs and RBCs on the x- and y-axis, respectively. The top right panel shows the

median trajectory of the eight strains. Generally speaking, highly resilient strains (WSB/EiJ, 129S1/SvImJ, NZO/HILtJ, C57BL/6) follow path a, and less

resilient strains (CAST/EiJ, NOD/ShiLtJ, A/J, PWK/PhJ) follow path b.
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Metcalf et al., 2012; Miller et al., 2010). Functionally, this host-driven destruction of RBCs can have

both favourable and unfavourable consequences for host health. On the one hand, it has been pro-

posed as a host adaptation in the presence of malaria parasites to clear the parasites directly (i.e.

top-down effect) as well as to limit resources for the parasite (i.e. bottom-up effect) (Wale et al.,

2019; Haydon et al., 2003; Metcalf et al., 2012; Cromer et al., 2009). On the other hand, an

excessive loss of RBCs brings forth adverse health implications. In immune naive infants and children,

severe malarial anaemia is the most common severe manifestation of disease, and its associated

mortality rate can reach 30% (Perkins et al., 2011). A variety of processes cause malaria-related

anaemia, including loss due to parasite exploitation, RBC clearance (e.g. phagocytosis of both

infected and uninfected cells), suppression of RBC production, and defective RBC development

(Chua et al., 2013). Among them, clearance is the most important process, accounting for between

75% and 90% of the total RBC deficit during malaria infections (Jakeman et al., 1999). In compari-

son, direct exploitation by malaria parasites has been estimated to account for less than 10% of the

RBC deficit (Jakeman et al., 1999; Price et al., 2001; Fonseca et al., 2016).

At the molecular level, vertebrate host responses are regulated by immune signalling molecules,

known as cytokines (Lamb et al., 2006). Acute malaria infection induces pro-inflammatory cytokines

required for mounting a timely and robust response while anti-inflammatory cytokines inhibit excess

immune reactions to safeguard against collateral damage (Lamb et al., 2006). For instance, tumour

necrosis factor alpha (TNF�a) and interferon-gamma (IFN�g), are pro-inflammatory cytokines

responsible for a myriad of inflammatory responses, including the production of nitric oxide and

reactive oxygen species (Bouharoun-Tayoun et al., 1995; Bogdan et al., 2000), which are associ-

ated with rapid clearance of P. falciparum, the deadliest human malaria parasite (Rockett et al.,

1992; Kremsner et al., 1995; Mordmüller et al., 1997; Hernandez-Valladares et al., 2006;

Franklin et al., 2007). However, the same inflammatory responses can also be damaging to the

organisms that produce them (Clark et al., 1991; King and Lamb, 2015). For example, TNF-a over-

production — which can result from a deficit of anti-inflammatory cytokines like interleukin 10 (IL-10)

and transforming growth factor-beta (TGF-b) — could lead to adverse effects including worsened

anaemia, weight loss and survival in the mouse model (Omer and Riley, 1998; Li et al., 2003;

Long et al., 2006; Long et al., 2008). Balanced expression of these cytokines is likely a mechanism

that promotes resilience (survival) to malaria infection. However, mechanistic studies usually focus on

just one or two inbred mouse strains with similar cytokine responses, limiting our ability to link

molecular signatures with functional variation in host traits (e.g. indiscriminate versus targeted RBC

clearance) that impacts the infection dynamics.

To uncover the functional mechanisms underlying malaria survival and variation thereof, we for-

mulated a mathematical model of within-host malaria ecology that describes the asexual replicative

cycle and qualitatively distinct components of host immunity (Figure 3). Rather than aiming for a

mechanistically precise description of host immunity, we employed a simple mathematical model to

track the net effects of host responses, that is, clearance rate of iRBCs and RBCs (Kamiya et al.,

2020; Figure 3a). Using a hierarchical Bayesian approach, we fitted the model to longitudinal data

of RBCs and iRBCs from eight mouse strains with varied resilience to P. chabaudi. We then examined

cross-sectional cytokine data from the same eight strains to uncover the molecular underpinnings of

our model predictions.

Results and discussion

Functional mechanisms underlying resilience to malaria
Our mathematical model of within-host malaria infection accurately described the time-course of

RBCs and iRBCs during the acute phase of malaria infection in all mouse strains (Appendices 1 and

2). Several estimated model parameters varied with mouse strain (Figure 4). To characterise these

multivariate, within-host ecological differences, we carried out principal component analysis (PCA)

on the estimated parameter set, q. We found several clusters that distinguished mouse strains

revealing functional diversity of host resilience to malaria infection (Figure 5).

First, we identified C57BL/6 (80% survival; Figure 1) as the most ‘functionally average’ of the

eight strains, indicated by the most central position in the PCA biplot (Figure 5) and near-zero esti-

mates for strain-specificity, s (Figure 4a). Two fully resilient (100% survival) strains, 129S1/SvImJ and
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NZO/HILtJ, were functionally similar to C57BL/6, but 129S1/SvImJ showed a slightly smaller parasite

burst size, b, and higher background RBC clearance during infection, �0R, while NZO/HILtJ showed

slightly higher activation of both the indiscriminate response ( N1
) and lower propensity to replenish

RBCs, r (Figure 4b). These subtle functional differences contribute to suppressing parasite density

and likely promote better resistance and survival outcomes, at least against this particular parasite

genotype (Figure 1).

In addition to having the highest propensity to activate targeted clearance of iRBCs (highest  N2
),

WSB/EiJ, another fully resilient strain, demonstrated the smallest burst size, b (Figure 4). While we

found a general negative association between b and host survival (Figure 4) — with a notable excep-

tion of PWK/PhJ mice — little is documented on the host’s contribution to variation in iRBC burst

size. One host factor that could affect parasite burst size is intrinsic differences in RBC properties

among mouse strains. For example, the flow cytometry marker, TER119, a standard marker for

mouse erythroid cells, works poorly with WSB/EiJ, hinting at a possible difference in RBC surface

proteins (Davis, personal observation). WSB/EiJ also showed the highest capacity to increase back-

ground RBC mortality during infection, �0R, which contributes to limiting parasite growth through

lowered resource availability. Overall, WSB/EiJ excelled in every facet of resilience against P. cha-

baudi AJ and maintained comparatively much lower iRBC densities (Figure 2). Infection resilience in

this mouse strain may generalise to other malaria parasites, including P. berghei (Bopp et al., 2010),

yet interestingly, these mice are highly vulnerable to Salmonella infections (Zhang et al., 2019).
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Infected red blood cells, I
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maturation
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b. Within-host infection ecologya. Regulation of host responses
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Figure 3. Model schematics. (a) A dynamical regulation model of host responses against blood-stage malaria. We condensed the complexity of the

vertebrate acute innate response against malaria into two independent pathways responsible for general RBC clearance and targeted iRBC clearance

(represented by the yellow and green block, respectively). Activation of each response occurs when the host detects the presence of pathogen-

associated molecular patterns (PAMPs): f1 and f2 are linear functions of the iRBC density. For general RBC clearance, the activity resets daily. In contrast,

the activity of the targeted responses against iRBCs accumulates over multiple days (see methods for further explanation). The output of each host

response feeds back to influence the within-host infection dynamics (indicated by the coloured arrows in panel b). (b) Dynamics of RBCs and blood-

stage malaria parasites within the host. Recruitment into and transitions among components of the asexual cycle are indicated with black arrows. Grey

arrows indicate background mortality for different components. General clearance of RBCs and targeted clearance of iRBCs are marked with yellow and

green arrows, respectively. Replenishment of RBCs (erythropoiesis) is indicated in blue.
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s, in each parameter of the set � 3 ð�0R; �00R; �;  N1
;  N2

;bÞ. The eight strains are ordered according to overall survival percentage from the top (see

Figure 1). The average parameter value across the eight strains is indicated by s ¼ 0. (b) Ordered parameter stacks show functional similarities and

differences between individual mice of different strains (indicated by colours). Each slice of a stack represents the median estimate for an individual

mouse.
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Three less resilient strains (CAST/EiJ, NOD/ShiLtJ, and PWK/PhJ) clustered together in the PCA

biplot (Figure 5), indicating their functional similarity. We found a combination of top-down

(immune-mediated) and bottom-up (resource-mediated) factors that distinguish these strains from

the rest. Specifically, they showed low propensity to trigger a targeted immune response (low  N2
,

which hinders effective parasite clearance) and high erythropoiesis during infection (high r and �00R,

which may inadvertently fuel parasite growth; Figures 4 and 5). Distinguishing moderately poor sur-

viving strains (CAST/EiJ and NOD/ShiLtJ; 72% and 40% survival, respectively) from an extremely

fragile strain (PWK/PhJ; <5% survival) is likely the markedly lower immune activation,  N2
, in the lat-

ter, since other traits were similar among the three strains.

Finally, the A/J mouse strain showed the strongest activation of indiscriminate RBC clearance,  N1

and the second-highest activation of the targeted response,  N2
(Figure 4b). Given the poor resil-

ience of these mice (20% survival; Figure 1), general RBC clearance is likely harmful, at least in this

strain of mice. While the host potentially stands to benefit from destroying RBCs by removing some

iRBCs and taking the resource away from malaria parasites, this ‘scorched-earth tactic’ (Wale et al.,
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2019) could remove healthy RBCs in excess and trigger severe anaemia that causes host mortality.

The significant role of indiscriminate RBC clearance on severe anaemia is empirically supported by a

study that demonstrated a high turnover of transfused RBCs in BALB/c mice infected with P. berghei

(Evans et al., 2006). The clearance was likely immune-mediated as severe anaemia was alleviated by

depletion of immune cells (Evans et al., 2006). Another study observed lower young RBC (i.e., retic-

ulocyte) counts in A/J mice and postulated that these mice are defective in the production of new

RBCs during malaria infection (Chang et al., 2004). This is consistent with our model prediction that,

among poorly resilient strains, A/J mice showed the lowest propensity to upregulate erythropoiesis

(lower r values, relative to CAST/EiJ, NOD/ShiLtJ, and PWK/PhJ; Figure 4). Together with our find-

ing that A/J mice mount a stronger response than other poorly resilient strains (Figure 4), the lower

r values in A/J mice may reflect the inhibitory effect of inflammation on the steady-state erythropoi-

esis that takes place in the bone marrow (Morceau et al., 2009). As the interactions between inflam-

mation and erythropoiesis are complex (e.g., inflammatory responses also induce stress

erythropoiesis in the spleen [Paulson et al., 2020] and erythropoietin [EPO, cytokine primarily

responsible for RBC production] inhibits inflammation [Nairz et al., 2012]), further investigation is

needed to better understand the net impact of malaria-induced immune responses on RBC

production.

The potentially negative impact of RBC clearance highlights vital implications for clinical interven-

tions against malaria. First, blood transfusion or EPO injection to replenish depleted RBCs in severe

anaemia may be most effective against patients that are particularly prone to indiscriminate RBC

clearance. In fact, timely EPO injection alleviates anaemia and improves survival in A/J mice

(Chang et al., 2004). However, the same treatment may be less effective against other poorly resil-

ient patients (similar to CAST/EiJ, NOD/ShiLtJ, and PWK/PhJ) whose mortality is attributed to insuf-

ficient immune responses (Figures 4 and 5). Second, the potentially pathological consequence of

indiscriminate RBC clearance should be considered during the development of a blood-stage

malaria vaccine. Alarmingly, the possibility of immunopathology has so far been largely overlooked

Table 1. Description of model parameters and their fixed values, or prior distributions used in Bayesian statistical inference.

Where parameters were estimated (indicated by � on the description), we assigned generic priors (for immune parameters,  N1
and

 N2
, and hyperpriors ss and su) and weakly informative priors centred around specific estimates from previous studies for the rest.

Symbol Description Fixed value or prior Source

Host responses

r Proportion of deviation from Rc restored per day * 0:25� expðN ð0; 1ÞÞ Miller et al., 2010

 N1
Activation strength of indiscriminate RBC clearance * expðN ð0; 1ÞÞ

 N2
Activation strength of targeted iRBC clearance * expðN ð0; 1ÞÞ

Within-host infection dynamics

Rc RBC density at homeostatic equilibrium RBCðt¼0Þ data

Imax Maximum iRBC density observed 2:65� 10
6 per microliter data

�R Daily background RBC mortality rate 0.025 Miller et al., 2010

�0R Daily background RBC mortality rate (during infection) * 0:025� expðN ð0; 1ÞÞ Miller et al., 2010

�00R Density-independent RBC replenishment rate (during infection) * 0:025� expðN ð0; 1ÞÞ Miller et al., 2010

b Parasite burst size * 7� expðN ð0; 1ÞÞ Miller et al., 2010

p Merozoite invasion rate 1:5� 10
�5 per day Mideo et al., 2011

�M Merozoite mortality rate 48 per day McAlister, 1977

Hyperpriors

ss Standard deviations for strain-level variation expðN ð0; 1ÞÞ
su Standard deviations for individual-level variation expðN ð0; 1ÞÞ
Measurement errors

sRBC Standard deviation for total RBC density * 5� 10
5 � expðN ð0; 1ÞÞ Miller et al., 2010

siRBC Standard deviation for log10 iRBC count * 0:2� expðN ð0; 1ÞÞ Mideo et al., 2008b
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in the vaccine development process (Stanisic and Good, 2016). It is pertinent to ensure that vac-

cine-triggered immunity that helps clear malaria parasites also avoids immunopathology, including

severe anaemia. In summary, our model predicted that poor survival was associated with hosts with

the weakest activation of the targeted response (in CAST/EiJ, NOD/ShiLtJ and PWK/PhJ), or the

strongest activation of the indiscriminate response (in A/J). Thus, the host’s ability to mount a pre-

cise response to clear parasites is likely a major determinant of host survival.

Cytokine assays uncover molecular variation in immune responses
As our mathematical model identified the strength and precision of host immunity as the key func-

tional motif of malaria resilience, we carried out a separate cross-sectional assay (with destructive

sampling) and characterised the expression patterns of pro- and anti-inflammatory cytokines (i.e.

immune signalling molecules), which play a pivotal role in regulating immune responses (Figure 6).

Notably, pro-inflammatory cytokines such as TNF-a and IFN-g impact malaria parasite clearance,

while anti-inflammatory cytokines like IL-10 and TGF-b are crucial for limiting inflammation and

immunopathology (Artavanis-Tsakonas et al., 2003).

In general, resilient strains (WSB/EiJ, 129S1/SvImJ, NZO/HILtJ, C57BL/6) showed a higher level of

cytokine activity (both pro- and anti-inflammatory; Figure 6a,b and c) while poorly resilient strains

showed either a relatively stunted activity (CAST/EiJ and PWK/PhJ), or tendency towards pro-inflam-

matory biased expression (NOD/ShiLtJ and A/J). These findings provided explanations at the molec-

ular level that dovetail with our model inference about the variation in the strength and precision of

the net effect of immune responses in these strains. Specifically, the model predicted that the highly

resilient mouse strains 129S1/SvImJ, NZO/HILtJ and to a large extent C57BL/6, activate the targeted

response more strongly than the less resilient CAST/EiJ, NOD/ShiLtJ, and PWK/PhJ. This prediction

was consistent with the higher expression of pro-inflammatory cytokines in these strains (Figure 6a,b

and c), in comparison to two of the lesser resilient strains (CAST/EiJ and PWK/PhJ) for which we pre-

dicted weak immune responses (Figures 4 and 5). Importantly, in the three strains that show higher

survival (129S1/SvImJ, NZO/HILtJ, and C57BL/6), the robust expression of TNF-a and IFN-g was

matched by equally robust expression of IL-10 and TGF-b (Figure 6d), which inhibit overproduction

of immune effectors (Artavanis-Tsakonas et al., 2003). Less resilient CAST/EiJ and PWK/PhJ

showed a comparatively low expression of both pro- and anti-inflammatory cytokines (Figure 6a,b

and c). The lower pro-inflammatory cytokine expression draws a parallel with our modelling results

that CAST/EiJ and PWK/PhJ show comparatively weaker immune activation (Figure 4).

We found signs of pro-inflammatory bias in the cytokine expressions of NOD/ShiLtJ and A/J (Fig-

ure 6), both of which are poorly resilient at 40% and 20% survival, respectively (Figure 1). In these

strains, we observed elevated expression of pro-inflammatory cytokines (particularly IFN-g ) without a

matched increase in anti-inflammatory responses (Figure 6b,c and d), which inhibit overproduction

of immune effectors (Artavanis-Tsakonas et al., 2003). For the A/J mice, our model predicted

strong immune responses, both indiscriminate and targeted (high  N1
and  N2

; Figure 4), consistent

with the expectation that a pro-inflammatory bias leads to strong host responses (King and Lamb,

2015). However, immunoregulatory imbalance is also associated with immunopathology during

malaria infections (King and Lamb, 2015). In particular, overproduction of immune effectors could

cause collateral host tissue damage and excessive indiscriminate RBC clearance may lead to severe

anaemia. Although generally less pronounced than A/J, resilient strains NZO/HILtJ and C57BL/6 also

showed a relatively high ratio of pro- to anto-inflammatory cytokines (Figure 6d). Our model pre-

dicted that AJ, NZO/HILtJ, and C57BL/6 also exhibit strong activation of indiscriminate RBC clear-

ance (high  N1
; Figure 4). Thus, our modelling results and cytokine assays together suggest a causal

link between the strength of host-driven destruction of RBCs — which may be both beneficial and

detrimental to the host (Wale et al., 2019; Perkins et al., 2011) — and the underlying pro-inflam-

matory bias (Figure 6d). At first glance, our model prediction that NOD/ShiLtJ mice trigger weaker

than average immune activation (low  N1
and  N2

; Figure 4) appears incongruent with the strong rel-

ative expression of pro-inflammatory cytokines (Figure 6d). However, NOD mice are documented

for immunodeficiencies downstream of inflammatory cytokines: for example, severely reduced natu-

ral killer cell activity (Kataoka et al., 1983), hyporesponsiveness of macrophages to growth factors

and IFN-g (Serreze et al., 1993), and defective development of antigen-presenting dendritic cells

(Pearson et al., 2003). Thus, our model prediction and cytokine assay together indicate that
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Figure 6. Distinct expression patterns of pro (TNF-a and IFN-g) and anti-inflammatory cytokines (IL-10 and TGF-b) in eight mouse strains infected with

P. chabaudi show that host resilience to malaria infection is linked to the strength and balance in cytokine expressions. Raw temporal expression

intensity in (a) uninfected control and (b) infected mice between day 3 and 9 post-infection. (c) The intensity of cytokine expression scaled by the

median iRBC density of the strain per day. A higher value indicates higher propensity to express cytokines against the same density of parasites on a

given day. (d) The ratio of pro- to anti-inflammatory cytokine expressions. Shown are additive expressions (i.e. TNF-a + IFN-g and IL-10 + TGF-b), but

Figure 6 continued on next page
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inflammatory responses at the molecular level failed to translate functionally to effective clearance of

malaria parasites.

We observed low raw intensity of both pro- and anti-inflammatory cytokines in WSB/EiJ

(Figure 6b), for which our model predicted exceptional parasite control (through small parasite burst

size and high parasite clearance, low b and high  N2
) and resource suppression (heightened RBC

mortality, high �0R; Figures 4 and 5). At first, low cytokine intensity appeared to be at odds with high

parasite clearance. However, it is worth highlighting that the WSB/EiJ mice experience exceptionally

low iRBC density (Figure 2) and hence the cue for triggering cytokine production remains low.

When scaled by the iRBC density, it becomes apparent that the propensity of WSB/EiJ to express

both pro- and anti-inflammatory cytokines generally exceeds that of other resilient strains

(Figure 6d). Further studies are needed to empirically determine what explains the exceptionally low

iRBC density in this strain. However, our modelling results suggest that mechanisms other than

inflammation may also facilitate WSB/EiJ’s resilience: for example, small parasite burst size, low b,

may be linked to natural RBC resistance to parasite invasion (Taylor and Fairhurst, 2014).

Overall, cytokine assays complemented mathematical modelling by uncovering variation in molec-

ular mechanisms that underlies functional differences among host strains that show diverse infection

outcomes. Host resilience to Plasmodium infection was linked to a balanced expression of pro- and

anti-inflammatory cytokines. Poorly resilient strains either showed stunted activation of pro-inflam-

matory cytokines associated with insufficient parasite control, or pro-inflammatory bias that has

been implicated in immunopathology (Artavanis-Tsakonas et al., 2003).

Conclusion
It is well documented that immune responses are a key host factor influencing protection from

malaria infections (López et al., 2010). However, it remains difficult to relate health outcomes to the

underlying variation in host immunity because parasite load, immune regulation and host health are

intertwined and are variable over time. Over the past two decades, several dynamical models have

inferred mechanisms of complex within-host ecological interactions from longitudinal data of para-

site load and RBCs (i.e. parasite resource and indicator of host health) in the rodent malaria system

(e.g. Haydon et al., 2003; Mideo et al., 2008b; Kochin et al., 2010; Miller et al., 2010;

Mideo et al., 2011; Metcalf et al., 2011; Metcalf et al., 2012; Santhanam et al., 2014;

Wale et al., 2019; Kamiya et al., 2020). However, a knowledge gap exists between what is empiri-

cally measurable (at the molecular and cellular level, for example immune molecules and cells) to

what is functionally important to infection dynamics (at the within-host ecological level, for example

net effect of parasite clearance). At the within-host ecological level, our dynamical modelling of

infection revealed that better host survival during malaria infection was associated with precisely tar-

geted, robust clearance of blood-stage parasites. Using cross-sectional cytokine assays, we uncov-

ered well-regulated inflammatory cytokine expressions are key molecular signatures of inbred mouse

strains that survive malaria infections. By augmenting mathematical modelling of within-host ecology

with cross-sectional cytokine assays, our study narrows the gap between functional and molecular

mechanisms of host resilience to malaria infection.

Materials and methods

Data
Mouse strains
Mice were purchased from Jackson Laboratories (WSB/EiJ stock #001145), 129S1/SvImJ stock

#002448, NZO/HILtJ stock #002105, CAST/EiJ stock #000928, A/J stock #000646, NOD/ ShiLtJ

stock #001976, and PWK/PhJ stock #003715 and Charles River (C57BL/6). A subset of mice (WSB/

EiJ, NZO/HILtJ, and PWK/PhJ) were also bred in-house at Stanford University. Animals were housed

Figure 6 continued

multiplicative expression patterns (i.e. TNF-a � IFN-g and IL-10 � TGF-b) were qualitatively identical (results not shown). The points and error bars are

the means and standard deviations, respectively. For each day, the strains are ordered from left to right according to host survival as listed in Figure 1.
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in the Stanford Research Animal Facility according to Stanford University guidelines. All mouse

experiments were approved by the Stanford Administrative Panel on Laboratory Care (APLAC).

Infection with P. chabaudi
We administered the AJ strain of Plasmodium chabaudi to the experimental animals at a dose of 105

iRBCs and monitored infections longitudinally, for 15 days, as previously described (Torres et al.,

2016). RBCs were quantified using a BD Accuri C6 Plus cytometer. We quantified parasitemia (i.e.

proportion of RBCs infected) via thin blood smears and manual microscope counting. We report par-

asite density as the number of iRBCs per microliter of blood, which was calculated by multiplying

parasitemia by the number of total RBCs per microliter of blood. Survival was monitored daily until

day 15 post-infection.

Cross-sectional cytokine assay
We infected mice with P. chabaudi as described above. For cross-sectional sampling, between three

and five infected mice of each strain were euthanised each day between 10 am and 2 pm from days

3 to 12 post-infection. For each mouse strain, two uninfected control animals were euthanised at

baseline and generally on odd-numbered days. Following euthanasia, 75 microliters of plasma was

used for immunoassay using the mouse 38-plex kit (eBiosciences/Affymetrix). Further details are

available from Davis et al., 2021.

Model
Dynamical model of malaria asexual cycle
In the experiment, mice were inoculated with iRBCs. Synchronously at midnight, the initial cohort of

iRBCs rupture, releasing a new generation of merozoites into the bloodstream (Paul et al., 2003).

These merozoites then rapidly invade further RBCs where the parasites develop to release the next

generation of merozoites with a 24 hr interval. We assumed that regulation of immune responses

takes place continuously throughout the day (0<t � 1 where t is the fraction of a day) and demo-

graphic processes of the host and parasite (i.e., turnover of RBCs, iRBC bursting and RBC invasion

by merozoites) happen at the end of each day at midnight (t ¼ 1).

Regulation of host responses
Malaria infection triggers a variety of host responses (Stevenson and Riley, 2004; Price et al.,

2001; Castro-Gomes et al., 2014), of which we considered two previously identified as the most

quantitatively important: indiscriminate clearance of RBCs and targeted clearance of iRBCs

(Miller et al., 2010). Similar to previous studies (Kochin et al., 2010; Kamiya et al., 2020), consider

a set of ordinary differential equations tracking the change in the rate of activity of each response

Ni, where i indicates the type of response (i.e. general RBC clearance, i ¼ 1; targeted iRBC clear-

ance, i ¼ 2):

dNiðtÞ
dt

¼  Ni

IðtÞ
Imax

� fNi
NiðtÞ; (1)

where  Ni
and fNi

are the activation and decay strength of Ni, respectively. Assuming that the abun-

dance of iRBCs reflects that of pathogen-associated molecular patterns (PAMPs), we defined the

scaled density of iRBCs,
IðtÞ
Imax

, as the within-host cue driving these responses, where Imax is the maxi-

mum observed iRBC density in the experiment. We assumed that there is no activity in the absence

of infection, consequently there is no constitutive immunity in this model. Because demographic

events are formulated in discrete time with a unit of one day, the iRBC density on day d, is assumed

a constant during the time scale of immune regulation (i.e. 0<t� 1). Previous estimates indicate that

the response activity of indiscriminate clearance decays in approximately one day while the targeted

response decays with a half-life an order of magnitude longer than the duration of the acute phase

of infection (Kamiya et al., 2020): mean half-life of 0.96 and 332.6 days, respectively. Based on

these estimates, we made the following simplifying assumptions, eliminating parameters fN1
and

fN2
: the indiscriminate activity decays at one day following the Dirac-delta distribution and the tar-

geted activity does not decay during the acute phase. Consequently, we can reformulate Equation 1
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in discrete-time, assuming that the former response resets daily while the latter accumulates over

multiple days without any decay:

N1ðd;t¼1Þ ¼  N1
� Iðd;t¼0Þ

Imax
(2)

N2ðd;t¼1Þ ¼ N2
� Iðd;t¼0Þ

Imax
þN2ðd;t¼0Þ: (3)

Turnover of RBCs
The first event at the end of the day (t ¼ 1), is clearance and replenishment of RBCs. In the absence

of infection, we assumed that RBCs are subjected to background RBC mortality, �R. The host repla-

ces RBCs lost to baseline cell mortality by producing Rcð1� e��RÞ new RBCs, where Rc is the RBC

density at homeostatic equilibrium, assumed equal to the RBC density measured per mouse before

parasite inoculation. While we have prior information on baseline mortality and replenishment in the

absence of infection (i.e. �R; Van Putten and Croon, 1958; Foster et al., 2014), we fitted two new

parameters (�0R and �00R, respectively) that allow these processes to be qualitatively different during

infection. Our motivation for this was the following. First, during malaria infection experiments, RBCs

are lost to daily blood sampling and perhaps handling related stress. Second, fitting �0R allows for

the possibility that some indiscriminate clearance of RBCs is independent of iRBC dynamics (unlike in

Equation 2). Third, there is evidence that erythropoiesis is downregulated during malaria infection

(Wale et al., 2019), and fitting �00R allowed us to capture this possibility.

Indiscriminate RBC clearance, due to the action of the immune response, occurs at a daily rate

N1ðd;t¼1Þ. In addition to baseline replenishment of RBCs (governed by �00R as described above), RBCs

are produced in a density-dependent manner during infection to restore the RBC population

(Chang et al., 2004) with a time-lag of 2–3 days before the newly produced RBCs are released in

the bloodstream (Savill et al., 2009). Here assuming a 2-day lag (indicated by d � 2), the host produ-

ces a fraction r of the deviation from RBC density at Rc. Infected cells incur an additional rate of

mortality, N2ðd;t¼1Þ through targeted killing. Together, the turnover of RBCs is expressed as:

Rðd;t¼1Þ ¼ Rðd;t¼0Þ e
�ð�0

R
þN1ðd;t¼1ÞÞþRcð1� e��

00
RÞþ �ðRc �ðRðd�2;t¼1Þþ Iðd�2;t¼1ÞÞÞ (4)

Iðd;t¼1Þ ¼ Iðd;t¼0Þ e
�ð�0

R
þN1ð;t¼1ÞþN2ðd;t¼1ÞÞ; (5)

where Rðd;t¼1Þ and Iðd;t¼1Þ are the post-turnover densities.

iRBC bursting
Given synchronous iRBC bursting and the short lifespan of merozoites relative to the length of a

day, we modelled iRBC bursting and merozoite invasion as instantaneous events. As iRBCs rupture

and release merozoites into the bloodstream at midnight (t ¼ 1), the density of merozoites, Mðd;t¼1Þ
equals b Iðd;t¼1Þ where b is the parasite burst size per iRBC.

RBC invasion by merozoites
Upon release, a merozoite either invades an uninfected red blood cell (uRBC), Rðd;t¼1Þ, at a per capita

invasion rate p, or it gets cleared before invasion, with a short halflife of 1/mM (~30 min [McAlis-

ter, 1977]). For simplicity, we ignore infections of RBCs by multiple merozoites. Thus, the probability

that a given merozoite successfully invades an uRBC is:

pRðd;t¼1Þ
pRðd;t¼1Þþ�M

: (6)

Multiplying the probability by the density of merozoites, and dividing by Rðd;t¼1Þ, the average

number of invading merozoites per uRBC, l is:

l¼ Mðd;t¼1Þ
Rðd;t¼1Þþ �M

p

: (7)
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We assumed that the probability of RBC invasion by merozoites is Poisson-distributed with

parameter l, that is, ProbðinvasionbykmezoroitesÞ ¼ lk e�l

k!
(Miller et al., 2010; Mideo et al., 2011).

Thus, the probability that a given uRBC gets invaded by a merozoite (i.e. k¼ 1) is le�l and the prob-

ability that an uRBC escapes merozoite invasion altogether (i.e. k¼ 0) is e�l. Ignoring infections of

RBCs by multiple merozoites, it follows that the numbers of uRBCs and iRBCs after merozoite inva-

sion (i.e. R�
ðd;t¼1Þ and I�ðd;t¼1Þ with the asterisk denoting the post-invasion densities) are:

R�
ðd;t¼1Þ ¼ Rðd;t¼1Þ e

�l (8)

I�ðd;t¼1Þ ¼ Rðd;t¼1Þle
�l: (9)

Hierarchical Bayesian inference
We fitted the above within-host infection model to the corresponding longitudinal data from 80

mice using a Bayesian statistical approach, which allows for parameter estimation in high dimen-

sional spaces, for example, in hierarchical models where observations are organised in multiple levels

of sampling units (Mugglin et al., 2002; Cressie et al., 2009). In this study, there are two levels of

sampling units: mouse strains and subjects (i.e. individual mice).

Strain-specific and individual variation
We estimated host strain- and individual-specific effects in a set of nine fitted parameters describing

within-host ecological processes: that is, samples s and u from Nð0;ssÞ and Nð0;suÞ, respectively.
Below, we collectively refer to the parameter set as q (� 3 �0R; �

00
R; �;  N1

;  N2
;b). The prior distributions

for these parameters are provided in Table 1.

Likelihood
A Bayesian approach requires a likelihood function to assess the probability of observing the data

given model parameters and associated predictions. Our log-likelihood function assumed that the

measurement error for the total density of RBCs (i.e. sum of uRBCs and iRBCs), and iRBCs is distrib-

uted normally and log10-normally, respectively (Mideo et al., 2008b; Mideo et al., 2011):

lnL ¼
X

nmice

i

f
X

ndays

d

lnf 1

sRBC

ffiffiffiffiffiffi

2p
p exp½ �

ðDRBC
i;d �MRBC

i;d Þ2

2ðsRBCÞ2
�g

þ
X

ndays

d

lnf 1

siRBC

ffiffiffiffiffiffi

2p
p exp½�

ðlog10ðDiRBC
i;d þ 1Þ� log10ðMiRBC

i;d þ 1ÞÞ2

2ðsiRBCÞ2
�gg

(10)

where DRBC
i;d and DiRBC

i;d are the observed count of total RBCs and iRBCs, MRBC
i;d and MiRBC

i;d are the

model predictions of total RBCs and iRBCs for individual i at day d. We estimated standard devia-

tions, sRBC and siRBC for the total RBC and iRBC count, respectively, with specific informative priors

(Mideo et al., 2008b; Miller et al., 2010; Table 1). Our modelling focused on the first wave of infec-

tion, thus we fitted data up to two weeks post-infection (ndays ¼ 14 at maximum). In mice that suc-

cumbed to infection, we fitted the model to data until the last sampling prior to death.

MCMC sampling
Estimating the posterior probability density of parameters of a complex model requires a Markov

Chain Monte Carlo (MCMC) sampling algorithm. Our model was written in Stan 2.21.2 and fitted

through the RStan interface (Carpenter et al., 2017; Stan Development Team, 2019), which pro-

vides an efficient, general-purpose MCMC sampler (No-U-Turn Hamiltonian Monte Carlo) and a

Bayesian inference environment. The model was fitted in parallel in four independent chains, each

with 3000 sampled iterations and 1000 warmup iterations. For diagnostics, we confirmed over 400

effective samples and ensured convergence of independent chains using the R̂ metric (values below

1.1 are considered an indication of multi-chain convergence) for all parameters (Gelman et al.,

2013; Stan Development Team, 2018). We assessed the goodness of fit to data using standardised

residuals (Appendix 1). We also quantified the posterior z-score and posterior contraction to exam-

ine the accuracy and precision of posterior distributions, and the relative strength of data to prior

information (Schad et al., 2021) (Appendix 2).
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Bogdan C, Röllinghoff M, Diefenbach A. 2000. Reactive oxygen and reactive nitrogen intermediates in innate and
specific immunity. Current Opinion in Immunology 12:64–76. DOI: https://doi.org/10.1016/s0952-7915(99)
00052-7, PMID: 10679404

Bopp SE, Ramachandran V, Henson K, Luzader A, Lindstrom M, Spooner M, Steffy BM, Suzuki O, Janse C,
Waters AP, Zhou Y, Wiltshire T, Winzeler EA. 2010. Genome wide analysis of inbred mouse lines identifies a
locus containing Ppar-gamma as contributing to enhanced malaria survival. PLOS ONE 5:e10903. DOI: https://
doi.org/10.1371/journal.pone.0010903, PMID: 20531941

Bouharoun-Tayoun H, Oeuvray C, Lunel F, Druilhe P. 1995. Mechanisms underlying the monocyte-mediated
antibody-dependent killing of Plasmodium falciparum asexual blood stages. Journal of Experimental Medicine
182:409–418. DOI: https://doi.org/10.1084/jem.182.2.409

Carpenter B, Gelman A, Hoffman MD, Lee D, Ben Goodrich MB, Brubaker M, Guo J, Li P, Riddell A. 2017. Stan:
a probabilistic programming language. Journal of Statistical Software 76. DOI: https://doi.org/10.18637/jss.
v076.i01

Castro-Gomes T, Mourão LC, Melo GC, Monteiro WM, Lacerda MV, Braga ÉM. 2014. Potential immune
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Appendix 1

Assessment of model fit
Our fitted model accurately describes the daily time course of RBCs and iRBCs during the acute

phase of malaria infection in mice (Appendix 1—figure 1).
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Appendix 1—figure 1. The fit of the dynamical model to the density of RBCs (red) and iRBCs (blue).

Each column corresponds to a mouse strain. The crosses indicate data and grey bands correspond

to 95% predictive intervals of the model, incorporating uncertainty in parameter estimation and

sampling.

To provide a rigorous assessment of the model fit, we examined the standardised residuals for

RBC and iRBC densities following Miller et al., 2010. By integrating over the probability density of

each parameter, F, the marginal standardised residual of each data point i was defined as:

rx;i ¼
1

sx

Z

F

ðxdata;i� xmodel;iðFÞÞdF (11)

where sx is standard deviation of x, which is either RBC or iRBC density. The fit of the dynamical

model to RBC and iRBC density was accurate without a significant sign of bias (Appendix 1—figure

2).
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Appendix 1—figure 2. Standardised model residuals of the dynamical model. Crosses indicate

residuals for individual time series, while red dots indicate the mean; blue dotted lines indicate the

Bonferroni-corrected 95% confidence intervals. Poor fits are indicated by the mean residuals

deviating from confidence intervals.
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Appendix 2

Assessment of posterior and prior distributions
Posterior correlations

Visualising correlations between model parameters aids assessing practical identifiability of a param-

eter set (Gabry and Mahr, 2021), i.e., whether the likelihood function can distinguish between the

contributions from multiple parameters in the set. The absolute correlation coefficients of 0.7 or

larger are generally considered to indicate severe collinearity that adversely affects parameter esti-

mation (Dormann et al., 2013). With no such strong correlation observed, the pairwise correlation

plot indicates that the MCMC algorithm can sample the parameter set q without heavy reliance on

prior information (Appendix 2—figure 1).
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Appendix 2—figure 1. Pairwise correlations of MCMC samples indicate that the parameter set � 3
ð�0R; �00R; �;  N1

;  N2
;bÞ is likely identifiable. The highest correlation coefficient observed was 0.54

between �0R (daily background RBC mortality rate during infection) and �00R (density-independent RBC

replenishment rate during infection).

Posterior accuracy, precision and prior contraction
To provide a rigorous assessment of our Bayesian inference, we leveraged the properties of poste-

rior distributions to interrogate our modelling assumptions. To examine the accuracy and precision
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of posterior distributions, we first generated simulated observations based on the estimated poste-

rior mean parameters. We then refitted our model to the simulated observations (i.e., secondary fit-

ting) to compute the posterior z-score for each parameter, which measures how closely the

posterior recovers the parameters of the true data generating process (Schad et al., 2021):

z¼Esim�Epost

ssim
;

where Epost denotes the posterior mean of the fit to the actual data that we consider the ‘true’

parameter. Esim and ssim denote the mean and standard deviation of the posterior distribution of

the secondary fitting. The smaller the absolute z-score, the closer the bulk of the posterior is to the

true parameter: z-scores beyond the absolute value of three to four may indicate substantial bias

(Schad et al., 2021).

To examine the influence of the likelihood function in relation to prior information, we computed

the posterior contraction:

1�
s2

post

s2

prior

where s2

post and s2

prior correspond to the variance of posterior and prior distributions, respectively.

The posterior contraction values close to zero indicate that data contain little information (i.e., poor

identifiability, rendering priors strongly informative). Conversely, values close to one indicate that

data are much more informative than the prior (Schad et al., 2021).

We found that most of our model parameters — i.e., � 3 ð�0R; �00R; �;  N1
;  N2

;bÞ and hyperpriors ss

and su — were estimated with accuracy, precision and identifiability, with the absolute posterior

z-scores well below three and posterior contraction values beyond 75% for most parameters

(Appendix 2—figure 2). The strain-level variation, ss for � (proportion of anaemia restored per day)

tended towards overfitting with the posterior z-score of �2:99 (Appendix 2—figure 2). Thus, caution

might be warranted when interpreting strain-specific differences in this parameter. One parameter,

�00R (density-independent RBC replenishment rate during infection) showed a comparatively lower

posterior contraction value, yet its posterior distribution contracted by 64.0%, meaning that data still

provided substantial information over the prior distribution (Appendix 2—figure 2).
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Appendix 2—figure 2. The model parameters were estimated with accuracy, precision and identifi-

ability. Posterior z-score (y-axis) measures how closely the posterior recovers the parameters of the

true data generating process and posterior contraction (x-axis) evaluates the influence of the

likelihood function over the prior, respectively. Smaller absolute posterior z-scores indicate that the

posterior accurately recovers the parameters of the true data generating process: the absolute value

beyond three to four may indicate substantial bias (Schad et al., 2021). The posterior contraction

values close to one indicate that data are much more informative than the prior.
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