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Gene signature reveals decreased SOX10-dependent
transcripts in malignant cells from immune checkpoint
inhibitor-resistant cutaneous melanomas

Timothy J. Purwin,1,2 Signe Caksa,1 Ahmet Sacan,2 Claudia Capparelli,3,4 and Andrew E. Aplin1,4,5,*

SUMMARY

Evidence is mounting for cross-resistance between immune checkpoint and tar-
geted kinase inhibitor therapies in cutaneous melanoma patients. Since the loss
of the transcription factor, SOX10, causes tolerance toMAPKpathway inhibitors,
we used bioinformatic techniques to determine if reduced SOX10 expression/ac-
tivity is associated with immune checkpoint inhibitor resistance. We integrated
SOX10 ChIP-seq, knockout RNA-seq, and knockdown ATAC-seq data from mela-
noma cell models to develop a robust SOX10 gene signature. We used computa-
tional methods to validate this signature as ameasure of SOX10-dependent activ-
ity in independent single-cell and bulk RNA-seq SOX10 knockdown, cell line
panel, and MAPK inhibitor drug-resistant datasets. Evaluation of patient single-
cell RNA-seq data revealed lower levels of SOX10-dependent transcripts in im-
mune checkpoint inhibitor-resistant tumors. Our results suggest that SOX10-defi-
cient melanoma cells are associated with cross-resistance between targeted and
immune checkpoint inhibitors and highlight the need to identify therapeutic stra-
tegies that target this subpopulation.

INTRODUCTION

Cutaneous melanoma (CM) is the deadliest form of skin cancer. v-Raf murine sarcoma viral oncogene ho-

molog B (BRAF) driver mutations occur in approximately 50% of CM patients1 and constitutively activate

the BRAF-mitogen-activated extracellular signal-regulated kinase (MEK)-extracellular signal-regulated ki-

nase (ERK)/mitogen-activated protein kinase (MAPK) pathway. Targeted MAPK pathway inhibitors (BRAFi

and MEKi) elicit an initial response, but tumors frequently re-emerge and disease progression occurs.2 In

minimal residual disease established during targeted therapy treatment, cell plasticity and transcriptomic

reprogramming enable drug tolerance and eventual tumor re-growth.3 Loss of sex-determining region Y

protein (SRY)-box transcription factor 10 (SOX10) expression mediates drug tolerance to MAPK pathway

inhibitors in melanoma and is evident in acquired resistance.3–5 SOX10 is a transcription factor (TF) that

is important for lineage differentiation of neural crest cells into melanocytes.6–8

Gene signatures are often generated from curated, experimental, or sequencing results, such as signaling

pathways or phenotypic cell states.3,9–12 Some signatures have been generated from differentially ex-

pressed genes between conditions or sample groups.13,14 However, more detailed evaluations are neces-

sary when developing TF gene signatures for use with expression data since not all differentially expressed

genes are direct targets of a TF and not all predicted TF targets have altered gene expression.15 Integration

of chromatin immunoprecipitation sequencing (ChIP-seq) TF binding peaks and RNA sequencing (RNA-

seq) data has improved the understanding of gene regulatory networks.16–18 Additionally, disease-specific

models need to be considered when developing a TF gene signature due to the differences in TF binding

sites that are observed between cell lines from varying tissues.19 Using data derived from multiple models

of the same disease is important for overcoming limitations from noise and variability in the data and

revealing common events20 and generates robust gene signatures.

Immune checkpoint inhibitors (ICi) are effective in up to 60% of CM patients.21 Copy number loss and loss-

of-function mutations in antigen presentation and interferon receptor signaling genes have been observed

in some ICi-resistant patient samples.22,23 Single-cell RNA sequencing (scRNA-seq) studies investigating

mechanisms of ICi resistance have characterized changes in the immune compartment, including T cell
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exhaustion or dysfunction and the presence of a dendritic cell population.24–26 Cross-resistance between

targeted and ICi therapies has been identified,27 but the malignant cell populations contributing to this

cross-resistance remain poorly characterized. Elevated levels of epithelial-to-mesenchymal transition

(EMT) genes have been associated with immunotherapy resistance28 as well as with the loss of SOX10

expression.29 Our previous findings showed that SOX10 loss mediates drug tolerance to MAPK inhibitors.

Here, we examined whether loss of SOX10 expression is associated with ICi resistance. We developed a

robust SOX10 gene signature by integrating multiple datasets and validated the signature in independent

datasets and cell-based models. Evaluation of patient scRNA-seq data revealed that ICi-resistant patient

tumors have lower SOX10-dependent transcripts than treatment-naive tumors. SOX10 immunohistochem-

istry (IHC) staining confirmed a higher prevalence of SOX10-deficient melanoma cells in tumor samples

following ICi therapy.

RESULTS

Generation of a SOX10 gene signature

Literature and database searches revealed multiple SOX10 gene signatures; however, a comparison of

these signatures showed minimal overlap of genes (Figure 1A). Eskiocak et al.30 developed a down-regu-

lated 25 gene signature that was defined by overlapping a small interfering RNA (siRNA) knockdown of

SOX10 (siSOX10) gene expression microarray signature with SOX10 ChIP-seq and SOX10 correlation re-

sults from patient gene expression datasets. Wouters et al.31 developed two SOX10 signatures referred

to as motif and track. Both were created using scRNA-seq data and SCENIC,32 a computational method

A B
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Figure 1. Developing a robust SOX10 gene signature

(A) A Venn diagram showing minimal overlap in the number of genes from publicly available SOX10 gene signatures.

(B) A table showing the core differences between methods used for developing the gene signatures in (A).

(C) A workflow diagram displaying the methods for developing the robust SOX10 regulatory gene signature.

(D) Venn diagram plot showing the genes overlapping between the gSOX10 RNA-seq and ATAC-seq results.

(E) The list of the 30 genes identified using the workflow in (C). Genes not present in (A) are shown in bold.
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that identifies potential TF targets based on co-expression, with an option to provide TF and putative gene

target information. The motif- and track-based signatures incorporate TF regulatory networks identified by

motif enrichment and ChIP-seq peak calling, respectively. The molecular signature database (mSigDB)33

curated a list of genes that contain a SOX10 ChIP-seq peak between 1,000 bases upstream and 100 bases

downstream of the transcription start site (TSS). Core differences in the methods used to develop these

signatures include the distances from a TSS to a SOX10 ChIP-seq peak as well as the sources and technol-

ogies used to produce gene expression data (Figure 1B). Due to the differences in these signatures, we

decided to generate a SOX10 signature that incorporates multiple types of datasets.

We integrated a comprehensive list of curated annotation and biomolecular datasets including gene, tran-

script, and regulatory information along with ChIP-seq, assay for transposase-accessible chromatin

sequencing (ATAC-seq), and RNA-seq data (Figure 1C, see STAR Methods). Time series SOX10-knock-

down ATAC-seq data showed a consistent decrease in open chromatin at SOX10 ChIP-seq target genes

(Figure S1A). In Capparelli et al.,29 four SOX10-null melanoma models were generated using two different

SOX10 CRISPR guide RNAs (gSOX10) in MeWo and A375 cell lines. From the corresponding RNA-seq data,

we performed differential gene expression analysis between the gSOX10 and parental cell line samples

and considered significantly down-regulated SOX10 ChIP-seq target genes common to all four models

as SOX10 targets (Figure S1B, Table S1). Upon integrating these results, we developed a refined SOX10-

null signature consisting of 30 genes (Figures 1D and 1E, Table S1). While a majority of the genes in the

signature were present in at least one other SOX10 gene signature, 11 genes were unique (Figure S1C).

Analysis of our signature genes via database for annotation, visualization and integrated discovery

(DAVID)34 revealed enrichment for actin cytoskeleton organization (p value = 1.6E-3) and Schwann cell dif-

ferentiation (p value = 9E-3) gene sets (Figure S1D). Although down-regulation or lack of expression was

observed for some antigen-related genes in gSOX10 samples, the genes were not predicted targets based

on SOX10 ChIP-seq data (Figure S1E).

Robustness of the signature in SOX10-knockdown datasets

To determine the robustness of our signature, we first evaluated it using independent SOX10-perturbed

CM datasets. We used the gene set enrichment analysis (GSEA) method,33,35 which takes a list of signature

genes and utilizes a rank-based statistical method to calculate an overall score. We tested a dataset from

Wouters et al.31 consisting of RNA-seq data for six CM cell lines, each transfected with either SOX10 target-

ing or control siRNA for 72 h. Some of the SOX10-knockdown samples had residual SOX10 transcript levels

comparable to control levels in other cell lines (Figure S2A). Due to this and to control for variability in the

cell lines, we used a paired-sample model when performing differential expression analysis to generate a

ranked list. GSEA results showed significant negative enrichment (p value <0.001) of the SOX10 signature

following SOX10 knockdown (Figure 2A). We then investigated an RNA-seq dataset from Sun et al.5 that

contains two SOX10-knockdown samples and a parental control sample. After processing the data from

the raw reads, we performed GSEA using the log2-transformed ratio as the weight metric for the pre-

ranked list of genes. Despite a marginal difference in SOX10 expression between the SOX10-knockdown

and parental samples (Figure S2B), we observed that the SOX10 signature was close to significant negative

enrichment (p value = 0.099, Figure 2B). Similar results were observed for the other SOX10 gene signatures

(Figures S2C and S2D). After discovering that there was negative enrichment of our signature following

SOX10 knockdown in two independent datasets, we concluded that our signature robustly captures

gene expression changes following SOX10 perturbation in CM.

To test our signature’s ability to capture SOX10 activity levels in scRNA-seq data, we used AUCell,32 which

calculates the area under the ROC curve for genes in a signature using a pre-defined top percentage of

genes sorted by expression level to generate a signature score. In doing this, we could compensate for

the known dropout of transcripts in scRNA-seq data.36 Four SOX10-knockdown scRNA-seq datasets

from Wouters et al.31 were evaluated for differences in signature scores following siSOX10. We observed

significant changes in SOX10-dependent transcripts for nearly all pairwise comparisons against control

samples (Figures 2C-F). These results confirm the ability of our signature to capture SOX10 levels and/or

activity in scRNA-seq data.

Robustness of the signature in cell line panel datasets

We next evaluated our signature in multiple large-scale melanoma cell line cohorts to determine its ability

to distinguish endogenous differences in SOX10-dependent transcripts versus those induced
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experimentally. This evaluation would allow us to determine whether our signature was able to: i) identify

melanoma cell lines with inherently low SOX10 and ii) detect SOX10 loss in a diverse pool of cell lines more

representative of patient populations. We explored two independent bulk RNA-seq datasets with over 50

CM cell line samples. The first dataset includes CM cell line samples from the Cancer Dependency Map

(DepMap).20 Six out of the 62 CM samples had little to no SOX10 expression (Figure 3A). We conducted

hierarchical clustering of normalized expression data for our signature genes, which resulted in the top

A B

C D

E F

Figure 2. SOX10 signature is enriched in independent SOX10-knockdown datasets

(A) An enrichment plot showing down-regulation of our signature in SOX10 knockdown paired-sample results from

Wouters et al.31 dataset. The plot shows a running enrichment score along a ranked gene list with weights according to a

scoring metric. Tic marks represent genes while red and blue represent up- and down-regulated genes, respectively,

following SOX10 knockdown.

(B) An enrichment plot showing down-regulation of the signature in SOX10 knockdown fold change results from Sun

et al.5 dataset.

(C) Violin plot displaying lower SOX10 activity scores following knockdown in Drop-seq scRNA-seq data for MM057 cell

line samples.

(D-F) Violin plots displaying lower SOX10 activity scores in knockdown time course 10x Genomics scRNA-seq data for

MM057 (D), MM074 (E), and MM087 (F) cell line samples. Significance was assessed by the Mann-Whitney test, *p < 0.05,

**p < 0.01, ***p < 0.001. NS: Not Significant. Violin plots contain box and whiskers (interquartile range, median and

minimum/maximum values).
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branchpoint separating the cell lines into clusters according to SOX10 expression (Figure 3B). For the sec-

ond dataset, which was initially presented in Tsoi et al.,37 we confirmed multimodality in the expression of

SOX10 and subsequently stratified cell lines into low (n = 9) and high (n = 44) groups using the anti-mode

from a bimodal kernel density as a cutoff (Figure 3C). After calculating gene signature scores for each cell

line using the single-sample GSEA (ssGSEA)38 method, we observed that our signature was highly accurate

(area under the curve [AUC] 0.98) at identifying samples originating from SOX10-low and SOX10-high

groups (Figure 3D). These results show that our signature can differentiate cell lines with low versus high

endogenous SOX10 expression in bulk RNA-seq datasets, suggesting strong reproducibility.

A B

C D

E F

Figure 3. SOX10 signature stratifies samples by SOX10 expression in multiple cell line cohorts

(A) A scatterplot showing normalized SOX10 expression in CM samples from DepMap,20 with cell line samples ordered by

SOX10 expression.

(B) A heatmap showing cell lines from (A) separating by SOX10 expression following hierarchical clustering.

(C) A frequency plot showing the kernel density of the number of samples in a bimodal distribution based on SOX10

expression from the Tsoi et al.37 dataset. Tick marks on the x axis indicate a cell line sample.

(D) An ROC curve showing the SOX10 gene signature score accurately identifying cell lines in (C) from high and low SOX10

expression groups.

(E) Violin plot displaying SOX10 activity scores for each cell line individually from Wouters et al.31 dataset.

(F) Violin plot showing significantly lower levels of SOX10 activity scores in SOX10-low vs. SOX10-expressing cell lines

from E. Significance was assessed by theMann-Whitney test, *p < 0.05, **p < 0.01, ***p < 0.001. NS: Not Significant. Violin

plots contain box and whiskers (interquartile range, median and minimum/maximum values).
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To determine whether our signature differentiates SOX10 activity in additional settings, we evaluated

scRNA-seq data from patient-derived cell lines known to have varying SOX10 expression levels (Fig-

ure S3A).31 After calculating SOX10 activity scores using AUCell, pairwise comparisons showed significant

differences between each of the SOX10-low (n = 3) and SOX10-expressing (n = 7) cell lines (Figures 3E and

S3B). There was also a significant decrease (p value <1.0 e�15) in SOX10 activity when comparing all cells

from SOX10-low and SOX10-expressing lines (Figure 3F). This confirms the ability of our signature to cap-

ture SOX10 activity in a scRNA-seq dataset with cell lines lacking endogenous SOX10.

We tested how our signature performed against SOX10 mRNA expression as a predictor of SOX10-depen-

dent transcription activity. To this end, we used SOX10 levels from proteomics data in SOX10-expressing

CM cell lines from the DepMap database.20,39 We performed correlation analysis of SOX10 protein expres-

sion data with SOX10 RNA-seq levels and signature scores calculated using ssGSEA from RNA-seq data.

Although not significant, we observed a higher correlation with SOX10 protein expression levels using

the signature scores than with SOX10 RNA expression data (Figure S3C), indicating that, when considering

RNA-seq data, our signature may be a better readout of SOX10-dependent transcription than SOX10

expression alone.

Evaluation of the signature in SOX10-null targeted inhibitor-resistant datasets

Since the loss of SOX10 has been associated with MAPK inhibitor resistance in melanoma,6–8 we evaluated

how well our signature captures SOX10 loss in drug resistance models. We tested multiple drug-resistant

CM cell lines, established from two separate in vivo experiments that lack SOX10 expression (Figures S4A

and S4B).29 These include tumors that are resistant to the BRAFi, PLX8394,40 or the BRAFi + MEKi combi-

nation treatment, PLX4720 + PD0325901.41 As before, GSEA was used with pre-ranked lists to determine

the enrichment of our signature in each resistant cell line. We observed significant negative enrichment

(p value <0.001) in both cell lines that were resistant to PLX8394 (Figure 4A) as well as the two cell lines resis-

tant to PLX4720 + PD0325901 (Figure 4B). These results show that our signature is robust at capturing loss

of SOX10-dependent transcriptional events in drug-resistant bulk RNA-seq data.

In line with our evaluation of SOX10-knockdown and cell line panel data, we sought to determine whether

our signature would reveal lower SOX10-dependent transcription in drug-resistant cell line models using

scRNA-seq data from Schmidt and Mortensen et al.42 Untreated and BRAFi �/+ MEKi-resistant A375 sam-

ples were processed from raw sequencing data, with resistant samples having fewer cells with SOX10

expression (Figures S4C and S4D). Analysis of SOX10 activity scores revealed a significant decrease (p value

<1.0 e�15) in the resistant samples when considering each resistance model separately (Figure 4C) or as a

single group (Figure 4D). These results show the ability of our signature to capture SOX10-dependent tran-

scription in BRAFi �/+ MEKi-resistant melanoma samples in scRNA-seq data.

Lower SOX10 activity levels in ICi-resistant patient tumors

After confirming the ability of our signature and AUCell to capture SOX10-dependent differences in

scRNA-seq datasets, we sought to determine if there was an association between malignant cells from

ICi-treated patient tumor samples and decreased SOX10 levels/activity. To this end, we analyzed

scRNA-seq cohorts fromAlvarez-Breckenridge et al.43 and Jerby-Arnon et al.44 We followed this up by eval-

uating IHC data containing SOX10 staining of patient tumor malignant cells from Capparelli et al.29

We explored the Alvarez-Breckenridge et al. dataset for an association between therapeutic response and

SOX10 activity scores. This dataset contains resected melanoma brain metastasis samples that were pre-

viously classified as treated with ICi (Post-ICi) or ICi naive.43 Standard clinical care prompted tumor resec-

tion in each case, and all Post-ICi tumors were described as requiring resection due to intracranial progres-

sion.43 Clinical responses were previously identified for each patient as Responder, Partial-responder, and

Non-responder, and none of the patients had both ICi-naive and Post-ICi samples.43 Of the three ICi-naive

patients that later received ICi (Pre-ICi), one was a Responder and the others were Non-responders.43 Two

of the ICi-naive patients received radiotherapy prior to resection. Following criteria used in Jerby-Arnon

et al.,44 we limited the tumor samples to those with at least 50 malignant cells for further analyses.

SOX10 signature scores in malignant cells were heterogeneous across treatment groups (Figure S5A).

When combining samples by groups defined in Alvarez-Breckenridge et al.,43 the lowest average signature

score was in the Pre-ICi responder (Figure 5A), which was significantly lower than that in the Pre-ICi Non-

responder group (p value = 2.26 e�3). Although not statistically significant (p value = 0.066), there was a
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slightly lower signature score in the Post-ICi Non-responders when compared to Post-ICi Partial-re-

sponders (Figure 5A). These results suggested a trend for lower SOX10 levels/activity in the Non-re-

sponders versus Partial-responders post-ICi treatment.

We further investigated the Alvarez-Breckenridge et al. dataset to determine if there was an association

between SOX10 signature scores and on ICi. We grouped ICi-naive samples together and Post-ICi samples

Figure 4. SOX10 signature reproducible in SOX10-null drug-resistant datasets

(A) Gene set enrichment plots showing the comparisons of BRAFi-resistant samples vs. parental 1205 Lu TR for PBRT#15

(left panel) and PBRT#16 (right panel) cell lines from Hartsough et al.40

(B) Gene set enrichment plots showing the comparisons of BRAFi + MEKi-resistant samples vs. parental A375 for CRT#34

(left panel) and CRT#35 (right panel) cell lines from Sanchez et al.41

(C and D) Violin plots showing significantly lower levels of SOX10 activity scores in pairwise (C) and overall (D) comparisons

between BRAFi�/+ MEKi-resistant and untreated control cells from Schmidt and Mortensen et al.42 dataset. Significance

was assessed by the Mann-Whitney test, *p < 0.05, **p < 0.01, ***p < 0.001. NS: Not Significant. Violin plots contain box

and whiskers (interquartile range, median and minimum/maximum values).
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based on the patients’ systemic therapy at the time of resection,43 resulting in ICi-naive (n = 8), On MAPKi

(n = 2), On ICi (n = 6), and Off ICi (n = 12) tumor samples (Figure S5A). We excluded the on MAPKi samples

from the Off ICi group since there is the potential for lower SOX10 signature scores in tumors progressing

while on MAPKi therapy. The SOX10 signature score was significantly lower in the On ICi group when

compared to the ICi-naive (p value = 0.0172) and Off ICi (p value = 2.16 e�4) groups (Figure 5B). Similar

A B

C
D

E F

Figure 5. SOX10 signature reveals resistance to ICi therapy

(A) Violin plots of SOX10 signature score values for malignant cells from resected brain metastases scRNA-seq data with

samples stratified into groups defined in Alvarez-Breckenridge et al.43

(B) Violin plots showing lower SOX10 signature score values in malignant cells from On ICi tumors when compared to ICi-

naive and Off ICi tumors.

(C) Violin plots of SOX10 signature score values for tumors ordered by median score and grouped by treatment type from

Jerby-Arnon et al.44 dataset.

(D) Violin plots showing lower SOX10 signature score values in cells from ICi-resistant compared to treatment-naive

patient tumors.

(E) Waterfall plot depicting the percent of malignant cells staining positive (low, mid, and high) or negative for SOX10 in

treatment-naive and ICi-treated samples.

(F) Bar plot displaying a higher percentage of SOX10 negative malignant cells in ICi-treated tumors compared to

treatment-naive. Significance was assessed by the Mann-Whitney test, *p < 0.05, **p < 0.01, ***p < 0.001. NS: Not

Significant. Violin plots contain box and whiskers (interquartile range, median and minimum/maximum values).
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results were observed when analyzing SOX10 expression between groups (Figure S5B). This suggests that

there may be lower SOX10 in tumors on ICi.

To determine if there was an association between SOX10 levels/activity and ICi resistance, we evaluated

the Jerby-Arnon et al.44 dataset, which contains patient tumor samples classified as treatment-naive or

ICi-resistant.44 SOX10 signature scores in malignant cells were heterogeneous across treatment groups

(Figure 5C); however, there was a significantly lower (p-val = 5.12 e�13) SOX10 signature score in the ma-

lignant cells from ICi-resistant samples (Figure 5D). Similar results were observed when using SOX10 gene

expression data to compare ICi-resistant to ICi-naive samples (Figure S5C). This suggests that there is

lower SOX10 in ICi-resist samples.

To extend our findings of lower SOX10-dependent transcript levels in ICi-treated patient tumors, we eval-

uated SOX10 expression in IHC data. A total of 22 samples were from patients without any past treatment

(treatment-naive). Of 20 samples from patients who previously received ICi therapy, three were excluded

due to patients either stopping ICi therapy because of adverse events (n = 1) or not having clinical response

and treatment status information (n = 2). For the remaining samples from patients who previously received

ICi therapy (ICi-treated), those from patients on ICi but without clinical response information were included

and grouped as ‘‘ongoing’’ (n = 3). Using the latest ICi clinical response information available, samples were

grouped into complete responders (CRs) (n = 2) and progressive or stable disease (PD/SD) (n = 12). Two of

the PD samples were collected after 1–2 cycles of ICi therapy, while one patient with SD remained on treat-

ment. Similar to both scRNA-seq datasets, we observed heterogeneous SOX10 staining across treatment

groups (Figure 5E). Overall, we observed a higher percentage of SOX10-negative cells in ICi-treated (26%)

compared to treatment-naive (17.3%) tumors (Figure 5F). We also detected a higher percentage of SOX10-

negative cells in the PD/SD samples (25.2%) when compared to CR (10%) as well as the treatment-naive

samples (Figure S5D). Therefore, we conclude that there are more malignant cells with no SOX10 expres-

sion in ICi-treated patient tumors andmore malignant cells with no SOX10 in PD/SD compared to CR in ICi-

treated samples.

We also examined the IHC data to determine if there was an association between SOX10 and On ICi tu-

mors. Some patients had samples from different time points (Figures S5E–S5G). In one of two patients

that had matched treatment-naive and ICi-treated tumor samples, all of the malignant cells from the On

ICi tumor were SOX10 negative (Figure S5E). The second of these patients had a slight increase in the

percent of SOX10-negative cells in the ICi-treated, Off ICi sample (Figure S5F). One patient with progres-

sive disease had samples collected during and after ICi therapy (Figure S5G) with the On ICi sample having

the highest percentage of SOX10 negative malignant cells. This suggests that there may be more malig-

nant cells lacking SOX10 while on ICi treatment.

DISCUSSION

Cross-resistance between targeted kinase inhibitors and immunotherapy has been recognized,27 but there

is a gap in knowledge about mechanisms mediating cross-resistance effects. We have previously shown

that SOX10 loss mediates tolerance to targeted therapy and is a common feature of acquired resistance

to BRAFi + MEKi in melanoma. By integrating ChIP-seq, ATAC-seq, and RNA-seq data, we developed a

robust SOX10 gene signature. We validated our signature as a measure of SOX10-dependent transcription

activity in bulk and scRNA-seq datasets using SOX10-knockdown, cell line panel, and targeted therapy-

resistant samples. We also detected decreased SOX10 signature scores in ICi-resistant patient tumors in

two independent scRNA-seq datasets. Although not all ICi-resistant patient tumors showed lower levels

of SOX10-dependent transcriptional activity, the trend for a lower SOX10 signature score and lower

SOX10 IHC staining was consistent between these independent cohorts of ICi-resistant tumors.

All of the gene signatures correlated with SOX10 expression, but we note differences that may be attrib-

uted to the types of genomic measurements applied and the analysis methods used to process the

data. Specifically, the use of transcriptomic data in a multi-omic signature may lead to the exclusion of

several genes found in a ChIP-seq-based signature despite the distance threshold between ChIP-seq

peaks and TSS locations in the multi-omic signature initially encapsulating the ChIP-seq signature. The

computational methods used to identify TF peaks are also a factor; a motif-based approach produced

more than a 5-fold increase in the number of genes compared to a ChIP-seq-based approach. We have

overcome some difficulties in determining SOX10 transcriptional targets by using curated promoter
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regions,45 which increases the likelihood that SOX10 is regulating the gene. A limitation of our approach is

that the curation process includes the number of ChIP-seq peaks identified at a genomic location when

determining a promoter region, meaning that other TFs may potentially regulate the same gene. This lim-

itation was overcome by additionally incorporating ATAC-seq data, which reveal whether any other TFs are

bound to the promoter of a predicted SOX10 target gene and strengthened the ability to capture SOX10

activity levels.

The enrichment of actin cytoskeleton organization and Schwann cell differentiation genes in our signature cor-

relates with processes that occur during phenotypic plasticity in melanoma31 as well as SOX10’s known impor-

tance in Schwann cells.46,47 Erythroblastic leukemia viral oncogene homologue (ERBB3) was present in our

signature set and is a well-documented transcriptional target of SOX1048,49 that appeared in each of the

SOX10 signatures. However, melanocyte inducing transcription factor (MITF), which was also present in all

other signatures, was not significantly lower in the A375 gSOX10 comparisons and was consequently absent

from our signature. Others have shown that A375 cell lines have low MITF mRNA levels at baseline.31,50 Our

results also identified genes not previously observed as predicted targets of SOX10 in melanoma, including

Sphingosine-1-Phosphate Receptor 2 (S1PR2) and Adhesion G Protein-Coupled Receptor G6 (ADGRG6).

Stimulation of S1PR2 inhibits Rac and activates RhoA in B16F10 mouse melanoma cells, reducing migration

and invasion.51 ADGRG6 binds to type-IV collagen,52 and SOX10 and ADGRG6 have been associated with

Schwann cell development and myelination.46,47 The effect of decreased ADGRG6 and S1PR2 expression in

SOX10-deficient melanoma cell migration awaits further testing.

The effect of SOX10 levels/transcriptional output on the immune microenvironment in CM is poorly under-

stood. SOX10 expression promotes tumor growth in immune-competent mouse models of melanoma, sug-

gesting immune evasion of SOX10-high tumors.53,54 However, SOX10-dependent effects on programmed

cell death ligand 1 (PD-L1) expression,55 the complexity of tumor heterogeneity,56 and T cell antigen recogni-

tion57 may all contribute to observing decreased SOX10 activity in ICi-resistant patient tumors. SOX10-regu-

latedgenes identified in our signature, such asCDH19, could play a role in evading the immune system. In Fran-

gieh et al.,58 CRISPR screens revealed enrichment of CDH19 alongwith other geneswith known loss-of-function

tumor-infiltrating lymphocyte (TIL)-mediated ICi-resistance mechanisms. It remains to be determined if SOX10

loss is a driver of ICi resistance. SOX10-deficient melanoma cells may also evade the immune system in an an-

tigen-specific manner. A reversible antigen down-modulation mechanism has been observed as a resistance

mechanism to adoptive T cell transfer therapy in CM,59 with characteristics similar to SOX10-deficient cells.

These include the lack of the tumor-associated-antigens melanoma antigen recognized by T-cells (MART-1)

and gp100 genes, melan-A (MLANA) and premelanosome protein (PMEL), which were down-regulated

following SOX10 knockout in RNA-seq data. SOX10, as well as MLANA, were among several major histocom-

patibility complex (MHC) class-I antigen processing pathway genes consistently enriched in a CRISPR screen

that revealed resistance or non-responsiveness to CD8+ T cell-mediated killing.60 The enrichment of SOX10

andMLANA loss is likely the result of evasion from an immunodominant-like T cell response. A similar immune

escapemechanism was observed in a patient with an immunodominant tyrosinase-specific T cell response in a

metastatic tumor that developed six years after a metastatic tumor with an MART-1-specific response.61 These

immunodominant properties will have implications on the field as recent clinical studies have revealed that neo-

adjuvant treatments prolong the tumor-free survival of CMpatients.62 Although SOX10may contribute to resis-

tance, other factors are also important for ICi response. For example, patient MEL027 exhibited a low overall

SOX10 activity score yet responded to ICi therapy.43 Thus, SOX10 signature scores may not be a predictor of

intrinsic resistance to ICi therapy, although we note that patient MEL027 had multiple markers for a favorable

response, including a high level of mutational burden, passing a minimum cutoff for the percentage of PD-L1-

expressing malignant cells, and high levels of T cell infiltration. These results are from limited sample sizes, and

future studies would benefit from analyzing data from patient-matched pre- and post-treatment samples.

Potential therapeutic options for targeting SOX10-deficient melanoma cells include placenta growth factor-2

(PlGF-2123-144)-ICi conjugates and birinapant, an antagonist of the inhibitor of apoptosis protein (IAP) family of

proteins. PlGF-2123-144 conjugates display high binding affinities to not only collagens I-IV but also fibronectin,63

an extracellular matrix protein produced by SOX10-negative CM cells.29 Its use showed increased efficacy in the

B16F10 murine CM model,63 which is a mesenchymal-like cell line inherently less responsive to ICi therapies.64

Birinapant has been shown to target SOX10-deficient cells and increase the durable efficacy of MAPK pathway

targetedtherapy in vivoand in vitro.29Birinapantactsontumorcells independentof a cytotoxic immune response

suggesting that its effectiveness may not rely on the presence of tumor-infiltrating lymphocytes.
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In conclusion, we developed a core list of genes regulated by SOX10 in CM. Some genes identified were

not previously associated with SOX10 expression in CM but have roles that may be involved with the inva-

sive properties of SOX10-negative cells. Evaluation of multiple independent datasets for different condi-

tions validated our gene signature’s ability to determine SOX10 levels and/or activity in both bulk and

scRNA-seq data and its usability as a resource for others investigating CM or regulation by SOX10. Our

findings suggest that ICi-resistant tumors have more cells lacking SOX10 compared to their treatment-

naive counterparts.

Limitations of the study

In this study, we developed a SOX10 gene signature from CM models, so we do not believe that it can

differentiate between SOX10-negative malignant and non-malignant cells, such as T cells. This restricted

us from incorporating any patient tumor bulk RNA-seq datasets. There were also a limited number of pa-

tient samples for some analyses relating to ICi resistance. Only two of the patients in the IHC cohort had

matched pre-ICi and ICi-treated samples, and only three patients with pre-ICi samples in the Alvarez-

Breckenridge patient scRNA-seq cohort had ICi treatment outcome data.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Andrew E. Aplin (Andrew.Aplin@Jefferson.edu).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

mSigDB Gene Signature (v7.2) Subramanian et al.33 http://www.gsea-msigdb.org/gsea/msigdb/

cards/SOX10_TARGET_GENES

Eskiocak Gene Signature Eskiocak et al.30 https://aacr.silverchair-cdn.com/aacr/content_

public/journal/cancerdiscovery/7/8/

10.1158_2159-8290.cd-16-0955/5/

21598290cd160955-sup-171064_4_unknown_

upload_3998923_88x029.xlsx

SOX10 IHC staining data Capparelli et al.29 N/A

Software and algorithms

Star Dobin et al.67 https://github.com/alexdobin/STAR

RSEM Li et al.68 https://github.com/deweylab/RSEM

HTSeq Putri et al.69 https://htseq.readthedocs.io/en/master/

CellRanger 10X Genomics

Zheng et al.70
https://support.10xgenomics.com/single-cell-

gene-expression/software

SCopeLoomR v0.10.2 Aibar et al.32 https://github.com/aertslab/SCopeLoomR

SRA toolkit v2.10.4 Leinonen et al.71

Katz et al.72
https://github.com/ncbi/sra-tools

R The R Project for Statistical Computing https://www.R-project.org

rtracklayer Lawrence et al.73 https://bioconductor.org/packages/

rtracklayer/

liftOver Bioconductor https://bioconductor.org/packages/liftOver

Seurat Stuart and Butler et al.74 https://satijalab.org/seurat/

GSEABase Bioconductor https://bioconductor.org/packages/

GSEABase

GSVA Hanzelmann et al.75 https://bioconductor.org/packages/GSVA

AUCell Aibar et al.32 https://bioconductor.org/packages/AUCell

DESeq2 Love et al.76 https://bioconductor.org/packages/DESeq2/

EdgeR Robinson et al.77 https://bioconductor.org/packages/edgeR

stats package The R Project for Statistical

Computing

https://www.R-project.org

opdisDownsampling (v0.8.2) Lotsch et al.78 https://cran.r-project.org/

package=opdisDownsampling

multimode N/A https://cran.r-project.org/

package=multimode

VennDiagram N/A https://CRAN.R-project.org/

package=VennDiagram

ggplot2 N/A https://CRAN.R-project.org/

package=ggplot2

pheatmap Kolde et al.79 https://CRAN.R-project.org/

package=pheatmap

GSEA Mootha et al.35

Subramanian et al.33
https://www.gsea-msigdb.org/gsea/index.jsp

Database for Annotation, Visualization

and Integrated Discovery (DAVID)

Sherman et al.34 https://david.ncifcrf.gov
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Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed

in the key resources table. All data reported in this paper will be shared by the lead contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

SOX10 signature

Gene and regulatory data

Gene regulation (Ensembl v101)45 and transcript (GENCODE v30)65 annotation data were obtained for the

human reference genome build GRCh38. Transcript-promoter matches were defined by transcription start

sites occurring within the promoter boundary regions of an ensemble promoter regulatory ID. From

613,944 regulatory entries, 35,191 promoter regions matched with 121,111 transcripts from 27,090 genes.

ChIP-seq

SOX10 ChIP-seq data were obtained from the Gene Transcription Regulation Database (GTRD).66 From a

total of 7,396 ChIP-seq peaks, 362 peaks overlapped 353 promoter regions. The 353 promoter regions

matched with 1,977 unique transcripts from 501 genes.

SOX10 knockdown ATAC-seq

ATAC-seq merged peaks raw counts data for SOX10 time-series knockdown and control samples from two

melanoma cell lines49 were obtained from the Gene Expression Omnibus (GEO) under the accession num-

ber GSE114557. DESeq276 was used to generate normalized abundance counts. SOX10 ChIP-seq GRCh38

reference build data were converted to GRCh19 coordinates using the rtracklayer73 and liftOver packages.

346 peaks (477 genes) of the 362 ChIP-seq peaks overlapped 341 ATAC-seq peaks with abundance data.

332 peaks (461 genes) were consistently down-regulated at 24, 48 and 72 h following SOX10 knockdown

when compared to control.

gSOX10 RNA-seq

Raw RNA-seq reads for 18 samples from parental and SOX10-null CRISPR guide RNAs (gSOX10 #2 and #4)

for A375 and MeWo cell lines were obtained from the Sequence Read Archive (SRA) under the accession

numbers SRP306463 and SRP329298 using the SRA toolkit (v 2.10.4).71,72 Data were processed from raw

sequencing data as described below in the RNA-seq Processing section. Pairwise comparisons were per-

formed for each gSOX10 vs. parental cell line.

Refined SOX10 signatures

A prioritized list of genes was limited to the 501 genes identified as having a SOX10 ChIP-seq peak over-

lapping the promoter. A SOX10 gene signature list was generated based on all four gSOX10 vs. parental

comparisons consistently showing significant (BHFDR <0.05) down-regulation. These sets were further

refined to those consistently down-regulated in the ATAC-seq data. The 30 genes significantly down-regu-

lated in all cell line comparisons also had lower ATAC-seq abundance after SOX10 knockdown. Venn dia-

grams were generated using the VennDiagram package (v1.6.20 https://CRAN.R-project.org/package=

VennDiagram). DAVID34 was used to determine enriched GeneOntology biological processes gene sets.10

Bulk RNA-seq

CCLE RNA-seq

RNA-seq RSEM counts data were downloaded from DepMap (v 20Q1 https://depmap.org/portal/

download). Data were reduced to 62 cutaneous melanoma cell lines prior to further processing. Heatmaps

were generated using the pheatmap package (v1.0.12).79
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SOX10 knockdown, cell line panel and targeted therapy-resistant RNA-seq

Raw counts data for six cell lines with SOX10 knockdown and control samples were obtained from the GEO

under the accession number GSE134432. A paired-sample comparison model was used to calculate differ-

entially expressed genes. Raw RNA-seq reads for three parental & SOX10 knockdown samples, a panel of

53 CM cell lines, six parental & BRAFi-resistant samples, and nine parental & BRAFi + MEKi-resistant sam-

ples were gathered from the SRA for accession numbers SRP029434, SRP074198, SRP329297, and

SRP329298, respectively, using the SRA toolkit (v 2.10.4).71,72

Single-cell RNA-seq

SOX10 knockdown and cell line panel datasets

Loom files containing gene expression data for ten cell lines and SOX10 knockdown datasets originating from

Wouters et al.31 were obtained from SCope (http://scope.aertslab.org/#/Wouters_Human_Melanoma).

SCopeLoomR32 (v0.10.2 https://github.com/aertslab/SCopeLoomR) was used to load data into R.

MAPKi-resistant dataset

Raw RNA Sequencing reads for four treatment-naı̈ve or BRAFi -/+ MEKi A375 cell line samples originating

from Schmidt and Mortensen et al.42 were obtained from the SRA under the accession number SRP301922

using the SRA toolkit (v 2.10.4).71,72

Jerby-Arnon ICi-Resistant dataset

Raw gene expression counts and cell type data for malignant cells from unmatched treatment-naı̈ve (n=7)

and ICi-resistant (n=7) melanoma patient tumors originating from Jerby-Arnon et al.44 were gathered from

GEO under the accession number GSE115978 and the Single-Cell Portal (https://portals.broadinstitute.

org/single_cell/study/melanoma-immunotherapy-resistance), respectively.

Alvarez-Breckenridge ICi-Resistant dataset

Raw counts gene expression and cell type data for malignant cells frommetastatic brain melanoma tumors

originating from Alvarez-Breckenridge et al.43 were gathered from the Single-Cell Portal. Tumor samples

with at least 50 malignant cells were used for further analyses. Of the three ICi-naı̈ve patients that later

received ICi (Pre-ICi), one was a Responder and the others were Non-responders.43 Two of the ICi-naı̈ve

patients received radiotherapy prior to resection. Post-ICi samples were grouped by visually interpreting

the patients’ systemic therapy at the time of resection,43 resulting in ICi-naı̈ve (n=8), OnMAPKi (n=2), On ICi

(n=6) and Off ICi (n=12) tumor samples.

RNA-seq processing

Bulk RNA-seq

Raw RNA Sequencing reads were aligned to the GRCh38 human reference genome using Star67 and

GENCODE65 annotations. RSEM68 or HTSeq69 was used to quantify gene level expression for paired-

end and single-end sequencing samples, respectively. Gene normalization and differential expression an-

alyses were performed using DESeq2.76

Single-cell RNA-seq

CellRanger70 was used to quantify gene expression levels, aggregate data and filter empty cell barcodes

for raw RNA sequencing reads from 10x Genomics samples for the MAPKi-resistant scRNA-seq dataset.

The 10x GRCh38-2020-A reference genome was used for mapping reads. Cells with at least 1,000 features

and less than 10 percent expression of mitochondrial genes were retained for further analyses for the

MAPKi-resistant scRNA-seq dataset. Malignant cells from tumors with at least 50 malignant cells were re-

tained for both the Jerby-Arnon and Alvarez-Breckenridge datasets. Raw counts data were normalized via

Seurat74 using the NormalizeData function with the default ‘‘LogNormalize’’ method and 10,000 scale fac-

tor settings for the MAPKi-resistant, Jerby-Arnon and Alvarez-Breckenridge scRNA-seq datasets. Log2-

transformed pseudo counts per million data were generated using the edgeR package77 for the Cell

Line Panel scRNA-seq data. Down-sampling of patient tumor scRNA-seq data were performed using the

opdisDownsampling package (v 0.8.2) (https://cran.r-project.org/package=opdisDownsampling).78
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Signature scoring

GSEA

GSEA33,35 was used to identify enrichment of gene sets. As default, the "Signal2Noise" weighted enrich-

ment statistic was performed after removing non-expressed genes, producing normalized counts and

collapsing from Ensembl to human gene identifiers. When described, the GSEA pre-ranked method was

performed using either log2-transformed ratio values or DESeq2 Wald’s test statistic values after filtering

out zero or ‘‘NA’’ values. A total of 1,000 permutations were performed using gene sets, and p-values

equaling zero are reported as less than 0.001.

ssGSEA

The single-sample GSEA (ssGSEA)38 method was used to calculate gene set scores for bulk RNA-seq using

the gsva (v1.40.1)75 package. The multimode package (https://cran.r-project.org/package=multimode)

was used to test for uni-modality and identify the anti-modal position for bimodal data.

AUCell

Gene set scores for scRNA-seq data were calculated using the AUCell (v1.14.0)32 package. Thresholds were

adjusted to correlate SOX10-expressing cells with SOX10 activity scores. The ggplot2 package (https://

CRAN.R-project.org/package=ggplot2) was used to generate violin plots.

CCLE proteomics data

SOX10 (P56693) relative protein expression data were downloaded from DepMap (https://depmap.org/

portal). The proteomics data originated from Nusinow et al.39

Immunohistochemistry data

SOX10 IHC staining data were collected from Capparelli et al.29 The percentage of cancer cells expressing

none, low, medium, or high levels of SOX10 was previously quantified by a trained pathologist.29 Patient

clinical data were retrieved from Krepler et al.80 IHC samples from patients without any past treatment

listed were considered treatment-naı̈ve (n=22). A total of 20 samples were from patients that received

ICi therapy. Three were excluded due to patients either stopping ICi therapy because of adverse events

(n=1) or not having clinical response and treatment status information (n=2). Samples from patients on

ICi but without clinical response information were grouped as ‘‘Ongoing’’ (n=3). Samples were grouped

into complete responders (CR) (n=2) and progressive or stable disease (PD/SD) (n=12) using the latest clin-

ical response information available for ICi therapies. Two of the PD samples were collected after 1-2 cycles

of ICi therapy, while one patient with SD remained on ICi treatment. Three patients had samples from

different timepoints.

QUANTIFICATION AND STATISTICAL ANALYSIS

The Pearson’s product-moment correlation coefficient, Spearman’s rho and Wilcoxon rank sum test with

continuity correction (aka ‘Mann-Whitney’ test) were performed using the stats package (v 4.1.2) in R (v

4.1.2 https://www.R-project.org). A p-value < 0.05 was considered statistically significant (*p<0.05,

**p<0.01, ***p<0.001, NS Not Significant), as described in the figure legends. Violin plots contain box

and whiskers (interquartile range, median and minimum/maximum values).
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