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Neuronal activity is the result of both the electrophysiology and chemophysiology. A

neuron can be well-represented for the purposes of electrophysiological simulation as a

tree composed of connected cylinders. This representation is also apt for 1D simulations

of their chemophysiology, provided the spatial scale is larger than the diameter of the

cylinders and there is radial symmetry. Higher dimensional simulation is necessary to

accurately capture the dynamics when these criteria are not met, such as with wave

curvature, spines, or diffusion near the soma. We have developed a solution to enable

efficient finite volume method simulation of reaction-diffusion kinetics in intracellular

3D regions in neuron and network models and provide an implementation within the

NEURON simulator. An accelerated version of the CTNG 3D reconstruction algorithm

transforms morphologies suitable for ion-channel based simulations into consistent 3D

voxelized regions. Kinetics are then solved using a parallel algorithm based on Douglas-

Gunn that handles the irregular 3D geometry of a neuron; these kinetics are coupled to

NEURON’s 1D mechanisms for ion channels, synapses, pumps, and so forth. The 3D

domain may cover the entire cell or selected regions of interest. Simulations with dendritic

spines and of the soma reveal details of dynamics that would be missed in a pure 1D

simulation. We describe and validate the methods and discuss their performance.

Keywords: reaction-diffusion, computer simulation, 3D, multi-scale modeling, reusability

INTRODUCTION

The brain’s behavior in health and disease is most naturally observed at the level of functional
outcomes, but these outcomes are often indirect consequences of subcellular chemical kinetics (e.g.,
oxygen and ATP in stroke; amyloid beta and tau in Alzheimer’s Disease). The connection between
these two scales is non-intuitive due to the many nonlinear-interactions within the brain (e.g.,
action potentials, networks). Dedicated tools like MCell (RRID:SCR_007307; Stiles et al., 1998) and
STEPS (RRID:SCR_008742; Hepburn et al., 2012) enable highly-detailed 3D simulation of parts
of neurons to entire cells, enabling the study of microdomains (see e.g., Keller et al., 2008) and
other highly localized phenomena but with limited ability to extend to the full cell or a network of
neurons to study the implications of these localized dynamics on a broader scale.
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The NEURON simulator (RRID:SCR_005393; Hines et al.,
2019) has long supported simultaneous simulation of chemical
dynamics and networks of neurons, originally through re-
purposing MOD files—traditionally used for ion channel
kinetics—and later through the introduction of a dedicated
Python-based reaction-diffusion specification (McDougal R.A.
et al., 2013). These early methods were most applicable to
phenomena that behave analogously to electrical signaling, such
as when a wave of elevated calcium concentration spreads over
a large region of the dendritic tree (e.g., Neymotin et al., 2015).
Even for these large scale phenomena, a 1D approximation of
the tree (so called despite the cell’s branching structure because
concentration and voltage states are governed by differential
equations only on the interior of non-branching sections,
with conservation laws governing the branch points) breaks
down in regions where the cell is not radially symmetric (e.g.,
the predicted curvature of a calcium wave front where the
dendrite meets the soma) and is inappropriate for smaller scale
phenomena on the same spatial scale as the dendrite diameter
(e.g., diffusion between neighboring spines); see the examples in
the results section.

We have developed a set of approaches with implementations
freely available in the development version of NEURON—
to efficiently address the need to incorporate 3D intracellular
dynamics for subcellular compartments, whole cell and network
models. Combining local discretizations and preserving segment
mappings accelerates the Constructive Tessellated Neuronal
Geometry algorithm (CTNG; McDougal R. et al., 2013) for
generating a 3D volume consistent with a neuron point-and-
diameter 3D reconstruction, of the sort available via, e.g.,
NeuroMorpho.Org (RRID:SCR_002145; Ascoli et al., 2007).
Reaction-diffusion (rxd) kinetics are specified as for 1D
simulations, with selected regions of interest simulated selected
for 3D simulation via a single line function call, while other
parts simulated in 1D. The 3D regions of interest are voxelized
(meshed into cubic voxels) and any overlapping 3D regions are
connected together and with neighboring 1D regions. Threaded,
deterministic simulation is enabled using an irregular boundary
extension of Newton et al. (2018)’s operator-splitting parallelized
Douglas-Gunn Alternating Direction Implicit method (Douglas
and Gunn, 1964). Ion channel activity is based on concentrations
at the surface of the cell, and ions enter the cell through the
surface voxels. Single cell results are validated by comparison to
analytic solutions, by comparison of 3D results with other tools,
and by comparison of hybrid 1D-3D simulations with pure 3D
simulations.

METHODS

Methods and results are described for a development version
of NEURON 8.1, although the initial version of most of these
methods was introduced in NEURON 7.7. The source code
is available at github.com/neuronsimulator/nrn, installers for
major platforms are available at neuron.yale.edu, and NEURON
can also be installed for linux and macOS via pip install
neuron. The voxelization algorithm is written in a mix of

Python, Cython, and C/C++. The interface code is written
in Python. For performance reasons, all NEURON reaction-
diffusion code used during an active simulation is written in
C/C++.

For analyses requiring many simulations, simulation
and visualization were split into separate scripts with each
simulation’s data stored in a SQLite database. To be robust
against the possibility of interrupted calculation, simulation
scripts checked the database to see if a given set of parameters
had already been tested before running the simulation. Graphs
were rendered using plotly (for 3D images), plotnine/ggplot, and
matplotlib.

Python code for all figures in this manuscript is available
on ModelDB (RRID:SCR_007271; McDougal et al., 2017) at
modeldb.yale.edu/267018.

Voxelization
3D simulation requires the specification of a 3D domain, typically
defined by a mesh (e.g., in VCell; RRID:SCR_007421) or a
boundary (e.g., MCell, Smoldyn). Neuron morphologies, by
contrast, are typically reconstructed using a series of (x, y, z; d)
optical measurements with tree-structured connectivity rooted
at the soma, which is sometimes a special case with an outline,
typically in 2D. (A neuron’s morphology is a graph-theoretic tree
in the sense that every non-root section has exactly one parent
section, namely the connecting section that is closer to the root.)
This information is sufficient for electrophysiology simulation
where the space constant is typically on the order of tens of
microns, but under-determines the 3D structure for chemical
simulation. Several algorithms have been proposed to generate
consistent geometries, including our Constructive Tessellated
Neuronal Geometries (CTNG) algorithm (McDougal R. et al.,
2013) and others (e.g., Lasserre et al., 2011; Mörschel et al., 2017).
The full CTNGmethod is described in our previous paper, but in
brief consecutive point-diameter measurements are interpreted
as defining the frustum of a right circular cone. Neighboring
frusta are joined using clip spheres, with a clipping rule that
depends on the taper of frustra and the angle of intersection.
Soma outlines are approximated using sheared frusta with
dendrites attached to the soma extended to the soma axis to
avoid any gaps from the assumption of local radial symmetry
given a 2D soma outline. NEURON’s Import3D tool stores soma
outline points in a Python dictionary; these soma outlines are not
used in pure electrophysiology simulations, but the voxelization
algorithm checks each section against the dictionary to see if it
should be treated as a sequence of frusta or if there is a 2D outline
to use.

To accelerate CTNG voxelization and to facilitate its use in
simulations incorporating one-dimensional electrophysiology
dynamics, we enhanced the original implementation in
several ways: (1) additional interpolated points are inserted at
electrophysiological compartment (“segment” in NEURON)
boundaries so every frusta belongs to exactly one compartment;
(2) each electrical compartment is voxelized separately, thus
preserving the relationship between voxels and electrical
compartments; (3) each frusta and joining sphere is voxelized
separately, exploiting convexity to rapidly identify all the
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relevant voxels; and (4) voxelized meshes are merged together,
with voxels being assigned to the segment closest to the root of
the electrophysiological tree (typically the soma).

In CTNG, the constructed 3D volume of the neuron is the
union of frusta and spheres clipped by planes. These component
objects are voxelized using a modified flood-fill algorithm,
starting from the center of an end-face for a frustum or the center
of the sphere. In the case of a clipped sphere with a small angle,
the resulting wedge may be very small, causing all corners of the
voxel to be outside. In this case, additional points in the sphere
are tested until a voxel is found with at least one interior corner;
this voxel is then used as the seed for the flood-fill. Since the
spheres serve to smooth the joins between neighboring frusta, in
practice they comprise a small percentage of the total voxels, so
this search introduces minimal overhead.

The flood fill is propagated through the surface of the shape
as much as possible, using the convexity of the objects to
automatically fill in interior voxels between two surface points.
This is done by traversing rows of voxels perpendicular to the
y, z plane. No matter the orientation of the object, any row of
voxels that contains part of the object contains one or more
surface voxels at each endpoint of the row’s intersection with the
object. The modified flood fill calculates these endpoints along
with any additional surface voxels in the row, and then fills in
any non-surface voxels between the endpoints as interior voxels.
To find all the rows intersecting the object, the flood fill searches
all the rows bordering an intersecting row, using the endpoints
of the original row as “guesses” to retain information about
the surface and expedite finding endpoints for the surrounding
rows. The signed distance to each surface voxel corner is also
computed and stored throughout the flood fill; as in the original
CTNG implementation, these signed distances are supplied to
the marching cubes algorithm (Lorensen and Cline, 1987) to
approximate the surface with a triangular mesh.

To approximate the surface, the marching cubes algorithm
requires that at least one corner of a voxel containing the surface
be outside the object and at least one corner be inside. NEURON
generates a warning suggesting a smaller dx (the length of a
voxel edge) if any frustum length or diameter is less than the
largest distance that fits within a voxel (

√
3 dx). Some publicly

available reconstructions are sampled with very little distance
between the 3D points, leading to a very small suggested value
of dx and as noted in McDougal R. et al. (2013), sometimes
a bumpy 3D reconstruction; in this case, subsampling the 3D
points before loading themorphology into NEURON avoids both
the bumpiness and the recommendation of a small dx. The extra
segment boundaries added by a very high (per unit length) value
of nseg (the number of electrical compartments in a section)
can produce a similar effect; in this case, the solution is to reduce
nseg to a value appropriate for the electrical space constant. In
NEURON, an appropriate choice of nseg can be determined for
each section based on the so-called d_lambda rule (Hines and
Carnevale, 2001).

The areas of the triangles in the surface mesh are summed
to estimate surface area, and the portion of each surface voxel
inside the object is estimated to be the fraction of test points
inside the object. As the voxel has been identified as a surface

voxel, at least one corner is inside, and thus the volume estimate
will never be 0. Test points are sampled on a uniform grid in
1 + options.ics_partial_volume_resolution steps
in each direction along the voxels edge, starting and ending at
a voxel corner. NEURON versions 7.7–8.0 used an alternative
rule for estimating partial volumes using dynamic subsampling,
however the approach described above and used beginning in
NEURON 8.1 is simpler and provides better scaling.

As neurons occupy a small fraction of the volume of their
bounding box (1.498± 3.406%) for the neurons in Section voxels
are stored as a set of locations (i, j, k) within an imaginary grid
comprising a padded bounding box. Thus, memory usage to store
the discretization is proportional to the volume of the neuron
not to the volume of the bounding box. Likewise, NEURON’s
simulation times scale proportionally to the number of voxels in
the cell, not the number of voxels in the bounding box.

Discretization into a 3D grid happens as needed, allowing
interactive changes to grid hyperparameters and morphology
without the overhead of re-voxelizing the cell. The mesh is
typically generated on the first request for a pointer (e.g., for
recording concentration at a point), or when the simulation
is initialized. NEURON’s internal counters for structure or
diameter changes are monitored for subsequent changes at
each initialization, pointer request, or simulation step, and the
morphology is re-discretized if needed; such re-discretization is
expected to be rare in practice as NEURON models typically
assume cells do not change shape or size during simulation.

Model Specification
Reaction-Diffusion Kinetics
NEURON’s basic reaction-diffusion model specification,
introduced in McDougal R.A. et al. (2013), is independent
of numerical simulation details such as whether the
model is to be simulated in 1D or 3D. Readers are
directed to the 2013 paper or for a more complete and
updated treatment to the relevant section of the online
NEURON documentation (nrn.readthedocs.io/en/latest/rxd-
tutorials) for full details, but in brief: domains of a cell
are specified in Python using rxd.Region, chemical
species and their properties using rxd.Species, and
chemical reactions using rxd.Reaction, rxd.Rate,
or rxd.MultiCompartmentReaction. The classes
rxd.Parameter and rxd.State allow fixed values
that change with location and non-diffusing state variables,
respectively. Dynamics at a specific point (e.g., localized pump)
are specified using node.include_flux where node
represents the spatial compartment and the flux is measured in
changes in mass. Using mass changes instead of concentration
changes allows the same amount of a substance to enter the
cell regardless of the spatial discretization. To specify that
all reaction-diffusion kinetics should be simulated in 3D, call
rxd.set_solve_type(dimension=3).

NEURON automatically translates the Python kinetics
specification into C and compiles them for use during simulation
as described in Newton et al. (2018).
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Boundary Conditions
Flux across the plasma membrane (the boundary of the 3D
intracellular simulation region) is assumed to be fully defined
by explicitly modeled mechanisms such as ion channels and
pumps; if there are no such mechanisms defined, the boundary
is assumed to be fully reflective (no flux). For compatibility
with 1D simulation, no special 3D boundary condition syntax is
introduced. Instead, all plasma membrane spanning mechanisms
may be described in NMODL (Hines and Carnevale, 2000),
NeuroML/LEMS and translated to NMODL via jNeuroML
(Cannon et al., 2014), NEURON’s ChannelBuilder tool, or a
rxd.MultiCompartmentReaction. The last option is the
most flexible and allows using an rxd.Parameter to specify
different values in different 3D compartments as well as defining
the movement of uncharged particles. The other mechanisms
work for charged particles and support variation at the level of
a NEURON segment; the currents they generate are distributed
proportionally across the segment’s surface voxels by the voxel
surface area. Faraday’s and Avogadro’s constants along with the
surface voxel volume and the charge of the particle are used to
convert the currents into rates of change of concentration at the
boundary due to flux across the plasma membrane.

3D Simulation
To efficiently simulate intracellular regions in 3D, we generalized
the parallel Douglas-Gunn algorithm of Newton et al. (2018)
to support the irregular 3D boundary of a neuron. Unlike
extracellular simulation in NEURON— which is simulated
coarsely enough that the morphological details can be subsumed
into an effective volume fraction— in intracellular simulation
the voxels are necessarily much smaller and need to respect the
3D boundary of the cell. As described in the Section 2.1, voxels
may have widely varying amounts of surface, and each voxel
must be associated with a specific electrical compartment (with
a “segment” in NEURON terminology).

The conceptual algorithm for integration is the same as in
Newton et al. (2018), however with voxels only existing inside
the cell membrane, the number of voxels in any row is no longer
necessarily the same. This variation means that although the
memory locations for concentration in a particular voxel and in
the voxel above it are fixed for a simulation, the offset between
voxels and the voxels above them varies throughout the cell and
cannot be calculated using a simple arithmetic expression. To
work with this irregularity, the indices of every voxel in each line
are precomputed at initialization. To find neighbors, NEURON
constructs a dictionary (hash array) keyed by the (i, j, k) voxel
location with the value of the index of the voxel in memory.
Lines in each direction are formed by starting from an arbitrary
voxel, backtracking to the beginning of the line (e.g., if forming
the lines parallel to the x axis, we successively check for the
presence of (i − 1, j, k), (i − 2, j, k), . . . until such a voxel is not
in the dictionary), and then recording the indices of the voxels
in the line until there is no next voxel indexed in the dictionary.
Although Python is used to calculate the indices comprising
each line, the results are cached and transferred to C++ code
that uses them during integration. This process is repeated if
and only if the 3D structure is changed (e.g., more segments,
different diameters, ...).

All memory indices are relative to a given rxd.Species,
(or rxd.Parameter or rxd.State), each of which has its
memory allocated independently, allowing for one to be added
or removed without requiring memory for the others to be
reallocated.

Fixed step integration proceeds using the two-phase operator-
splitting approximation as in McDougal R.A. et al. (2013):
reactions and fluxes are calculated using an implicit method first
and then diffusion is calculated with DG-ADI, also an implicit
method. This introduces a source of error that converges to 0
as dt → 0, and has the advantage of keeping the matrices that
need to be inverted (a O(n3) task in the general case) small,
involving only one location’s concentrations for each reaction
matrix or one line for each diffusion matrix. No calculations
are done for memory associated with rxd.Parameter objects,
only reactions are calculated for rxd.State objects, and
both reactions and diffusions are calculated for rxd.Species
objects. Fluxes from ion channels specified with MOD files are
converted into mass changes per segment and then distributed
proportionally across the surface voxels assigned to the segment
by voxel surface area. Here, it is assumed that every segment has
surface voxels. All diffusion calculations explicitly incorporate
the effect of voxel by voxel interior volume as voxels with surface
do not have their entire volume inside the cell.

Variable step integration uses the CVODE solver from the
SUNDIALS suite (Hindmarsh et al., 2005) with all NEURON
rates of change (membrane potentials, ion channel states,
reactions, and diffusion) represented in one derivative vector.
The approximate Jacobian used for the reaction-diffusion part of
the problem is a permutation of a block-diagonal matrix, where
each block includes the full reaction Jacobian for a given spatial
location but only the diagonal part of the diffusion Jacobian.
This simplifying approximation allows the approximate Jacobian
to be quickly invertible at a tradeoff of a decrease in accuracy,
potentially forcing smaller timesteps than CVODE might use
with the exact Jacobian.

NEURON concentrations are tied to segments and the
surface nodes are assigned the concentration. In general, there
are multiple surface nodes per segment. To address this, the
segment concentrations are updated at each time step with
the weighted average concentration from the segment’s surface
voxels. In some cases, using only the surface nodes can cause
an artificially high concentrations due to relatively few 3D
voxels diffusing with a single 1D segment. This effect can be
mitigated by using all 3D nodes to calculate concentrations with
options.concentration_nodes_3d = "all".

Multiple threads, specified with rxd.nthread(n) where
n is the number of threads, may be used to accelerate
intracellular simulation. Load balancing is achieved using a
longest-processing-time first greedy algorithm based on the line
length for each direction, which is guaranteed to run in no worse
than 4/3 the optimal time (Graham, 1969).

Hybrid Simulation
For performance reasons and to better support simulations with
narrow dendrites that would otherwise require a small dx, a
Python iterable of sections (list, set, ...) may be provided when
specifying the simulation dimension to indicate which sections
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are being set, e.g., rxd.set_solve_type(apicals,
dimension=3). Chemical simulations within a given section
must either be in 1D or 3D (i.e., this cannot vary by Region),
but each section can be set independently. Capturing the 3D
nature of the dynamics within a section generally requires
that its neighboring sections also be in 3D as otherwise all the
incoming diffusive fluxes from neighboring sections are the same
regardless of 3D location. As with specification of the full model,
multiple dimension specifications for a given section are allowed,
with the last one taking effect.

Boundary Identification
At initialization, each rxd.Region identifies which of the
sections it contains are to be simulated in 1D and which are to
be simulated in 3D. If a region does not contain both sections
to be simulated in 1D and in 3D, no additional analysis is done
and the simulation is purely in the specified dimension. When
both dimensions are present, for every given rxd.Species
instance, every 3D section’s parent, if it exists, is checked to
see if it is on the 1D section list. Likewise, every 1D section’s
parent is checked to see if it is on the list of 3D sections.
In recommended usage each cell has its own rxd.Species
instance for a given conceptual molecule (e.g., each cell would
have a self.ca for its internal calcium concentrations), the
search space is constrained to a given cell. Within any given
rxd.Region containing both 1D and 3D sections, there may
be zero (if the 1D and 3D sections are not contiguous), one, or
arbitrarily many places where 1D and 3D sections meet.

For each case where 3D and 1D sections meet, boundary
voxels are identified by finding the voxels belonging to the
3D section and its spherical endcap that intersect the plane
perpendicular to the line segment defined by the two (x, y, z; d)
points at the appropriate edge of the 1D section. In particular, this
algorithm requires that the boundary or boundaries must occur
at either end of a NEURON Section, not in the middle. Each 1D-
3D juncture potentially has many boundary voxels, depending on
the 3D discretization. Mass diffuses between each 3D boundary
voxel and 1D boundary segment at a rate based on the distance
between the center of the voxel and the center cross-section of the
boundary segment (estimated as the sum of half the voxel dx and
half the segment length) and the cross-sectional area of where
the voxel meets the 1D region (estimated as its volume raised
to the 2/3 power). Boundary voxel identifiers and distances
to the 1D boundary nodes are computed at initialization and
cached in a data structure passed to the C++ compute engine
via ctypes. Any subsequent changes to the morphology trigger
recalculation of the discretization—including identification of
boundary voxels—at the next initialization, advance, or node
request event.

Simulation
At the beginning of each timestep, fluxes between 1D and
3D boundary compartments are computed according to the
finite volume method and Fick’s laws: fluxes are proportional
to the concentration gradient and inversely proportional to
the 1D distance between the centers of the compartments. In
particular, we use the common approximation of neglecting the

effects of charge on diffusive spread, i.e., we do not consider
electrodiffusion (see e.g., Ellingsrud et al., 2020). The 1D and
3D regions are then advanced independently, applying the
fluxes as appropriate, thereby weakly coupling them. This weak
coupling introduces minimal performance overhead, but at the
cost of reduced numerical stability, thereby potentially requiring
a smaller timestep (see e.g., Benedikt and Drenth, 2019).

Random Realistic Neuron Morphologies
To assess performance on realistic morphologies, we identified
21 random reconstructions from NeuroMorpho.Org (Ascoli
et al., 2007) with metadata indicating realistic diameters
and a 3D reconstruction. These were obtained by querying
NeuroMorpho.Org’s “Browse by Random” tool, once for 50
random cells and once for 10 random cells, and filtering for
those meeting the stated criteria. The randomly selected
morphologies as identified by their NeuroMorpho.Org
name are: 9CL-IVxAnk2-IR_ddaC (Nanda et al., 2018),
29-1-8 (Martinez-Canabal et al., 2013), 64-8-L-B-JB
(Ehlinger et al., 2017), 243-3-39-AW (Nguyen et al., 2020),
2017-25-04-slice-2-cell-2-rotated (Scala et al.,
2019), 070601-exp1-zB (Groh et al., 2010), 160524_7_4
(Kunst et al., 2019), 15892037 (Takagi et al., 2017),
AE5_EEA_Outerthirds_DG-Mol_sec1-cel4-aev5me
(de Oliveira et al., 2020), AM61-2-1 and AM81-2-3
(Trevelyan et al., 2006), B4-CA1-L-D63x1zACR3_1
(Canchi et al., 2017), Dnmt3bKO-cell-8 and
WT-iPS-derived-cell-12MR (Tarusawa et al.,
2016), Fig5C (Herget et al., 2017), glia_4090
(Helmstaedter et al., 2013), KC-s-4505762 (Takemura
et al., 2017), Mouse_CA2_Ma_Cell_5 (Helton et al., 2019),
RatS1-6-107 (Nogueira-Campos et al., 2012), RP4_scaled
(Weiss et al., 2020), and WT-mPFC-A-20X-3-2 (Juan et al.,
2014).

Timings
All reported times are based on measurements on Yale’s Farnam
HPC’s general partition, which has amix of mostly Intel Xeon E5-
2660 v3 CPUs with 119 GiB memory per node and some Xeon
6240 CPUs with 181 GiB memory per node.

RESULTS

Validation
Convergence on a Cylinder and the Role of Voxel

Refinement
To assess convergence of surface area and volume calculations,
we began by considering a cylinder of diameter 2 µm and
length 5 µm. Cylinders, unlike neuron morphologies from
reconstructions, have analytically known values for surface area
and volume; in particular, here the volume is 5π µm3 and the
surface area is 12π µm2. Errors were measured for one thousand
random orientations (specified as (φ, θ) in spherical coordinates)
at negative integer powers of

√
2, approximately dx= 0.5, 0.3536,

0.25, 0.1768, 0.125, 0.0884, and 0.0625 µm without using partial
volume resolution on the surface voxels. For reasons that are
explored later, we did not choose this to be NEURON’s default
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behavior; using the defaults produces volume errors typically
around 4x lower.

Volume estimates converged with error scaling at
approximately O(dx2.18), with the average absolute error
at dx= 0.5 µm being approximately 0.3976 ± 0.4396 µm3

and the error at dx= 0.0625 µm being approximately
4.271 × 10−3 ± 8.590 × 10−3

µm3, a 93.10-fold reduction.
This convergence compares favorably to the simpler volume
estimating approach of counting the full volume of every
voxel that is included in the geometry, which converges at
approximately O(dx). In contrast to that approach, which by
definition gives overestimates of volumes, our algorithm gave
more underestimates than overestimates (582 out of 1,000 test
orientations) when dx=0.25 µm, with an average signed error of
−4.205× 10−2

µm3.
Surface area converged at approximately O(dx1.21): absolute

errors at dx = 0.5 µm were 2.963 ± 0.313 µm2, and at dx =
0.0625µmwere 0.2384± 0.0251µm2, an∼12.43-fold reduction.
For a convex shape such as a cylinder, surface areas estimated
using marching cubes are expected to be under-estimates (and
this holds for 999 out of 1,000 of our test cylinder orientations) as
the computed surfaces are planes lying strictly inside the shape; as
neurons are not convex, surface areas need not be underestimates
in those morphologies.

As interior voxels always contribute their full volume—and
therefore do not contribute to volume error—and have no
surface, we examined if it was advantageous to use a refined mesh
on the surface voxels only to reduce error without incurring the
full speed penalty from using a finer global mesh. As explained
in the methods, we subdivide surface voxels into VR3 subvoxels,
compute the volumes and surface areas for each, and sum the
results together for the total values for the voxel. Although this
approach is similar to increasing the overall mesh resolution, it
still depends on the coarser mesh’s determination of which voxels
are surface or not, and thus differences may arise in complex
morphologies when, for example, small branches pass near each
other.

To examine the effect of voxel subdivisions, we held the
cylinder orientation constant, parallel to the x-axis, and
recorded the errors and runtime for various subdivision
levels VR. In NEURON, subdivisions used for volume and
surface area calculations are independently configurable, using
rxd.options.ics_partial_volume_resolution
and rxd.options.ics_partial_surface_
resolution, respectively. In general, as shown in Figure 1,
increasing VR provides volume errors and discretization
times comparable to using a higher resolution grid but
without introducing additional voxels that would significantly
increase simulation overhead. Subdividing for surface
area calculation did not improve the error for a given
discretization time, likely due to this strategy increasing
the number of marching cubes to compute since it must
process domains that would otherwise be classified as
fully interior or fully exterior. As such, NEURON’s default
rxd.options.ics_partial_volume_resolution of
2 and rxd.ics_partial_surface_resolution of 1 are
used for all subsequent calculations, i.e., volume calculations use

FIGURE 1 | Sub-sampling surface voxels tends to improve the accuracy of

the volume estimate for any discretization resolution at the cost of increasing

voxelization time. VR is the partial volume resolution, the voxelization times of a

cylinder of fixed size and orientation are shown for 50 different values of dx

(from 0.01 µm to 0.5 µm) and five values of VR (2, 4, 6, 8, 10). Each subplot

highlights one of the VRs, with the others shown in grey. As dx decreases,

discretization time increases and relative error tends to decrease, but the error

is non-monotonic due to changing alignment of the cylinder with the grids.

subdivided surface voxels while surface area calculations do not.
As discussed below, we found that the accuracy of the surface
voxel partial volume calculations affects the error introduced in
1D-3D hybrid models.

Convergence of Discretization on Realistic

Geometries
To assess the convergence of volume and surface area estimates
on realistic morphologies, we used our voxelization algorithm
to estimate these values for 21 randomly chosen neuron
reconstructions from NeuroMorpho.Org as described in Section
2.5. For most cells, we tested 12 choices of dx from 0.05 to
0.5 µm, omitting the smaller values for large cells that would
require prohibitive setup time or memory at those resolutions.
As the true surface area and volumes are unknown, we compared
each value for a given morphology to the corresponding value
calculated with the smallest dx (Figure 2). With dx = 0.5 µm,
the majority of whole cell morphologies (13 out of 21) had
an estimated relative volume error of <1% with one having
error <0.1%. At NEURON’s default resolution of dx = 0.25 µm,
15 out of 21 morphologies had a volume error <1% with 5
having a volume error <0.1%. By dx = 0.15 µm, these rates
increase to 19 out of 21 and 10 out of 21, respectively. The
volume error scaling varies per morphology but scales between
O(dx2) and O(dx3) (Figure 2B). With dx=0.15 µm, 10 out of
21 whole cell morphologies had estimated surface area errors
<1% and two morphologies had surface area errors <0.1%. For
most morphologies, the surface area error scaled between O(dx)
and O(dx2) (Figure 2A). Thus, the scaling rates for volume
and surface area errors with realistic neuron morphologies are
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FIGURE 2 | Log-log plots of estimated (A) surface area and (B) volume relative error as a function of dx for the voxelization of 21 entire morphologies (all sections)

chosen randomly from NeuroMorpho.Org. Points indicate measured values; colored lines indicate best-fits. Black lines indicate first-, second-, and third-order

convergence, as marked, for reference. Note that the y-axis scale is different between (A) and (B).

broadly consistent with the rates observed for the cylinder. While
the relative errors for the surface area are higher than that for the
volume, we note that as described in the methods, for consistency
with models not including 3D reaction-diffusion, NEURON
always computes ion current influx based on the summed frusta
surface areas for the 1Dmodel and only uses the 3D surface areas
to distribute the total segment currents into individual voxels.

Voxel-Segment Assignment
For currents through the membrane to correctly alter and be
modulated by local near-surface concentrations, each voxel must
be assigned to the correct segment and surface voxels must be
distinguished from interior voxels. To test these classifications,
we constructed a simple geometry, consisting of two parallel
connected cylinders, with length 5 µm, diameter 5 µm, and
9 segments, and length 5 µm, diameter 1 µm, 5 segments,
respectively. We plotted the quarter of the surface-voxels with
x > 0, y > 0, and z > 0 in 3D and color-coded by
segment (Figure 3A). (The x > 0 condition removes the
end-face of one of the cylinders.) Visual inspection revealed
that our algorithm constructed a continuous surface with no
holes and no interior mis-identified voxels. Similar results were
found for the other sections of the geometry (not shown),

suggesting that the algorithm correctly distinguishes surface and
non-surface voxels. To test the voxel-segment assignment, we
projected this image into the x, y plane and added markers for
the analytically computed segment boundaries (every 5/9 µm
for the bigger cylinder and every 1 µm for the smaller cylinder).
We additionally added a line segment that passes through the
corner of the big cylinder and the midpoint of the first segment
of the smaller cylinder which by default in NEURON is assigned
a 3D point, and thus this line segment marks the projection of
the cone that CTNG adds to join the two cylinders. All segment
boundaries aligned with the analytically computed ones and the
join cone tapered as expected (Figure 3).

Three-Dimensional Simulation

Conservation of Mass
Physically, mass diffusing in any domain should be constant,
however the finite limits of computer precision and large
numbers of voxels in 3D simulations allow the opportunity for
round-off error to accumulate.

To quantify this effect for the serial (1 thread) simulation,
we simulated diffusion on a Y-shaped geometry consisting of
three sections, each of length 10 µm and diameter 2 µm. One
section is positioned from (0, 0, 0) to (10, 0, 0). The other sections
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FIGURE 3 | Segment alignment validation. (A) 3D plot and (B) 2D-projection of surface voxels of a morphology with an abrupt change in diameter and a change in

segment length, colored by segment. Vertical lines in (B) illustrate the locations of the 1D segment boundaries, which align with the 3D surface nodes. The diagonal

black line connects the edge of the last wide segment with the top-middle of the first narrow segment and matches the corresponding 3D cone taper.

continue from there to (10 + 5
√
3, ± 5, 0), i.e., 30◦ changes

in either direction. While the exact orientation would have no
effect on 1D chemical or electrical simulation, we specify these
details because they affect the exact number of voxels in the
3D simulation as narrow angles would lead to more overlap
of the logical shapes in 3D space and hence less total voxels.
We used the default discretization with voxels with dx = 0.25
µm on each side, for a total of 7,904 voxels in our model.
Substance diffused with diffusion constant of 1 µm2/ms) starting
from a concentration of 1 µM on the section parallel to the
x-axis and 100 nM on the other two sections and ran for
varying lengths of time. For fixed step simulation, we started
with a timestep of dt = 0.025 ms, NEURON’s default. After 4
million timesteps (i.e. by t = 100, 000 ms) conservation error
accumulation led to a relative change of about 8.2219 × 10−10

of the total mass. As timestep reduced to dt = 0.0125 ms and
dt = 0.00625 ms, the relative change in mass after 100, 000
ms reduced to 7.004 × 10−12 and 1.7741 × 10−13, respectively.
For variable step, using NEURON’s default tolerance and an
atolscale of 10−6 for the state variable. Without scaling,
NEURON’s default error tolerance would be 1 µM, small enough
for sodium and potassium, but far too large for physiological
concentrations of, e.g., calcium which are often about 50–100
nM (Grienberger and Konnerth, 2012). With these settings, by
t = 100, 000 ms, variable step integration accrued a relative
change of 2.7389×10−13 of total mass over 33,233,603 timesteps.
We note that in practice, many NEURON simulations run for
orders of magnitude less time, and can expect even smaller error
accumulation.

We further examined conservation of mass by running the
same simulation with four compute threads. The relative errors

in both fixed step and variable step matched the results reported
above for the serial case.

Diffusion
To assess the error in our numerical diffusion algorithm, we
compared the simulated distribution of concentration on a large
finite cylinder to the known analytical solution for the infinite line
and infinite space.

In particular, on an infinite 1D line, the Green’s function
for diffusion with diffusion constant D from initial conditions
described by the Dirac delta function δ(x) is well-known to be:

G(x, t) = 1√
4πDt

exp

(−x2

4Dt

)

, (1)

see e.g., Balluffi et al. (2005). In particular, this implies that
for diffusion on an infinite line with initial concentration
0 everywhere except between A and B where the initial
concentration is C, the concentration at position x at time t > 0
will be equal to

C√
4πDt

∫ B

A
exp

(−(x− ξ )2

4Dt

)

dξ . (2)

This integral may be evaluated numerically or expressed in terms
of the error function (erf). For diffusion on a finite line with
reflective boundary conditions (such as an unattached section in
NEURON), the exact concentration is an infinite sum of values
of that form (with adjusted values of A and B; this is the so-called
method of images), however this may be numerically neglected as
long as the section is sufficiently long and the time sufficiently
small.
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Likewise, on a right circular cylinder, the solution (Equation
5) applies for all points (r,φ, x) (in cylindrical coordinates)
provided zero-flux boundary conditions, initial concentrations
u0(r,φ, x) = û0(x) are independent of r and φ (that
is, the concentration is uniform on any given cross-section
perpendicular to the axis), and a spatially uniform D. This
follows immediately from the diffusion equation in cylindrical
coordinates as uφφ = ur = 0 (this is immediate at t = 0 from
the initial conditions and can be shown to hold for t > 0) and
thus

∂u

∂t
= D

(

1

r

∂

∂r

(

r
∂u

∂r

)

+ 1

r2
∂2u

∂φ2
+ ∂2u

∂x2

)

(3)

reduces to

∂u

∂t
= D

∂2u

∂x2
, (4)

the 1D diffusion equation. A similar reduction applies for any
right cylinder regardless of the shape of the base that satisfies the
other conditions.

We thus began our diffusion validation by considering a right
circular cylindrical section 200 µm long with diameter 1 µm
oriented along the x-axis with concentration 0 everywhere except
1 mM between positions 95 and 105 µm with diffusion constant
D = 1 µm2/ms with dx values of 0.5, 0.25, and 0.125 µm. The
maximum absolute error at time t = 100 ms when simulated
using NEURON’s default 0.025 ms time step when compared
to the theoretical values reduced at approximately O(dx2): the
maximum absolute error with dx = 0.5 µmwas 5.29× 10−5 mM,
with dx = 0.25 µm was 1.28 × 10−5 mM, and with dx = 0.125
µmwas 2.79× 10−6 mM. The distribution of absolute errors and
concentration vs position for this problem is shown in Figure 4.

Analogously, we used the Green’s function for diffusion in 3D
space from a point source at the origin,

G(Ex, t) = 1

(4πDt)3/2
exp

(−|Ex|2
4Dt

)

, (5)

to assess the numerical accuracy of our 3D diffusion algorithm
in space as opposed to in a cylinder. Again, we chose a
domain sufficiently large and time point sufficiently small to
neglect the reflective boundary conditions; in particular, we
consider a cylinder centered around the origin of diameter 40
µm and height 40 µm. Within this domain, we take initial
concentration of 0 everywhere except in the cube [−2, 2] ×
[−2, 2] × [−2, 2] where we take initial concentration of 1 mM;
as before, we suppose the substance diffuses with a diffusion
constant of 1 µm2/ms. Analytic solutions follow from Equation
(5) analogously to Equation (2) but with a triple integral over
the domain with the non-zero initial conditions. We simulated
until t = 20 ms using the default spatial discretization of
0.25 µm and plotted the relative error at 100 randomly chosen
points within a sphere of radius 10 µm centered around the
origin (Figure 5). As the initial source was not spherically
symmetric, the concentrations themselves are not spherically
symmetric, however the relative error (always under 0.1%)
exhibits a clear relationship to the distance from the origin,

FIGURE 4 | (A) Distribution of absolute errors as functions of spatial

discretization dx at t = 100 ms from simulation of a diffusion problem on a

cylinder of length 200 µm, diameter 1 µm from an initial concentration of 1

mM between positions 95 and 105 µm, 0 elsewhere. The apparent bumpy

shape is an artifact of plotting the absolute value on a log scale; at each

sudden drop in error the 3D simulated values switch from being an over- to an

under-estimate or vice-versa. (B) Distribution of concentration at the same

time point as determined by the analytic solution.

FIGURE 5 | Relative error vs. distance from the origin in 3D diffusion

simulation from a cube of elevated concentration centered at the origin,

simulated using the default spatial discretization; see text for details.

with the relationship becoming weaker as distance (and thus
concentration) increases.

Ion Channel Fluxes
To examine the interplay between membrane potential, ion
channels, and diffusion, we simulated sodium dynamics at
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various diffusion rates within a cylindrical “soma” geometry 10
µm in length and 10 µm in diameter with Hodgkin-Huxley
channels under a continuous current injection of 0.1 nA. This
current injection was sufficient to cause the cell to fire a train of
action potentials, each of which admits sodium current into the
cell, raising the sodium concentration. (Sodium concentration
change is only simulated when sodium dynamics are explicitly
modeled, either through NEURON’s rxd mechanism as here or
through certain MOD file mechanisms.) As shown in Figure 6,
with a low sodium diffusion rate, the sodium concentration near
the surface builds up rapidly. As the diffusion rate increases,
the surface concentration approaches that of the corresponding
1D simulation as the sodium is more able to spread across the
dendrite’s cross-section. By definition, the difference in sodium
concentration in the surface voxels leads to a difference in the
sodium Nernst potential (which is automatically recalculated by
NEURON), which affects subsequent sodium currents and hence
spike timing and shape, leading to the separation of spike times
for the different diffusion rates shown in the inset to Figure 6A.

With larger values of dx, the surface voxels extend deeper
into the soma, providing an averaging effect that approaches that
of the 1D solution. The resulting numerical difference is most
pronounced for small diffusion constants: With dx = 0.5 µm, the
surface concentrations at t = 100 ms for D = 10−4

µm2/ms and
D = 0.01 µm2/ms were 13.35 and 11.24 mM, respectively. With
dx = 0.25 µm (NEURON’s default), the surface concentrations at
the same time point and diffusion constants were 15.59 and 11.16
mM, respectively.

In the case of a single section, the same dynamics would
be observed for a 2D model using radial shells to incorporate
the difference between near-plasma-membrane concentrations
and interior concentrations, however the 3D approach used here
avoids the non-physical-realizability of radial shells at branch
points (see, e.g., Figure 1 in Chen and De Schutter, 2017).

3D Simulation on Realistic Geometry
For a more complete test, we compared simulations of scalar
bistable dynamics on a realistic cell morphology using our
algorithm with using the 3D cell biology simulator VCell (Schaff
et al., 1997; Cowan et al., 2012). We used CTNG in NEURON
to voxelize the morphology of NeuroMorpho.Org:NMO_02699
(Ascoli et al., 2007; Nikolenko et al., 2007). The voxelized data
was exported to a stack of PNG images, where each image
represents a z-slice with a value of 0 for voxels not in the cell
and a value of 255 for voxels in the cell. These image stacks
were then loaded into VCell with each pixel corresponding to
one voxel. We note, however, that while this transfer approach
correctly transfers information about which voxels are included,
it loses the fractional volume calculated for surface voxels within
NEURON, so the two tools are not expected to produce identical
results as the boundaries vary slightly. In each tool, the initial
concentrations were set to be 1 mM in the distal apical and 0 mM
elsewhere. Reaction-diffusion was simulated until time t = 220
ms, and corresponding z-slices were compared. With both tools,
the wavefront was at the same approximate location mid-soma
and showed comparable curvature (Figure 7).

FIGURE 6 | (A) Membrane potential and (B) surface voxel sodium

concentration of a 3D cylindrical soma with Hodgkin-Huxley channels and

sodium accumulation, 10 µm in diameter and 10 µm in length with a constant

current injection of 0.1 nA at various diffusion constants D (µm2/ms). Legend

applies to both sub-figures. Insets: magnified views of indicated regions

showing differences in 3D results depending on the diffusion constant and

convergence to the 1D solution (black dashed line) as the diffusion constant

increases.

FIGURE 7 | NEURON vs. VCell comparison. Reaction-diffusion NEURON and

VCell simulation results of one cell z-slice at t = 220 ms. Image cropped to

show relevant cell slice areas. Note the similarity between the characteristics of

the wave curvature, approximate wave position, and the thickness of the wave

front in each simulation.

Orientation Sensitivity With Propagating Wave
The orientation of a section affects how many voxels will be
on the boundary and how the surface cuts through them,
but the boundary voxel partial volumes and surface areas are
inherently only approximations. To assess the impact of these
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FIGURE 8 | Distribution of relative error in wave speed for the scalar bistable

wave with α = 0.25 derived from 100 random orientations of a 251 µm long, 2

µm diameter cylinder simulated in 3D at three choices of dx (measured in µm);

all graphs are on the same scale. Simulations with θ within 0.1 radians of 0,

π/2, or π corresponding to cylinders nearly parallel to either the x, y plane or

the z axis are in cyan and tended to have lower errors than those that were

oriented otherwise. Dashed lines indicate mean values.

approximations on models incorporating both 3D reaction and
diffusion and components that are sensitive to 1D concentrations
(e.g., ion channel kinetics specified using NMODL; Hines and
Carnevale, 2000), we considered wave propagation governed by
the the scalar bistable equation, ut = D1u − u(1 − u)(α − u),
and timed wave propagation based on 1D concentrations. Here
1 is the Laplacian operator, D is the diffusion constant, and
α is a threshold concentration, above which in the absence of
diffusion concentrations will tend to increase and below which
concentrations will tend to decrease. As observed in McDougal
R.A. et al. (2013), these dynamics exhibit key characteristics
of some intracellular signaling processes, like calcium waves.
Furthermore, this equation has a known analytic solution in the
1D infinite line case that can be used for validation.

To quantify this effect, we tested 100 random orientations of a
251 µm long dendrite of diameter 2 µm. We initialized the wave
with a concentration of 1 on the first 50 µm and 0 elsewhere,

then let it diffuse with a diffusion constant of D = 1 µm2/ms.
(Concentration by default in NEURON is represented in mM,
however the units are omitted here as the dynamics are the same
as long as the units are consistent.) For each orientation, we
estimated wave speed for three different choices of α (0.15, 0.25,
0.35) and three values of dx (0.5 µm, 2−1.5 ≈ 0.3536 µm, 0.25
µm). A plane wave in an infinite cylinder with these dynamics is
known to propagate with a wave speed of c =

√
2( 12 − α) (see,

e.g., Fife, 1979). We estimated the wave speed in each simulation
by measuring the time it took for the wave front (defined as
the farthest point with an average 1D concentration over 0.5) to
move from position 100–200 µm. These positions and the total
length of the dendrite were chosen as they were found to allow
reasonably accurate approximations of the wave speed in 1D
simulations—i.e., a large enough distance to be free of boundary
effects—while keeping the geometry small enough that the 900
total 3D simulations involved in this study could be run in a
reasonable amount of time.

For α = 0.25, the average relative error in the estimated wave
speed decreased proportionally to dx (4.59 ± 2.24 % for dx =
0.5 µm, 3.12 ± 1.56 % for dx ≈ 0.3536 µm, and 2.17 ± 1.09 %
for dx = 0.25 µm). At NEURON’s default resolution of dx = 0.25
µm, all orientations led to <4% relative error in estimated wave
speed; about three-quarters (74 out of 100) showed <3% relative
error, and about one-fifth (21 out of 100) had <1% relative error,
with the minimum being 0.13% (Figure 8). All three values of
α tested showed similar distributions of relative errors of wave
speed (not shown). Cylinders whose axis was parallel to the x, y
plane or mostly vertical gave less error in wave-time estimates
than cylinders whose axes were not aligned with the Cartesian
grid.

Hybrid 1D-3D Simulation Validation

Conservation of Mass
Simulations of diffusion should conserve mass for 3D and

hybrid 1D-3Dmodels. To test hybrid conservation, simple hybrid
models were used, where one section joined to one or two other
sections, either aligned or a Y-shaped join. A region of initially
elevated concentration was placed in one section away from the
join and diffusion to the neighboring sections was simulated.
Using different voxel sizes and time-steps showed similar change
in total concentrations, on the order of 10−11% of initial amount,
consistent with the expected numerical error.

Diffusion
We tested the accuracy of 1D-3D hybrid simulation using a
cylindrical dendrite of length 153 µm and diameter 2 µm. For
all simulations we used a 1D discretization of two segments per
micron. We simulated for 50 ms with a diffusion constant of 1
µm2/ms from an initial distribution of 0 mM everywhere except
for a concentration of 1 mM between positions 70 and 83 µm.
We compared four different discretization strategies—pure 1D
simulation, pure 3D simulation, 1D on the middle 51 µm and
3D elsewhere, and 3D on the middle 51 µm and 1D elsewhere—
at time t = 50 ms to the analytical solution calculated using
Green’s functions as described under “Conservation of mass.”
The analytical solution’s concentration at the midpoint of our
cylinder at the end time is∼0.4843 mM. Since there are many 3D
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FIGURE 9 | Comparison of the magnitude of signed absolute errors as a

function of position for 1D (red), 3D (green), and two hybrid cases (cyan and

purple) for diffusion from an area of elevated concentration near the middle of

a 153 µm long cylindrical domain ; all plots are for t = 50 ms. (A) With different

choices of dx. (B) With dx = 0.25 µm and different levels of accuracy for

estimating the partial volume of voxels that are partly inside and partly outside

the cylinder; see text for details. (C) Analytically computed concentration

distribution.

voxels per x coordinate, we examined the weighted (by volume)
concentration as a function of position. In both hybrid cases for
both dx = 0.25 µm (the default) and dx = 0.125 µm, numerical
absolute error for the weighted concentration at the points where
the 1D and 3D domains join exceeded that of the highest absolute
error for the pure 3D simulation, however it was generally of
the same order (Figure 9A). For the 1D in the middle model,
when dx was reduced by a factor of two, the maximum error

was reduced by a factor >2: the maximum absolute error of the
weighted average concentration dropped from 1.21 × 10−3 to
5.17×10−4 mM. In surface voxels containing only a small volume
of the cell, the error can be larger, reaching up to 1.99×10−3 mM
and 7.93 × 10−4 mM in the dx = 0.25 µm and dx = 0.125
µm cases on the same hybrid problem, respectively. Maximum
errors for the weighted average for the 3D on the middle hybrid
problem reduced from 6.72× 10−4 to 4.76× 10−4 mM as dx was
reduced from 0.25 to 0.125 µm. While all simulations conserve
mass, only the fully 1D and fully 3D error curves in Figure 9A

have an integral of ∼0. This apparent discrepancy is due to
inconsistencies in the way 1D and 3D approximate the volume
of the cylinder; in this simple geometry, the 3D volumes are
consistently under-estimated.

Exploring the volume issue further and motivated
by the fact that decreasing dx increases simulation
time and the corresponding quantity of generated,
we examined the effect of increasing the accuracy of
surface voxel partial volume estimates by increasing
rxd.options.ics_partial_volume_resolution.
In particular, for the same setup and holding dx = 0.25 µm
constant, we found that the maximum error of the weighted
concentrations in the 3D on the outer thirds hybrid case dropped
from 1.21 × 10−3 mM when the partial volume resolution was
set to 2 (the default) to 4.38× 10−4 mMwhen the partial volume
resolution was set to 6. Likewise the 3D on the inside case error
reduced from 6.72 × 10−4 to 2.37 × 10−4 mM (Figure 9B).
The analytically computed solution is shown for reference in
Figure 9C. In both hybrid cases, increasing the accuracy of
the partial volume estimates for the surface voxels in this way
reduced the absolute error by an amount exceeding that of
halving dx. Importantly, after initialization, simulation time
is unaffected by the improved partial volume estimates but is
greatly affected by dx.

Performance
Defining and simulating a 3D model are logically separate
activities: a model only needs to be defined once to be
simulated many times (e.g., with different parameters). The
most time-consuming part of the definition phase is the
voxelization process. Furthermore, in principle, any voxelization
that generates the appropriate data structures and maps voxels
to segments could be used by the simulation engine. As such,
we measure the performance of voxelization (currently single-
threaded; described in Section 3.2.1) and the performance of
simulation (multi-threaded; described in Section 2.3) separately.
To assess the performance using realistic cell shapes, we tested
21 randomly selected morphologies (listed in Section 2.5)
with realistic diameters and 3D data from NeuroMorpho.Org
(Ascoli et al., 2007).

Voxelization
To assess the voxelization performance, we loaded each of the
21 randomly chosen neuron morphologies one at a time and
recorded the initialization time and estimated volume for many
choices of spatial resolution dx, typically from 0.05 to 0.5 µm.
Each timing was run in a separate process, as NEURON caches
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FIGURE 10 | (A) Voxelization time scales as approximately O(dx−2). Dots denote measured data from 21 different morphologies from NeuroMorpho.Org; colored

connecting line segments are illustrative only. (B) The scaling of estimated relative volume error varies depending on the morphology, but typically lies between O(t−2)

and O(t−1), where t is the time spent computing the voxelization. Points denoted measured values; corresponding colored lines represent a linear (in log-log space)

best fit. In both (A,B), black lines give examples of perfect scaling at the rate indicated.

the results to avoid voxelizing the same cell more than once (i.e.,
subsequent model initializations skip the voxelization step). As
shown in Figure 10A, the time required to voxelize/discretize
the cell scaled nearly consistently at about O(dx−2) regardless of
the morphology, with the main exceptions happening for large
dx. As before, relative volume error was estimated using the
volume calculated for the smallest measured dx as the estimated
true volume. The relationship between estimated relative volume
error as calculated in the convergence on a cylinder section
and time spent doing the discretization was noisy and less
consistent across morphologies but the error generally scaled
between error = O(time−2) and error = O(time−1) as shown
in Figure 10B.

3D Simulation
To assess the scaling of our simulation algorithm with the
number of threads used, we simulated three different dynamics
(pure diffusion, bistable wave, and calcium wave) across two
morphologies (a cylinder of length 50 µm and diameter 1
µm) and a reconstructed cell (NeuroMorpho.Org’s NMO_77436
(Canchi et al., 2017)), with three spatial resolutions (dx =
0.25, 0.125, and 0.0625 µm). The pure diffusion dynamics

were governed by Fick’s laws. The bistable wave modeled here
implements the scalar bistable wave equation ut = D1u −
u(1 − u)(α − u) analyzed in Fife (1979), and previously used
as an example of reaction-diffusion phenomena in McDougal
R.A. et al. (2013). The calcium wave model implements
Ca2+-induced-Ca2+-release (CICR) driven by the endoplasmic
reticulum (ER), and is a simplified version of Neymotin et al.
(2015). Waves were initiated by an area of elevated cytosolic
concentration (u for the bistable wave and IP3 for the calcium
wave) in the first 25 µm in the cylinder case and in section
dend_7[19] of the apical dendrite which starts approximately
9.35 µm from the soma in the morphologically detailed case.

Excluding the cylinder diffusion and cylinder bistable wave
on the coarsest resolution (dx = 0.25 µm), which both initially
ran in under 1 second (and for whom threading overhead is
thus non-trivial), the rest of the simulations showed speedup as
the number of threads increased (Figure 11). For the 16 other
combinations of morphology, model, and dx: using four threads
reduced runtime by up to a factor of 3.63 (2.00±0.65 on average);
using eight threads reduced runtime by up to a factor of 6.39
(3.20 ± 1.29 on average); using 16 threads reduced runtime by
a factor of up to 9.76 (5.07 ± 2.28 on average). The reported

Frontiers in Neuroinformatics | www.frontiersin.org 13 May 2022 | Volume 16 | Article 847108

https://NeuroMorpho.Org
https://NeuroMorpho.Org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


McDougal et al. Efficient 3D Reaction-Diffusion Simulation

FIGURE 11 | Parallel scaling. Testing all 18 combinations of two choices of

morphology, three choices of model, and three choices of dx shows

decreased real time for simulation for most combinations as the number of

threads increases from 1 to 16. Pure diffusion and a bistable wave on a

cylinder at dx = 0.25 µm were the only two test cases that took more real time

with 16 threads than with 1 thread. Solid lines indicate dx = 0.0625 µm,

dashed lines dx = 0.125 µm, and dash-dot lines

dx = 0.25 µm.

runtimes here are based on the best of three runs to limit the
contribution from background tasks.

Reported times exclude voxelization time, analyzed above,
which is currently single-threaded and is only performed once
for a given morphology regardless of the number of simulation
studies performed.

To further test performance speed-up, we experimented with
different settings of cache prefetch, which in our experiments
ultimately did not show significant difference in parallel scaling.

Examples
Three-dimensional simulation offers the ability to explore both
the role of a neuron’s three-dimensional shape—which is
especially relevant wherever the neuron is not approximately
conical, such as where the dendrites meet the soma or a
spine connects to a dendrite—and the role of precise spatial
positioning for, e.g., synapses. In this subsection, we examine
examples of each of these, discuss relevant implementation
details, and examine different visualization strategies for the
resulting volumetric data.

Dendrite-Soma Intersection
Certain cellular phenomena are typically found in one region
of the cell and typically not present in neighboring regions

even when the neighboring regions are known to be able
to support the phenomena. For example, waves of elevated
intracellular calcium in pyramidal cells observed in apical
dendrites only sometimes invade the soma but when they do
are capable of propagating across the soma (Hagenston et al.,
2008). There exist mathematical models of wave phenomena
where it is known that domain geometry affects wave propagation
(e.g., Dronne et al., 2009); 3D simulation allows us to
study if the morphology plays a similar role in problems of
neuroscientific importance.

For example, we simulated the scalar bistable equation
with a threshold α = 0.1 mM in the morphology of
NeuroMorpho.Org:NMO_53113 (Ascoli et al., 2007; Malik et al.,
2016) starting with a concentration of 1 mM on the distal
apical and 0 mM elsewhere, and a diffusion constant of 0.25
µm2/ms. No other dynamics were included; in particular, no
ion channels were simulated and there was no flux across the
plasma membrane (Neumann boundary conditions). We chose
this cell in part because the soma of this cell was specified using
a soma outline in ASC format, allowing NEURON to construct
a non-cylindrical approximation to the soma shape. Using a
fixed-step simulation (dt = 0.25 ms), we simulated the volume
containing the soma and all sections whose center was within
a path distance of 70 µm from the soma’s center in 3D, with
the rest of the cell in 1D. Within this volume of 3D simulation,
the smallest diameter was 0.18 µm, and we used a dx = 0.17
µm. Under these conditions, a wave of elevated concentration
propagated from the apical toward the soma at approximately
uniform speed. Near the soma, the wave front curved and slowed,
but propagated into the soma where it eventually straightened
and resumed its initial speed (Figure 12A) shows the progression
of the wave front over time using contours on a 2D projection of
the cell.

To assess if the hybrid approach was accurately simulating
wave behavior within our region of interest near the soma,
we repeated the experiment using all sections whose center
was within a path distance of 100 µm from the center of the
soma; this expansion added an additional 19 sections to the
3D domain. Simulating in 3D on this expanded domain gave a
visually identical contour map of wave propagation (not shown),
and an identical prediction for when the wave would cross the
center of the soma (t= 188.255 ms), defined as the first time
the 1D concentration at the center of the soma exceeded the
half-maximal value. This consistency suggests that our original
simulation was not losing significant accuracy near the soma
despite simulating distal parts of the cell in 1D. By contrast,
simulating only the soma and the sections directly connected
to the soma in 3D led to a different wave crossing time
(t= 194.58 ms), which therefore indicates this smaller region is
not a sufficiently large 3D region for studying behavior near
the soma.

We note that Figure 7 presents a similar experiment on
a different morphology showing a color-coded 2D slice at a
specific time point. The visualization in the latter figure shows
more detail on the concentration distribution near the wave
front, but cannot show the propagation of the wave front
over time.

Frontiers in Neuroinformatics | www.frontiersin.org 14 May 2022 | Volume 16 | Article 847108

https://NeuroMorpho.Org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


McDougal et al. Efficient 3D Reaction-Diffusion Simulation

FIGURE 12 | Chemical concentration within neurons is affected by the 3D shape of the cell. (A) An intracellular wave entering the soma may curve, slow, and in

extreme cases fail to propagate. (B) Diffusion of ligand from neighboring spines (red; illustrated as inset) leads to different trajectories of higher peak dendrite

concentrations than from spines opposite each other on the dendrite.

Spines
Numerous publications have examined the interactions of spines
with each other (e.g., Chiu et al., 2013), how concentrations
may be compartmentalized within spines (e.g., Yuste et al., 2000)
and the relationship between membrane potential in spine and
dendrite (e.g., Jayant et al., 2017). As with dendrites meeting
the soma, the exact nature of dynamics at the spine-dendrite
juncture depends on the shape of this connection. This is in
part dependent on the angle with which the spine attaches to its
dendrite, a detail completely lost in 1D simulation, but analagous
to the issues arising at the soma.

Spine-dendrite modeling, however, also introduces a new
challenge arising from non-physically realizable models where
the same volumes is part of two separate sections. Such
overlapping sections are common inNEURON, as sections are by
default connected to the centroid of the parent section. For most
models, the length of most sections is longer than the length of
the diameter and the child diameters are generally comparable
to the parent diameters, so any discrepancies in local surface
area or volume due to the overlaps are typically minimal. Models
with spines are a notable exception; spine necks vary in shape
and size but for example in layer 6 pyramidal cells of the mouse
somatosensory cortex are typically <0.2 µm in diameter and
<2 µm long (Ofer et al., 2021), and so attaching the spine at
the centroid places much of the neck inside the dendrite. Here
our choice of mapping the voxel to the 1D compartment closest
to the presumptive soma assures that the spine neck is only
that portion extending beyond the dendrite proper, but the 3D
volume and surface area calculations will be based only on the
part that extends beyond the dendrite, and thus the volumes
will disagree, and it is possible that some segments may not
have any true surface area. This discrepancy between the 1D
and 3D representations can be mitigated by shifting the start
of the spine neck to be some distance (almost a radius) away

from the centroid of the parent dendrite using the appropriate
NEURON pt3dstyle while keeping the perimeter inside the
parent dendrite. In the case of a cylindrical dendrite with a
smaller orthogonal spine, the maximum spine distance from the
dendrite centroid can be found by considering the circular cross-
section of the dendrite meeting the rectangular cross-section of
the spine neck, placed inside the dendrite such that the two
lower vertices are on the perimeter of the dendrite. The resulting
distance d from the centroid is determined by a right triangle,
formed by the center of the dendrite, one of the lower vertices of
the spine neck, and the center of the lower edge of the spine neck.
This gives a triangle with hypotenuse rd, adjacent rn and opposite
rd − d, where rd is the radius of the dendrite and rn the radius of

the spine neck. Then by Pythagoras’s theorem d = rd−
√

r2
d
− r2n.

Using this rule, we constructed a cylindrical dendrite 2.5 µm

in diameter and 6 µm long. We attached two spines at position

3 µm orthogonal to the dendrite with necks of length 3 µm,

diameter 0.1 µm and cylindrical heads of length 0.5 µm and
diameter 0.6 µm. To simulate the spread of a substance from the

spines, they were initially filled with substance to a concentration
of 2 mM, with 0 mM in the dendrite. When the substance was
allowed to diffuse at a rate of 0.01 µm2/ms, the dynamics of the
concentrations within the dendrite varied depending on the angle
separating the two spines (Figure 12B).We considered two cases:
spines 30◦ apart, and spines 180◦ apart. We note that in a non-3D
simulation these two cases would give identical results. The peak
dendritic concentration in each case was reached within the first
0.5ms, with the closer spines leading to a peak concentration 89%
as high as with the spines on the opposite side of the dendrite.
All voxels dropped below a concentration of 0.15 mM 17.575
ms earlier when the dendrites were near each other than when
they were opposite each other. If the threshold for triggering
another reaction was around 0.15 mM, this difference in time
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above that value could make the difference between whether or
not the downstream reaction was triggered. For different choices
of parameters (e.g., with a thinner dendrite), the same model
could have the peak concentration drop below the threshold in
the other order.

Three-Dimensional Localization of Synapses
Metabotropic receptors and other mechanisms exist at specific
points in 3D space. Such dynamics in 1D are often specified
using files written in NMODL (Hines and Carnevale, 2000), a
domain specific language for ion channel, receptor, and artificial
cell kinetics supported by NEURON, Arbor (Akar et al., 2019),
and the Python nmodl module (github.com/bluebrain/nmodl).
We can apply the same approach to synapses located in 3D space,
but a few extra considerations are necessary.

First, we begin by defining our post-synaptic response
kinetics. In principle, these can be arbitrarily complicated
to reproduce experimental observations, however as a first
approximation it is not uncommon in modeling to see
mechanisms where the rate of production jumps abruptly in
response to synaptic and decays exponentially; such an NMODL
file is shown in Figure 13. In this file, g denotes the rate of
production of a substance; physically, this corresponds to a
change in mass per ms. To support traditional NMODL files, all
currents generated by an NMODL mechanism are distributed
over the entire segment surface. As a segment is the smallest
electrical compartment, that behavior is correct for the electrical
aspects of the simulation, however distributing, e.g., sodium
currents across the surface would result in sodium changes in
all surface voxels. To avoid this issue, a 3D targeted NMODL
mechanismmust generate onlyNONSPECIFIC_CURRENTwith
chemical changes driven solely by the rate g.

NMODL mechanisms must be compiled before they can be
used. This is typically done by running nrnivmodl, but we
note additional compilation options are sometimes available.
NEURON loads compiled NMODL mechanisms from the
current directory at startup and can also load them on demand
via h.nrn_load_dll. Once loaded, the POINT_PROCESS
name (RxDSyn in Figure 13) is available as a class in NEURON’s
h object. That is, a new instance could be created by r =
h.RxDSyn(seg), where seg is the segment that contains the
mechanism.

Once we have picked the kinetics, the next step is to identify
the 3D location to place them. If ca is an rxd.Species
on a 3D region, then ca.nodes[(x, y, z)] is an
rxd.NodeList of ca nodes containing the point (x, y,
z). As each node covers a volume, there are many points within
a Node but at most one Node that contains the point unless
the rxd.Species is present on more than one region (e.g.,
calcium might be present in both the ER and the cytosol, as in
Neymotin et al., 2015). The coordinates of the center of a Node’s
voxel are (node.x3d, node.y3d, node.z3d). Note that
if node is on the surface, then node.surface_area should
be strictly positive. If the surface exactly touches a grid corner, it is
possible that some voxels with zero surface area will be included
in the mesh, but as such, these should not be used for surface-
based kinetics. If the segment containing the mechanism was

FIGURE 13 | Source code for a generic NMODL mechanism called RxDSyn

that receives synaptic events (NET_RECEIVE block) causing the flux g to

increase abruptly in response to an event by an associated weight, with the

flux decaying exponentially with time constant tau thereafter (DERIVATIVE

block).

initially unknown, it can be obtained from the selected node via
node.segment.

Mechanisms may be connected to one or more
nodes by passing a pointer to the rate to the node’s
include_flux method; in our example, this is
node.include_flux(r._ref_g). By default, this
method assumes g is measured in molecules per second; these
units ensure that the same total amount of substance is enters
the cell regardless of the discretization. The same flux rate may
optionally be applied to other nodes.

Once this is done and the post-synaptic dynamics are
connected to a presynaptic event source (e.g., a membrane
potential crossing a threshold or a random spike train),
then presynaptic events will trigger production of the node’s
substance at a rate that decays over time (if using the kinetics of
Figure 13) and that substance is free to diffuse away (Figure 14).

DISCUSSION

NEURON 8.1 provides built-in support for parallel, 3D
deterministic simulation of intracellular reaction-diffusion
dynamics (e.g., protein and ion interactions and diffusion) in
whole neurons and in modeler-selected Sections of interest; the
remaining Sections, with kinetics expressed identically, continue
to use 1D reaction-diffusion simulation, allowing computational
resources to be targeted toward locations where the 3D shape
is likely to matter such as the relatively large volumes near the
soma. Selected cells or Sections are voxelized using an updated
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FIGURE 14 | Simulated diffusion in a cylindrical dendrite of a substance produced at (2.5, 0.975, 0.275) in response to synaptic input at time t = 5 ms. The volumetric

images highlight translucent level sets with all concentrations above 10 µm displayed the same. Bottom-right: concentration (on a log scale) vs. time at five distances

from the source on the surface of the dendrite. Inset: a volumetric view from a different angle showing the extent of diffusion into the interior of the dendrite.

version of the CTNG algorithm (McDougal R. et al., 2013)
that exploits convexity. Synapses can optionally target their
effects to specific 3D compartments (e.g., production of a certain
mass of messenger from activation of a metabotropic synapse).
Electrophysiology simulations remain simulated as branching
1-dimensional sections as is appropriate given their larger space
constants.

NEURON—via its Import3D library—supports a variety of
neuroscience formats for specifying the overall cell morphology,
including SWC (Cannon et al., 1998), MorphML (Crook
et al., 2007), and Neurolucida ASC (Glaser and Glaser, 1990).
Morphologies specified using Neurolucida ASC may include
a soma outline; CTNG uses this outline when available to
construct a more accurate soma shape than is possible when
reading morphologies specified in the other formats. SWC is
especially useful as the over 170,000 neuron reconstructions on
NeuroMorpho.Org (Ascoli et al., 2007) are all available in SWC
format. To study the effects of cell morphology on reaction-
diffusion dynamics, modelersmay alter amorphology file directly
or may modify it using NEURON’s standard techniques, such
as adding new Section objects to insert e.g. spines or using
Section.pt3dchange and related methods to adjust (x, y, z)
or diameter values.

Alternative Strategies
There are two main alternative approaches in the literature for
combining 3D reaction-diffusion kinetics with electrophysiology.

The first alternative approach is to have an integrated solver
that uses a single mesh. STEPS, for example, simulates ion

channel and pump activity on the surface of the 3D mesh
(Hepburn et al., 2013); a similar approach was used in the Virtual
NEURON study (Brown et al., 2011). Using the same mesh
eliminates the possibility of numerical artifacts from coupling,
automatically ensures consistent surface areas, and eliminates the
possibility of interior surface (e.g., from spines mis-connected
at the centroid). We have avoided this approach, instead using
1D electrical with 3D reaction-diffusion as in Grein et al. (2014)
to allow the electrical dynamics to be consistent regardless of
the dimensionality of the reaction-diffusion simulation, to take

advantage of the O(n) implicit simulation of electrical dynamics

on such a 1D-structure (Hines, 1984), and for compatibility

with the over 2,000 existing NEURON models (i.e., extending
an existing NEURON model with 3D intracellular reaction-
diffusion dynamics does not require modifying the existing

components, unless a change is desired to their behavior).
The second alternative approach is to use multisimulation;

that is, to combine a solver specializing in ion channels and the
cable equation like NEURON or MOOSE (RRID:SCR_008031;

Dudani et al., 2009) with an external solver specializing in

reaction-diffusion simulation. We and our colleagues have

used this approach for stochastic 3D model simulation with

NEURON Time Warp (Lin et al., 2017). KappaNEURON
likewise combines NEURON with the rule-based reaction-
diffusion simulator SpatialKappa (Sterratt et al., 2014). Grein
et al. (2014) used a similar approach for deterministic 3D
simulation coupling NEURON with uG. Additionally, we note
that NEURON supports the general multisimulation framework
MUSIC (Djurfeldt et al., 2010) which has been used to connect
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MOOSE andNeuroRD (Brandi et al., 2011). Themultisimulation
approach is appealing as it allows each simulator to specialize
in its own problem domain, providing a rich set of simulatable
features, with each simulator programmed independently. While
recognizing the benefits and flexibility of multisimulation, we
chose to build our 3D intracellular simulation capability within
NEURON to allow for a unified Jacobian matrix, allowing
for variable step simulation, to provide consistent coupling
semantics, to avoid the need for syncing data between two
different potentially parallel tools, and to avoid the need for users
to learn two simulator tools.

Special Considerations
Models with exactly zero diffusion of a species that enters or
leaves through ion channels pose specific issues in comparing
1D and 3D simulations or 3D simulations with different
discretizations. Although mathematically convenient, these
models are non-physical as diffusion is necessary to bring a
molecule to or through an ion channel. Concentration changes
in 1D are based on the active geometry, typically the whole
dendrite. Increasing the spatial resolution (e.g., tripling nseg) in a
1D model with no diffusion has no direct effect on concentration
dynamics as the volume and total current both scale by the same
fraction. In contrast, in a 3D model as ions must enter via the
surface, with no diffusion, they are trapped there. Reducing voxel
edge size by a factor of 2 changes the volume by a factor of 8
but the surface area contained in the voxel by only a factor of 4
on average, leading to a factor of 2 change in the rate at which
concentration in surface voxels changes, which could affect ion
channel kinetics.

In principle, multigriding could be extended to be used within
the chemical dynamics in 1D or 3D; i.e., a species prone to
steeper gradients could be simulated on a finer grid, but this
risks introducing artifacts, especially in the case of slow or
zero diffusion. For example, suppose molecule A on a coarse
grid bound with molecule B from a refinement of the grid to
form molecule AB. If AB is represented on the same fine grid,
then when it dissociates A and B can return to their correct
points of origin. If on the other hand, AB is represented on
the coarse grid then when it dissociates B could end up in any
of the corresponding fine meshes. Thus, even if the diffusion
rate was set to zero for all species, molecule B could move
by binding to A, entering the coarse grid, and then returning
to a different fine grid compartment. A similar problem exists
regardless of the relative sizes of the grids if they do not align
perfectly. Meshless simulators, like MCell (Stiles et al., 1998),
avoid this class of problems entirely at the cost of having to
simulate each molecule separately. We note that this problem
only pertains to overlapping meshes; separate mesh resolutions
on different parts of the cell (e.g., large near the soma, smaller
in the distal dendrites) are potentially compatible, although the
mesh transition would not in general be expected to align to the
boundary between Sections.

We note that the insight gained by a 3D simulation
depends on the quality of the 3D mesh. CTNG or any of the
alternative rules for converting point-diameter representations
into a 3D mesh are inherently approximations as the full

shape of the cell is under-determined by the reconstruction
data. For a given reconstruction, the mesh quality in
NEURON is primarily driven by the choice of dx (with
smaller values of dx giving generally higher quality meshes)
as well as the ics_partial_volume_resolution and
ics_partial_surface_resolution options. At least
as important is the quality of the reconstruction itself; even
when working from the same image stacks, different approaches
can lead to logically different reconstructions with branches
connected at different points (see e.g., Gillette et al., 2011). Details
of the imaging approach can likewise affect the detail present in
image stacks of a cell (e.g., dyes may not fill a neuron entirely or
a neuron’s branches may be amputed by a slice). We recommend
that—regardless of metadata annotations—morphologies should
be manually reviewed for slice artifacts (e.g., when we randomly
selected 21 morphologies, we found that while none were strictly
planar several showed minimal z-axis variation), for realistic and
non-uniform diameters, for electrical connectivity (no pinch
points where the diameter gets very small), and for z-axis errors
(some reconstructions show abrupt changes in z values). There
is no value in doing a 3D simulation if the 3D morphology is
unrealistic.

3D time-series data is in general large and hard to visualize.
We deal with the large volume of data by only automatically
keeping the current state in memory. The time series of the
concentration of a specific species at a specific compartment
may be recorded using a Vector. For modelers needing to
store or visualize all the states at a specific time, simulations
may be stopped at a specific time point, where the states
are then captured to an appropriate Python data structure.
Throughout this paper, we have deliberately illustrated several
approaches to visualizing such data: (1) line plots of a single
species at a single point as in Figure 12B; (2) for traveling
waves, plots of the location of the wave front at evenly spaced
time points on a 2D projection or slice as in Figure 12A;
(3) plots of the concentrations at the surface, analagous to
the surface segment identities in Figure 3A; (4) heatmaps of
a slice or projection at a specific time point as in Figure 7;
and (5) translucent contour maps of concentration level sets
at given time points as in Figure 14. Example Python code
for each type of graph is available in this paper’s entry
on ModelDB.

Conclusions and Future Directions
From our examples, we make a few observations that apply
broadly to other 3D reaction-diffusion simulations: (1) areas
that are far from the region of interest do not need to be
simulated in 3D; when studying effects at the dendrite-soma
intersection, this allows larger dx values than would be possible
if the fine distal dendrites also needed to be simulated in 3D.
(2) Conversely, such experiments are fundamentally about the
role of boundary conditions, therefore other boundaries must
be at a far enough distance from the region of interest so as
not to affect the results. (3) The accuracy of any results arising
from such simulations depends on the accuracy of the voxelized
reconstructions. For this reason, we currently recommend using
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reconstructions in ASC format with a soma outline, as this will
provide a non-cylindrical soma. Future versions of NEURON
will allow importing a predefined voxelization to more accurately
reflect the observed shape, but this will necessarily require
matching the surface areas and volumes on the 3D chemical
domain with that used for electrophysiology simulation. (4)
Regenerative waves have a leading edge that can be plotted on a
contour map at regular intervals showing the progression of the
wave over time.

NEURON is under continuous development. We intend to
improve its support for 3D simulation by streamlining mesh
generation: the CTNG algorithm is in-principle embarrassingly
parallel and meshes and the data on them could in principle
be saved and reused when relaunching NEURON. The first
will require reimplementation of CTNG in pure C++ to avoid
parallel limitations from Python’s GIL, and the second will
require an efficient way of validating that the mesh aligns with
the 1D skeleton. Both of these enhancements will make it
more practical to use the high-quality volume estimates that
are necessary to keep 1D-3D coupling errors low but currently
require a potentially time-prohibitive initialization. We intend to
integrate support for stochastic simulation to study more classes
of dynamics and to more faithfully capture phenomena arising
from very low concentrations or very small regions (such as
spines and boutons). To more accurately capture the dynamics of
smaller regions, we intend to add support for optionally including
electrodiffusion effects.

We believe that the approach described in this paper provides
an intuitive way of incorporating intracellular reaction-diffusion
dynamics in computational neuroscience models in a way that
more faithfully captures the effects of geometry than is possible
in a 1D or 1D + radial simulation. We hope that this allows
new insights into the multi-scale processes that underlie our
neural activity.
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