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Mesenchymal stem cell (MSC) transplantation after myocardial infarction (MI) has been

shown to effectively limit the infarct area in numerous clinical and preclinical studies.

However, the primary mechanism associated with this activity in MSC transplantation

therapy remains unclear. Blood supply is fundamental for the survival of myocardial

tissue, and the formation of an efficient vascular network is a prerequisite for blood flow.

The paracrine function of MSCs, which is throughout the neovascularization process,

including MSC mobilization, migration, homing, adhesion and retention, regulates

angiogenesis and vasculogenesis through existing endothelial cells (ECs) and endothelial

progenitor cells (EPCs). Additionally, MSCs have the ability to differentiate into multiple cell

lineages and can be mobilized and migrate to ischemic tissue to differentiate into ECs,

pericytes and smooth muscle cells in some degree, which are necessary components of

blood vessels. These characteristics of MSCs support the view that these cells improve

ischemic myocardium through angiogenesis and vasculogenesis. In this review, the

results of recent clinical and preclinical studies are discussed to illustrate the processes

and mechanisms of neovascularization in ischemic heart disease.
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INTRODUCTION

Ischemic heart disease (IHD) is characterized by reduced blood supply to the heart and is the
leading cause of death and disability worldwide. Long-termmyocardial ischemia and acute massive
myocardial infarction often result in decreased left ventricular function. Although the development
of new drugs and the use of stent implantations have benefited numerous patients with coronary
heart disease, some patients still have no effective treatment due to issues associated with diffuse
coronary artery lesion, postoperative restenosis and heart failure after myocardial infarction (MI).

The foundation of IHD treatment is the reconstruction of vessels and the recovery of blood
flow. Over the past decades, with the introduction of the concept of therapeutic angiogenesis, more
and more studies have demonstrated that neovascularization can effectively improve the blood
supply of ischemic myocardium. There are two primary mechanisms by which neovascularization
occurs: vasculogenesis and angiogenesis. Vasculogenesis is the in situ assembly of endothelial
progenitors into capillaries, while angiogenesis is a process through which new blood vessels form
from pre-existing vessels through sprouting and intussusception (1). Cytokine-based therapeutic
angiogenesis from the bench to clinical trials has been a major focus of medical research, and
the efficacy of vascular endothelial growth factor (VEGF) blockers has led to the approval of
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anti-angiogenesis drugs for cancer and eye disease. Conversely,
the use of angiogenesis factors, such as VEGF and basic
fibroblast growth factor (bFGF), has been shown to promote
notable increases in collateral vessel and myocardial perfusion in
ischemic myocardium, reduced infarct size and improved cardiac
function (2), demonstrating the theoretical and experimental
promise of this approach in treating ischemic diseases.
Unfortunately, despite the exciting results obtained using
angiogenesis factors to treat IHD, gene therapy is also limited by
its restricted efficacy and resistance (3). For example, VEGF also
accelerates angiogenesis in atherosclerotic plaques and promotes
plaque growth, which may eventually lead to plaque instability,
while it promotes angiogenesis in ischemic tissue, an observation
referred to as the famous Janus phenomenon (4). Angiogenesis
greatly improves blood flow in myocardial ischemia, but the
safety of growth factor-based angiogenesis therapy is an issue that
remains to be overcome. Thus, how to avoid the risks associated
with angiogenesis therapy is a problem that must be considered.

Stem cell-based therapies provide a promising newmethod for
the formation of new blood vessels. MSCs have become the most
promising seed cells for the treatment of IHD, with advantages
of rapid self-renewal, multidifferentiation potential, and weak
immunogenicity in autologous transplantation. Clinical and
preclinical studies have shown that MSCs therapy effectively
limits the infarcted area and improves heart function. However,
the mechanisms associated with the activities of MSCs in
IHD therapy remain controversial. We primarily attribute the
cardiac protective effect of MSCs to their ability to promote
neovascularization for the following two reasons. First, MSCs
secrete soluble paracrine factors that contribute to angiogenesis
and vasculogenesis. Second, MSCs are able to differentiate into
ECs, pericytes and smooth muscle cells (SMCs), which form
the foundation of vessels, processes that both participate in the
protective ability of MSCs toward IHD. In this review, we focus
on the mechanisms and clinical applications of MSCs in IHD
therapy through neovascularization to provide reference for the
application of stem cells in IHD.

COMPARISON OF MSCS FROM
DIFFERENT SOURCES

MSCs can be isolated from bone marrow, adipose tissue,
umbilical cord blood, peripheral blood and almost every tissues
in adults. Although MSCs can be harvested from different
sources, regardless of their origin, they all have the capability
of differentiating into adipocytes, osteoblasts and chondroblasts
in vitro under specific conditions and can adhere to plastic
under culture conditions. Furthermore, the surface of MSCs
displays CD73, CD90, and CD105 but lack CD34, CD45, HLA-
DR, CD14 or CD11b, CD79a or CD19. The International Society
for Cell Therapy proposed the three criteria described above
as identification standards for MSCs (5). Although MSCs from
different sources sharemany of the same biological features, there
are also some differences between distinct MSC populations.
Bone marrow-derived MSCs (BMSCs), adipose-derived MSCs
(AMSCs) and umbilical cord-derived MSCs (UCMSCs) are the

TABLE 1 | Comparison of MSCs from different sources.

BMSCs AMSCs UCMSCs

Differentiation capacity

Osteogenesis ++ + +++

Chondrogenesis ++ + +++

Adipogenesis + ++ +++

Endothelial cells + + +

Pericytes + + +

Smooth muscle cells + + +

Proliferation capacity + ++ +++

Migration capacity +++ + ++

Tube formation + + +

most popular MSCs in clinical and preclinical experiments
and trials, and some of their capabilities are compared below
(Table 1).

Differentiation Capacity
MSCs have the ability to differentiate into adipocytes, osteoblasts
and chondroblasts. The amount of calcium deposits and
sulfated proteoglycans stained by Alizarin red and Alcian blue,
respectively were both higher in BMSCs than that observed in
AMSCs, indicating that BMSCs have a higher capacity toward
osteogenic and chondrogenic differentiation than AMSCs.
While similar adipogenic differentiation potential was observed
between these two types of cells (6), some studies have reported
that AMSCs are more prone to adipogenic differentiation
than BMSCs (7). Baksh et al. (8) observed that compared to
BMSCs, UCMSCs underwent osteogenic differentiation more
rapidly, exhibited higher alkaline phosphatase activity, and
generated significantly more fat-containing cells when grown
under adipogenic conditions by day 21. The differentiation
ability of stem cells is affected by donor sex, age, isolation and
culture conditions, etc. (9). Thus, which types of MSCs have a
greater ability to differentiate into adipocytes, osteoblasts and
chondroblasts remains disputed. In addition, MSCs also have the
ability to differentiate into ECs, pericytes and SMCs, which are
necessary components of blood vessels (10–13). Lu et al. (14)
showed that MSCs from adipose tissue may have significantly
greater ability to promote angiogenesis both in vitro and in vivo
than UCMSCs and endometrial MSCs.

Proliferation Capacity
MSCs from different tissue sources do not have the same
proliferative ability in vitro. Choudhery et al. (15) observed that
UCMSCs have higher population doublings than AMSCs (33.0
± 1.5 vs. 25.8 ± 0.6), with the doubling time being longer for
AMSCs (2.7 ± 0.03 days) than UCMSCs (2.0 ± 0.04 days).
Moreover, after prolonged passaging (30 times), the proliferative
ability of UCMSCs did not change significantly, while BMSCs
showed decreased proliferation after 6 passages (8), indicating
that UCMSCs have a stronger proliferative ability than BMMSCs
and AMSCs. Under human platelet lysate-supplemented culture
conditions, AMSCs were observed to have greater proliferative
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potential than BMSCs (6). Therefore, the proliferative ability of
UCMSCs is the strongest, followed by AMSCs and BMSCs.

Migration Capacity
MSCs play an important role in posttraumatic tissue repair and
cell therapy, and their migration ability is a key factor affecting
their therapeutic efficacy. The migration capacity of BMSCs
and placenta-derived MSCs (PMSCs) was observed to be 5.9-
and 3.2-fold higher than that of UCMSCs, respectively. These
results were consistent with the observed levels of migration-
enhancing proteins in UCMSCs, including cathepsin B, cathepsin
D and prohibitin, which were significantly lower than those
observed in BMSCs and PMSCs, while the levels of migration-
inhibiting proteins such as plasminogen activator inhibitor-1 and
manganese superoxide dismutase were higher (16). Vimentin
also contributed to the higher migration capability of BMSCs
than UCMSCs (17). In contrast, UCMSCs exhibited an enhanced
migration capacity toward factors released by hepatocellular
carcinoma compared with BMSCs (18).

Capacity of MSCs to Promote Tube
Formation of ECs
Tube formation is the last step in the formation of vessels and
is necessary to supply blood for ischemia. Pill et al. (19) showed
that AMSCs and BMSCs are both promising cell types to induce
vascularization with ECs in vitro and are promising candidates
to support in vivo vascularization. Nevertheless, Kim et al. (20)
observed that conditioned medium from human AMSCs showed
better tube formation-promoting effects than that from BMSCs
in vitro, and AMSC group showed better recovery of blood flow
than BMSC group in hindlimb ischemia model of nude mice.
Furthermore, young AMSCs may have a higher tube formation
capacity than old ones (21). UCMSCs are also capable of forming
tubular networks (22). Du et al. (23) reported tube numbers of
11.65 ± 2.92, 0.91 ± 0.76 and 0.41 ± 0.20 for BMSC, AMSC
and UMSC groups, respectively, indicating that BMSCsmay have
better angio-vasculogenic capacities than UMSCs and AMSCs.
In contrast, Panepucci et al. (24) thought that UCMSCs would
be more committed to angiogenesis and BMMSCs would be
more committed to osteogenesis. Above all, there is still no
consensus on which cell type has the greater capacity to promote
tube formation.

PARACRINE FUNCTION OF MSCS
THROUGHOUT THE
NEOVASCULARIZATION PROCESS

Themechanism ofMSC therapy is still controversial, because few
MSCs can be found in myocardium after injection in vivo study.
Wang et al. (25) showed that most intravenously injected MSCs
remain in the lungs and liver, with only a small portion reaching
the myocardial tissue. Similarly, Uemura et al. (26) observed
only a few GFP-labeled MSCs in the periinfarct myocardium.
Even so, clinical and preclinical studies still indicated the cardiac
function of ischemic heart was improved, and infarct size and the
number of apoptotic cardiomyocytes were significantly reduced

after MSCs intervention. Which suggested the efficacy of MSCs
did not benefited from themselves in some degree.

Paracrine hypothesis was firstly advanced by Gnecchi et al.
(27). They found genetically modified BMSCs overexpressing
the Akt1 released paracrine factors that exert cytoprotective
effects on cardiomyocytes exposed to hypoxia and limited infarct
size and improved ventricular function (27, 28). Furthermore,
high VEGF, bFGF, IGF-1 and SDF-1 expression in hypoxia-
preconditioned MSCs medium was examined, the results of
which indicated that the paracrine function of MSCs may
play more important role than their differentiation ability (26).
Recently, it has been reported that MSCs secreted a wide array
of cytokines that exerted beneficial angiogenesis in ischemic
tissue, including PDGF, thrombopoietin, and angiogenin (29, 30).
These factors are all involved in the neovascularization process,
including MSC mobilization, migration, homing, adhesion and
retention, and the differentiation of ECs. Especially VEGF and
bFGF, which both have high affinity toward heparin and
participate in angiogenic processes such as migration and
amplification of ECs, are also necessary substances to induce
the transformation of stem cells into ECs (10, 31). MSCs
overexpressing Akt and angiopoietin-1 showed higher Flk1
and Flt1 positivity and promoted intrinsic Flk1+ and Flt1+

cell mobilization into the infarcted heart (32). Huang et al.
(33) observed that overexpression of miR-126 promoted the
differentiation of MSCs toward ECs through activation of
the PI3K/Akt and MAPK/ERK pathways and the release
of VEGF and bFGF factors. Therefore, paracrine factors
secreted by MSCs may have pivotal functions throughout the
neovascularization process. The role of various secretory factors
in the neovascularization process will be discussed below.

INVOLVEMENT OF MSCS IN THE
NEOVASCULARIZATION PROCESS

The process by whichMSCs promote neovascularization involves
in a number of steps. First, once ischemia occurs which also
follows stress change, MSCs can perceive the associated changes
and are mobilized from their niches to migrate and adhere
to ischemic tissue to proliferate and differentiate. Notably,
MSCs secrete various factors, including chemokines and growth
factors, and this paracrine function is carried out throughout
the neovascularization process (Figure 1). The completion of
all biological processes depends on the cooperation of different
types of cells, and the neovascularization process requires the
collaboration of ECs, endothelial progenitor cells (EPCs) and
pericytes. In addition, exosomes derived from MSCs act as a
messenger that participate in cell-to-cell communication.

Environmental Perception by MSCs
Perception of Hypoxia by MSCs
Despite the benefits of MSC transplantation in cardiac
tissue, detailed in vivo observations have shown that MSCs
only survive for a brief period after engraftment due to
harsh microenvironmental conditions (including ischemia,
inflammation and anoikis) in the infarcted myocardium (34).
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FIGURE 1 | The complete process by which MSCs respond to ischemia In general, MSCs are stored in their niches, which retain adult stem cell in a dormant state.

Once tissue is damaged, signals, including those involve in ischemia-associated pathways, cell-cell interaction and stress mobilize stem cells to migrate from the

stem-cell niche to damaged tissues, where they adhere, self-renew and differentiate. Once ischemia occurs, MSCs have the ability to secrete a number of growth

factors through their paracrine function to promote new tube formation of ECs to provide new blood for ischemic tissue.

However, this environment contributes to the mobilization of
MSCs from their niches.

MSCs originated from the bone marrow microenvironmental
niche exhibit low oxygen tension. O2 is a necessary factor
in the maintenance of cell life as the final receptor in the
intracellular aerobic respiration electron transport chain and is a
substrate of some enzymes. Once the supply of O2 is insufficient,
the hypoxia signal will be rapidly transmitted to nucleus and
initiate related gene expression to maintain oxygen homeostasis
and the balance of energy metabolism between the cells and
organism. Hypoxia inducible factor 1 (HIF-1), which has a
dimeric complex composed of HIF-1a and HIF-b subunits, is
oxygen-sensitive and the most important transcription factor
affecting gene regulation under hypoxia (35). Once ischemia
occurs, HIF-1 increases the expression of angiogenesis-associated
genes, including VEGF, its receptors Flk-1 and Flt-1, bFGF and
the fibrinogen system (36, 37). At the same time, HIF-1 improves
the expression of proteases, such as membrane type matrix
metalloproteinases, which hydrolyzes extracellular protein to
promote cell migration, matrix reconstruction and the formation
of tubule-like structures (38).

Hypoxia is also a basic aspect of the microenvironment
that determines the differentiation of MSCs. Compared with
a normoxia group, VEGF expression in embryonic and MSCs
under hypoxia was observed to be significantly increased (39–
41). Likewise, the in vivo administration of hypoxia-inducible
VEGF-engineered MSCs was shown to induce ischemia-
responsive VEGF production and lead to a significant increase

in myocardial neovascularization after myocardial infarction in
rats (39).

Cell-Cell Interactions
In 1997, Asahara et al. (42) identified and named a small
population of CD34+ cells as “EC progenitors.” Indeed, EPCs
are involved in a number of processes during angiogenesis,
including mobilization, differentiation into ECs, homing,
paracrine function and others (43, 44). Coculture of EPCs
and MSCs significantly increased the transcription levels
of endothelial specific markers, including vWF, CD31, VE-
cadherin, Flk-1 and Flt-1 (45) and enhanced tube-like formation
(46) through platelet derived growth factor (PDGF), Notch
and TACE/TNF alpha signaling (45, 47). Joensuu et al. (48)
noted that in cocultures of human MSCs and peripheral blood
mononuclear cells, the previously nonadherent cells attached
and started to elongate and form tube-like structures within
1 week concomitant with VEGFR1 upregulation, and platelet
endothelial cell adhesion molecule 1 (PECAM-1) and endoglin-
positive vessel-like structures were observed after 20 days.
In addition, MSC-EC interactions were observed to decrease
endothelial permeability induced by lipopolysaccharide through
hepatocyte growth factor (HGF) by restoring the integrity of
endothelial monolayers and remodeling endothelial intercellular
junctions (49). VEGF secreted by stem cells from apical papilla is
also used by human umbilical vein endothelial cells to increase
the number of endothelial tubules, tubule lengths, and branching
points (50).
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Laminar Shear Stress and Pulsatile Stress
There are many force-sensitive molecules on the cell surface,
such as cilia, integrins, ion channels and plaque proteins.
Integrins connect the cytoskeleton and extracellular matrix
through adhesive plaque and transform the force signals into
intracellular biological signals through this plaque (51, 52).
Considering the key role of shear force in the differentiation of
ECs, researchers reported that such mechanical stimulation in
cell culture in vitro was equally effective for the differentiation of
stem cells into ECs (53). MSCs are highly reactive to mechanical
stimuli in the environment, and different types of stress on the
sameMSC population will lead to different differentiation results
(54). After generating canine BMSCs under shear stress provided
by a pulsatile bioreactor for 4 days, the expression of endothelial
cell markers, such as PECAM-1, VE-cadherin and CD34 was
observed to be significantly increased (55). Fisher et al. (56) noted
that AMSCs could form cords but failed to take up acetylated
low density lipoprotein (acLDL) or express molecular markers
after being cultured in endothelial cell growth supplement. Only
the subsequent exposure of stem cells to shear stress did the
cells exhibit realignment, acLDL uptake and CD31expression,
indicating that stem cells differentiation to ECs requires the
synergism of biochemical and shear force.

Dynamic Process of MSCs to Repair
Ischemic Tissue
Mobilization
MSC mobilization is key for its involvement in tissue repair
following their sensing of hypoxia, stress or other signals. An
anoxic environment is one of the factors that induces stem
cells to migrate out of their niches. Prolyl hydroxylase (PHD)
and factor inhibiting HIF-1 (FIH) are key oxygen sensors in
MSCs. HIF-1α upregulation by double knockdown of PHD
and FIH synergistically increases stem cell mobilization and
myocardial angiogenesis and improves cardiac function (57).
The high concentration of growth factors outside of stem-cell
niches may be another factor causing MSCs to mobilize from
their original niches. Stromal cell-derived factor-1 (SDF-1 α)/Cxc
chemokine receptor 4 (CXCR-4) are part of the most important
chemotactic axis regulating MSC mobilization and migration.
VEGF and insulin-like growth factor-1 (IGF-1)-overexpressing
MSCs accelerate BMSC mobilization via the activation of SDF-
1 α/CXCR4 signaling to promote myocardial repair (58, 59).
Wan et al. (60) showed that active transforming growth factor
β (TGF-β) also control the mobilization and recruitment of
MSCs to participate in vascular repair. In addition, high-intensity
exercise may be a potent stimulus that promotes circulating
mesenchymal cells mobilization in patients with stable coronary
artery disease (61).

Migration and Homing of MSCs
Homing and migration comprise a key step after MSC
mobilization. Microenvironmental interactions between hypoxia
and MSCs may control the ability of MSCs to migrate and
their migration direction. In hypoxic tissue, SDF-1 and CXCR-
4 are also important factors for cell migration. Ischemic

myocardial and vascular tissues secrete SDF-1 to attract CXCR-
4-expressing cells, particularly their therapeutic progenitors.
Yu et al. (62) showed that SDF-1/CXCR-4 may mediate the
migration of BMSCs toward heart MI through activation of
PI3K/Akt signaling. Growth factors play an important role in
the process of MSC migration. The stimulation of SDF-1α
expression in infarcted hearts by VEGF-overexpressing MSCs
was observed to result in the massive mobilization and homing
of BMSCs (59). TGF-β1, HGF, IGF-1 and endothelial nitric
oxide synthase (eNOS) also promoted the migration and homing
BMSCs to the ischemic myocardium (63–65). Schmidt et al.
(31) showed that low concentrations of bFGF attracted cells,
indicating that bFGF may direct the migration of MSCs. In
addition, Yan et al. (66) observed that C1q/tumor necrosis factor-
related protein-9 (CTRP9) enhances AMSC proliferation and
migration through the ERK1/2-MMP-9 signaling pathway and
also promotes anti-apoptotic/cell survival via ERK-Nrf2/anti-
oxidative protein expression. MiRNA, like miR-206 also involved
in migration of MSCs by targeting Pim-1 (67).

Proliferation and Survival
Although MSCs transplantation is a promising therapeutic
approach for IHD, the low viability of MSCs after transplantation
needs to be improved. Hypoxic preconditioning may improve
the functional survival and therapeutic efficiencies of engrafted
BMSCs, at least in part through autophagy regulation (68).
Some growth factors, including increased VEGF, TGF-β, IGF-1,
SDF-1a and angiogenin were shown to enhance MSC survival
and vasculogenesis in an MI model (69). Preconditioning with
other factors, such as protein kinase C epsilon (εPKC), CTRP9,
dimethyloxalylglycine and connexin-43 improves the retention
and survival of transplanted MSCs in rat MI through the SDF-
1/CXC and PI3K/AKT pathways (66, 70–72). Qu et al. (73)
showed that atorvastatin, a hypolipidemic agent, has a protective
effect on cardiomyocytes against apoptotic cell death in infarct
and peri-infarct areas and could also increase the survival rate of
implanted BMSCs in acute myocardial ischemia.

Adhesion and Retention
MSCs need to stay and adhere to ischemic tissue to play their
important role in ischemic tissue repair. Molecular imaging
studies have shown that <5% of MSCs engraft in ischemic
tissues after being intravenously injected, with most of them
dying within few hours after administration (74). This poor
engraftment may be attributed to the constant blood flow and
the harsh environmental conditions after acute ischemic injury.
Since the long-term efficacy of cell therapy is proportional to the
number of retained cells, this low retention and viability needs
to be improved. Increasing the ability of MSCs to adhere to the
ischemic tissues is key to improving their retention and viability.
IGF-1 can increase the adhesion of MSCs and prolong their
survival under hypoxia in vitro through PI3K activation (75).
MSC adhesion can also be promoted by increasing the expression
of integrin-linked kinase, periostin, and 2, 4-dinitrophenol (76–
78). Reactive oxygen species (ROS) inhibit the cellular adhesion
of engrafted MSCs, indicating that the elimination of ROS may
be a novel strategy for improving the survival of engrafted MSCs
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FIGURE 2 | MSCs and endothelial cells The relationship between MSCs and

ECs can be summarized as follows. First, MSCs can repair the injured but not

dead ECs through their paracrine function to induce the release of growth

factors. Second, MSCs have the potential to differentiate into new ECs

although it is controversial. Third, the interaction and crosstalk between MSCs

and existing ECs promotes the formation of new ECs and the repair of injured

ECs. Last, MSCs also interact with EPCs to influence EC formation and

function.

(79). Bortolotti et al. (80) demonstrated that cardiotrophin-1
(CTF1) increases the retention and adhesion of BMMSCs to
protect BMSCs from apoptosis, identifying it as a new powerful
cytokine promoting cell engraftment. The retention and survival
of transplanted MSCs was also shown to be improved by the
overexpression of εPKC in AMI rats through the SDF-1/CXC and
PI3K/AKT pathways (70).

INTERACTIONS AMONG MSCS AND ECS,
EPCS AND PERICYTES

Multiple cell types are known to be involved in the processes of
angiogenesis and vasculogenesis, includingMSCs, ECs, EPCs and
pericytes. In particular, ECs are indispensable for angiogenesis
and the relationship between MSCs and ECs mainly attribute to
the following aspects. First, MSCs secret growth factors which
can repair the injured but not dead ECs through their paracrine
function. Second, the interaction and crosstalk between MSCs
and existing ECs promotes the formation of new ECs and
the repair of injured ECs. Third, MSCs have the potential to
differentiate into new ECs although it is controversial. Last, MSCs
also interact with EPCs and pericytes to influence EC formation
and function (Figure 2).

The ability of MSCs to limit infarct size may attributed to
their pro-angiogenesis activity through existing ECs (Figure 2).
The stimulated angiogenic activity of ECs is associated with
the secretion of various growth factors and cytokines, including
VEGF, HGF, IL-6, TGF-β1 and monocyte chemoattractant
protein-1 (81). Lu et al. (82) showed that nestin(+) BMSC
transplantation improved cardiac function in a mouse AMI
model by recruiting resident cardiac ECs to the infarcted border
region. BMSCs also rescued injured ECs through modulation
of mitophagy or activation of signaling pathways such as

PI-3K/AKT/m-TOR/eNOS and p38/MAPK (83, 84). Hypoxia
also influences the interactions between the endothelium and
MSCs (85).

In addition to the interactions between MSCs and ECs,
studies showed MSCs had the ability to differentiate into ECs
to promote angiogenesis in some degree although it was still
controversial. For example, Otto et al. (86) did not observe
MSC transdifferentiation into cardiomyocytes, ECs or SMCs and
that the transdifferentiation of MSCs into cardiomyocytes or
vascular cells did not significantly contribute to the improvement
of cardiac function. Conversely, Silva et al. (87) showed that
BMSCs promoted the angiogenesis of dog ischemic myocardium
by differentiating into ECs, which accelerated the establishment
of collateral circulation. Studies support MSCs own the potential
to differentiated into ECs according to the below reasons. First,
MSCs are multipotent stem cells derived from the mesoderm.
Theoretically, MSCs can be differentiated into all mesoderm
derived cells, and since ECs are mesoderm-derived cells, MSCs
have the potential to differentiate into ECs. Second, MSCs
express molecular markers of early ECs, such as VEGF receptor
2 (VEGFR-2/Flk-1/KDR) and bFGF, indicating that ECs can
be derived from mesenchymal colonies and that MSCs arise
from precursors with angiogenic potential (31, 88). Last, a
series of in vivo and in vitro experiments proved that MSCs
can differentiate into ECs. Oswald et al. (10) successfully used
2% fetal bovine serum supplemented with 50 ng/mL VEGF to
induce BMSCs to differentiate into ECs in vitro. They observed
that differentiated cells increased the expression of endothelial-
specific markers, such as KDR and VEGF receptor 1 (VEGFR-
1/Flt-1), and formed capillary-like structures. Furthermore, the
process of MSC differentiation into ECs may require the synergy
of bFGF, IGF, epidermal growth factor (EGF) (89, 90). ERK
signaling may also involve in the differentiation of porcine
AMSCs into ECs (90).

Furthermore, MSCs also function with EPCs to promote
tissue repair. As a precursor of ECs, EPCs also differentiate
into ECs and promote ischemia angiogenesis through their
paracrine function (91, 92). MSCs could attract and promote
the migration and vascularization of EPCs, which may depend
on a positive feedback loop between CXCR-2 and CXCR-
4 (93, 94). The viability and ability of MSCs to promote
nerve regeneration is also improved by EPCs through PDGF-
BB/PDGFR-β signaling (95). Rossi et al. (96) found MSCs
and EPCs into the hind limbs of ischemia model together
accelerated ischemic muscle recovery through an endoglin-
dependent mechanism. Consequently, MSCs, ECs and EPCs may
have a synergistic effect in ischemic tissue repair (Figure 2).

Pericytes, also known as mural cells, wrap around ECs in
arterioles, capillaries and venules to regulate the maturation of
ECs, stabilize the microvascular wall and promote angiogenesis.
Although pericytes are surrounded by a basement membrane,
they contact the ECs with through a “peg and socket” mechanism
through holes in the basement membrane. Studies have shown
that pericytes also communicate with ECs via paracrine signaling
to improve tissue repair (97, 98). It is notable that pericytes
also have stem cell-like properties and exhibit the morphology,
mitotic activity and surface antigens of MSCs (99) and are
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seemingly able to differentiate into adipocytes, chondrocytes,
osteoblasts, neurons, astrocytes and oligodendrocytes, leading
them to be identified as MSCs (100–102). However, it is still
debated whether pericytes are MSCs. Guimaraes-Camboa et al.
(103) challenged this concept and suggested that mural cells do
not intrinsically behave as MSCs during aging and repair in
multiple adult organs using a transgenic cell line. Over 2 years,
the study showed that Tbx18 lineage-derived cells maintained
their perivascular identity in the brain, heart, muscle and fat,
indicating that mural cells do not exhibit an overt potential
to give rise to other cell types. In contrast, MSCs can serve
as a potential source of pericytes and induce vasculogenesis as
mentioned previously (13, 104, 105), but similar to the multi-
differentiation potential of MSCs, there needs to be standard
guidelines for assessing pericyte differentiation in future studies.
Furthermore, MSCs secrete various growth factors, including
PDGF, which serves as a biomarker and crucial factor controlling
the differentiation and recruitment of pericytes (106–108). These
findings indicate that MSCs may regulate the recruitment of
pericytes to injured tissue to participate in angiogenesis, but the
associated mechanisms between MSCs and pericytes need to be
further elucidated.

MSCS AND MSC-DERIVED EXOSOMES

Exosomes are a type of extracellular microvesicle secreted by
multiple eukaryotes. Compared with cell therapy, MSC-derived
exosomes (MSC-exos) have lower immunogenicity and are
safer and more efficient, providing a new strategy for tissue
regeneration via cell-free therapy (109, 110). MSC-exos are a
type of message carrier that harbor a modifiable content of
microRNAs, mRNAs and proteins, mediating communication
between cells and functioning as key mediators of the paracrine
effect of MSCs (111, 112). The pro-angiogenesis function of
MSC-exos has been demonstrated in a number of studies. For
instance, exosomes from MSCs overexpressing Akt, HIF-1α or
CXCR-4 were shown to accelerate EC proliferation, migration
and tube-like structure formation in vitro, as well as blood
vessel formation to improve cardiac function in an MI model
(113–115). MSC-exosomes may also have anti-inflammatory
activities in MI model (116). Currently, the application of MSC-
exos primarily focuses on preclinical experiments. One of the
key problems for exosome clinical therapy is how to collect
and purify enough exosomes so that they can be used safely.
Andriolo et al. (117) developed a GMP-class method for the mass
preparation of stem cell-derived exosomes to enable them to be
used in future clinical applications. Indeed, as they are secreted
by MSCs, MSC-exos have similar biological properties to MSCs
to some extent. MSC-exos also have paracrine functions and
mediate communication between MSCs and ECs, and they are
also influenced by microenvironmental stress conditions, such as
hypoxia and irradiation (118, 119). Furthermore, as they harbor
a part of and not the entirety of MSC contents, MSC-exos are not
an MSC “mini-me” and cannot replace MSCs in some respects,
including their multiple differentiation and proliferation abilities.

APPLICATION OF MSCS IN IHD CLINICAL
AND PRECLINICAL PRACTICE

The results of numerous clinical and preclinical studies have
indicated that MSC transplantation is safe, significantly improves
cardiac function and decreases infarct size and fibrosis in
ischemic patients, which may be associated with the survival,
retention, angiogenesis, paracrine action and the anti-apoptosis
activities of MSCs (Tables 2, 3). Although cellular therapies hold
great promise for the treatment of human IHD and have good
safety, the efficacy of MSCs remains disputable, especially when
used in clinical trials. Meta-analyses of randomized clinical trials
showed that the transplantation of BMSCs resulted in limited
improvement on cardiac function for MI patients (171, 172).
As it was showed in Table 2, some clinical trials proved MSC
transplantation did not improve LVEF although it may limit
infarct size. Different from clinical trials, MSC transplantation in
animal experiments showed significantly elevated LVEF in most
studies (Table 3).

Clinical patients are different from animal ischemia models,
and the efficacy of MSCs in clinical practice is influenced by
many different factors, such as (1) disease etiology and severity
of patients, and (2) the type, number, delivery route and time,
retention, survival, proliferation and differentiation of MSCs.
Another meta-analysis showed that MSCs are more effective
in patients with lower baseline left ventricular ejection fraction
(LVEF) (≤50%), and the effects of cells that were transferred
at 3–7 days post-AMI was superior to those transferred within
24 h or more than 7 days in improving LVEF and decreasing
LV end-systolic and diastolic dimensions (173), which suggested
transplantation time was a key factor to influence cardiac
function. Compared with clinical trials, animal experiments are
easier to obtain positive results because of their simplicity, such
as the MI model can be established uniformly by ligation of the
left anterior descending coronary artery. Compared with MSCs
intervention alone, pretreated MSCs with some growth factors
together may get more efficacy (Table 3).

It is notable except for growth factors, more attention has
been paid to natural botanical medicines. EGb761, an extract
of Ginkgo biloba, was shown to exhibit a biphasic effect on
hypoxia/serum deprivation-induced BMSC apoptosis, and its
effect was closely associated with the PI3K/Akt and caspase-9
signaling pathways (174). Salvia miltiorrhiza is a widely used
traditional Chinese medicine in cardiovascular diseases, and its
constituent Tanshinone IIA was observed to decrease infarct size
by increasing the recruitment of BMSCs to the infarct region by
upregulating the SDF-1/CXCR-4 axis in a rat MI model (175). In
addition to botanical medicines, chemicals such as statins, as the
most commonly used lipid-lowering agents, exert activity toward
a wide spectrum of cellular functions in addition to their lipid-
lowering effects, including anti-inflammatory, anti-apoptotic,
anti-fibrotic and pro-angiogenesis effects (176, 177). The results
of multiple studies have suggested that atorvastatin has the ability
to increase the survival rate of implanted BMSCs in anMImodel,
and combined with MSCs, it also ameliorated the cardiac milieu
by reducing inflammatory cell infiltration, myeloperoxidase
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TABLE 2 | Completed clinical trials using MSCs to treat ischemic cardiovascular diseases registered at clinicaltrials.gov.

NCT Conditions Interventions Phase Patients No/

follow-up

Endpoint LVEF

improved

Study

type

Cell quantity Method Data References

NCT00950274 MI CD133+ ABMSCs III 82/6 mon LVEF, LVEDV, LVESV, scar size,

LV mass, NT-proBNP

Yes R,PA,D 0.5-5x106 IM 2009.7–2016.3 (120)

NCT00669227 AMI ABMCs II 42/6 mon LVEF, LVEDV, LVESV, infarct size No R,PA,D 381 × 106 ICA 2005.10–2009.1 (121)

42/36 mon LVEF, LVEDV, LVESV, infarct size,

MO

Yes R,PA,D 324 × 106 (122)

NCT00893360 MI/LVD Autologous

cardiosphere-derived

stem cells

I 25/6 mon Safety, LVEF, scar mass, systolic

wall thickening

No R,PA,N 12.5–25 × 106 ICA 2009.5–2012.2 (123)

25/13.4 mon Safety, LVEF, LVEDV, LVESV, scar

mass, scar size,

Yes (124)

NCT01033617 MI/HF ABMCs(CD133+) – 40/ 6 mon LVEF, LVEDV,LVESV, No R,PA,Q 0.5–10 × 106 IM 2009.10–2016.6 (125)

NCT00279175 AMI ABMCs III 204/12 mon LVEF, safety Yes R,PA,D 236 × 106 ICA 2004.4–2010.10 (126, 127)

NCT00114452 MI Allogeneic hMSCs I 53/6 mon Safety, LVEF,LV remodeling Yes R,PA,D 0.5, 1.6, 5.0 ×

106/kg

ICV 2005.2–2009.2 (128)

NCT01291329 STEMI Human umbilical

WJ-MSC

II 116/18 mon Safety, LVEF, perfusion, Yes R,PA,Q 6 × 106 ICA 2011.2–2012.7 (129)

NCT00883727 MI Allogeneic BMSCs I/II 20/2 year Safety, LVEF, perfusion, infarct

volume

No R,PA, D 2 × 106/kg ICV 2009.4–2012.8 (130)

NCT00765453 MI ABMCs II 100/12 mon LVEF, infarct size, NT-proBNP No R,PA,T 59.8 (1.9CD34+)

× 106
ICA 2008.3–2018.3 (131)

NCT00264316 STEMI ABMCs II 67/4 mon LVEF, LVEDV, LVESV, infarct size,

systolic wall thickening

No R,SA,D 304 (72MNCs) ×

106
ICA 2003.5–2005.12 (132)

NCT00199823 AMI ABMMCs II 100/12 mon Prothrombotic markers, LV

function

No R,PA,S 68 × 106

(0.7 × 106

CD34+)

ICA 2003.9–2006.5 (133, 134)

NCT00313339 STEMI ABMSC CD34+ I 31/6 mon Safety, LVEDV, LVESV, LVEF,

infarct size, perfusion

No R,FA,N 5, 10, 15 ×

106CD34+ cells

ICA 2006.3–2013.3 (135)

NCT00684060 IHD /LVD ABMSC II 80/6 mon LVEF, wall motion, LV volumes,

infarct size, relationship of Ratio

of CD133+,CD34+ cells on LVEF

Yes R,PA,D 150 × 106 ICA 2008.7–2012.2 (136–138)

NCT00684021 STEMI/ LVD ABMSC II 120/6 mon Safety, LVEF, wall motion, LV

function

No R,PA,D 150 × 106 ICA 2008.7–2012.11 (139)

95/12 mon LVEF,LV volumes, infarct size No (140)

NCT00355186 STEMI ABM-MNCs II 200/4 mon LVEF, LVEDV, LVESV No R,FA,N 153 (119) × 106 ICA 2006.8–2012.11 (141)

200/ 12 mon LVEF, LV volumes, scar size,

N-BNP

No (142)

NCT01167751 MI BM-MNCs; CD133+

cells

II/III 90/6,18 mon Safety, LVEF, systolic wall

thickening

Yes R,PA,D MNCs:564.63 ×

106;

CD133+cells:8.19

× 106

IM 2008.1–2012.7 (143)

(Continued)
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TABLE 2 | Continued

NCT Conditions Interventions Phase Patients No/

follow-up

Endpoint LVEF

improved

Study

type

Cell quantity Method Data References

NCT00268307 AMI ABMCs I 40/6 mon LVEF, LVEDV Yes R, CA, D 100 × 106 ICA 2005.12–2010.9 (144)

NCT02439398 AMI Allogeneic hCSCs I/II 49/12 mon Safety, infarct size – R,PA,D 35 × 106 ICA 2014.6–2016.11 (145)

NCT00395811 CABG ABMMNC I/II 60/6 mon safety, LVEF, LVEDV, LVESV, Yes R,PA,D 100 × 106 Graft 2007.1–2009.6 (146)

NCT00418418 Ischemic HF ABMMC II 39/12 mon LVEF, LVEDV, LVESV, infarct size,

safety,

No R,FA,Q 5–1,000 × 106 ICA 2006.10–2010.12 (147, 148)

NCT00363324 STEMI BMSCs II/III 80/6 mon LVEF, LVEDV, LVESV Yes R,PA,D 360(2.6

CD34+)x106
ICA 2005.1-2009.11 (149, 150)

NCT01495364 STEMI CD34+ II 161/ 12 mon Safety, LVEF, infarct size, No R,PA,D 10x106±20% ICA 2011.12-2016.4 (151)

NCT00289822 IHD BMCs/CPCs II 75/ 3 mon LVEF Yes R,CA,N BMCs: 205 ×

106;CPCs:22 ×

106

ICA 2002.1–2005.1 (152)

NCT01234181 MI Hypoxia BMSCs – 34/1 year Safety, LVEF, LVEDV, LVESV, wall

motion, perfusion

No R,PA,N 10 × 106 ICA 2010.11–2012.12 (153)

NCT01076920 CMI/LVD ABMSCs I/II 10/2 year Safety, LVEF, myocardial viability

and contraction

Yes SA;N 61.5 × 106 IM 2009.10–2014.9 (154)

NCT01087996 ICM BMSCs I/II 30/13 mon Safety, LVEF, LVEDV, LVESV,

immunologic monitoring, quality

of life, pulmonary function

– R,PA,N 20, 100, 200 ×

106
TE 2010.4–2011.9 (155)

R, Randomized; PA, Parallel Assignment; FA, Factorial Assignment; CA, Crossover Assignment; SA, Single Group Assignment; DR, Double Randomized Controlled Trial; Q, Quadruple (Participant, Care Provider, Investigator, Outcomes

Assessor); T, Triple (Participant, Care Provider, Investigator); D, Double blind; S, Single (Outcomes Assessor); N, None (Open Label); ABMMCs, Autologous Bone Marrow Mononuclear Cells; ABMCs, autologous bone-marrow

cells; hCSCs, human cardiac stem cells; LVEDV, Left ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume; MO, microvascular obstruction; IHD, ischemic heart disease; LVD, left ventricular dysfunction; ICM,

ischemic cardiomyopathy.
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TABLE 3 | Representative animal studies performed using MSCs in ischemic models.

Disease

model

Animal source cell source/

type

Dose Method/

No. of sites

Treatment/end

time

Preclinical outcome Mechanisms Specific

treatment

References

MI/IR Mice mice/ADSCs 2 × 105 IM/3 0 h/- ↑LVEF, ↓fibrosis ↑ADSCs survival/retention,

migration, angiogenesis;

↑cardiomyocyte adhesion,

proliferation;

↑MMP-10/13 and/or HGF

N-cadherin (156)

IR Adult male SD rats SD rat within 6–7 d/ ADSCs 2 × 106 Iv/- 0, 24

h/24 h,72 h,28 d

↑LVEF, ↓infarct size ↓Neutrophil number by

enhanced

M2 macrophage and

macrophage efferocytosis

– (157)

IR Female Gottingen

mini-swine

Male Gottingen

mini-swine/Cortical bone

stem cells

2 × 107 IM/- 1.5–2 h/3 d, 7 d,

3 mon

↑LVEF, ↓infarct size ↑Macrophage and T-cell

populations;

↓cardiomyocyte apoptosis

– (158, 159)

MI Male C57 mice Human umbilical cord

blood-MSCs

2 × 105 IM/4 0/- Protects cardiac

function (↓infarct size)

↓Apoptosis and autophagy

of

myocardial cells; ↑tube

formation of ECs

Exo-SDF1 (160)

MI Male C57/BL6 mice -/MSCs 2 × 105 IM/5 30 min/1, 28 d ↑LVEF, ↓LVEDV, LVESV,

scar size,

↑Autophagic flux through

exosome containing mainly

miR-125b-5p

Exo- MSCs (161)

IR MI Female Göttingen

swine

Male Yorkshire swine

MSCs/CSCs

200 × 106/1

× 106
TE/10 -/3 mon ↑LVEF, perfusion,

↓LVEDV, LVESV, scar

size, remodeling

↑Cardiac regeneration – (162)

MI C57/BL6 mice; CTRP9

knock-out mice

EGFP-TG mice with

C57BL/6J

background/ADSCs

1 × 105 IM/3 1, 3, 7, 14 d/3 d,

4w

↑LVEF, fibrotic area ↑Proliferation/

migration by

ERK1/2-MMP-9, ↓poptotic

/oxidant via ERK-Nrf2

CTRP9 (66)

MI C57/BL6 Mice male C57/BL6/BM-MSCs,

ATMSCs

2 × 105 IM/1 -/IM after 1, 7,

14, and 21 d, LV

after 21, 60 d

↑LVEF, LVFS ↑BM-MSC adhesion,

↓apoptosis, ↑focal

adhesion kinase

CTF1 (80)

I/R Female Large White

pigs

male Large White

pigs/ATMSCs

10 × 106 ICA/- 15min after

reperfusion/2

days, 60 d

↑Myocardial perfusion

(vascular density), not

LV

Function

Pro-angiogenic factors:

VEGF,SDF-1a, GM-CSF;

Anti-apoptotic, inflammatory

and collagen deposition

– (163)

MI SD rats Aged and young male

hMSCs

10 × 106 IM/5 30 min/28 d ↑LVEF, ↓fibrosis/scar

size

↑Angiogenesis/ survival;

against apoptosis

SRT1720 (164)

MI C57BL/6 mice Synthaetic hBMSCS 1 × 105 IM/- 0/15 d Mitigated LV

remodeling

↑Angiogenesis – (165)

MI Male SD Rats SD rats /BMSCs 22 × 106 Tail vein 2 d/IF: weeks 1,

2, 4; LV: 3 d,

1,3,6w

↑Cardiac function

(LVEF, LVDD, LVSD)

↑Angiogenesis by the

tropism of MSCs to the MI

area through SDF-1

VEGF-

encapsulated

(166)

AMI Female Large White

pigs

Pigs /ATMSCs 50 × 106 IM /7-8 0/2, 15, 30 d Cardiac function not

significantly improved

(LVEF)

↓Inflammation, ↑angiogenic

process

IGF-1 /HGF (167)

(Continued)

F
ro
n
tie
rs

in
C
a
rd
io
va
sc

u
la
r
M
e
d
ic
in
e
|w

w
w
.fro

n
tie
rsin

.o
rg

1
0

Ja
n
u
a
ry

2
0
2
1
|
V
o
lu
m
e
8
|A

rtic
le
6
3
3
3
0
0

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


S
h
ie
t
a
l.

N
e
o
va
sc

u
la
riza

tio
n
o
f
M
S
C
s
in

IH
D

TABLE 3 | Continued

Disease

model

Animal source cell source/

type

Dose Method/

No. of sites

Treatment/end

time

Preclinical outcome Mechanisms Specific

treatment

References

MI Male Corriedale sheep Corriedale male sheep/

BMSCs

20 × 106 IM/- 30 min/30, 60 d ↓Infarct volume; ↑LVEF ↑Angio-/arteriogenesis,

↓apoptosis by

HIF1-mediated

overexpression of EPO,

iNOS, VEGF, and ANG-1

HIF1-a (168)

CMI Female pigs Human umbilical

cord-derived MSCs

30 × 106 ICA/ICV/- 4, 5, 6 w/ 4w ↑LVEF, perfusion;

↓apoptosis, fibrosis

↑Angiogenesis by VEGF

and Ang

– (169)

MI Male Cynomolgus

monkeys

Cynomolgus

monkey/BMSCs

10 × 106 IM/5 0/3, 28, 90, 180,

270 d

↑LV function, ↓infarct

size

↑Cardiomyocyte

proliferation,

vascular density, myocardial

glucose uptake,

engraftment, paracrine

activity(EPO, HIF1-α,

ANG-1);

↓endogenous cell apoptosis

Hypoxia (170)

AMI SD rat Male SD rat/BMMSCs 1 × 106 IM/5 0/1 day, 4w ↑LVEF, ↓LVEDD,

LVESD), remodeling

improved

↑Retentionl:SDF-1/CXC and

PI3K/AKT; ↑survival:VEGF,

bFGF, TGFβ, cTnI, vWF,

SMA and factor VIII

PKCε (70)

ICA, intra-coronary artery infusion; ICV, intra-coronary vein infusion; IM, intramyocardial; TE, transendocardial; ↑, indicators increased or improved; ↓, indicators decreased or worsened.
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activity and cardiac fibrosis (178, 179). Furthermore, activation
of the JAK-STAT pathway may play important role in the ability
of rosuvastatin to increase the efficacy of transplanted MSCs
(178). Other factors, including glucagon-like peptide-1-eluting
(GLP-1), lipopolysaccharide and lysophosphatidic acid also exert
pro-angiogenesis effect by promoting the enhanced expression of
cytokines and growth factors (180–183).

STRATEGIES AND FUTURE DIRECTIONS

MSCs display robust reparative properties through their
paracrine and differentiation abilities that can limit apoptosis,
enhance neovascularization and direct positive tissue
remodeling. However, some problems with MSCs remain
and must be solved before they can have widespread use.
MSCs are important infiltrating cells that are also drived by
blood and vasoconstriction. So the first problem is the low
survival and retention of transplanted cells in vivo which limits
their overall effectiveness in clinical usage. Consequently,
identifying strategies to improve cell survival and retention
in vivo is a priority. However, cell transplantation is affected
by many factors, each of which may have an impact on the
survival of transplanted cells, and there is still no consistent
recommendation for each factor. The microenvironment of
transplanted cells directly affects the survival of stem cells. The
blood supply in the marginal area of myocardial infarction is
well known to directly affect the survival rate and recovery of
cardiac function after cell transplantation. One important goal
of cell transplantation is to promote angiogenesis in the ischemic
area and reduce the generation of myocardial scars. Studies have
shown that hypoxia-induced stem cells release a variety of factors
to improve the microenvironment through anti-inflammatory
and anti-fibrosis effects and by promoting angiogenesis (170).

Hypoxia or other growth factors used to precondition stem
cells may allow MSC survival and retention to be improved, but
additional comparisons and a set of standards are needed to
identify the most powerful factors.

Another important factor limiting the clinical application
of stem cells is the shortage of effective monitoring methods
for stem cells. The successful implementation of cell therapies
requires a better understanding of cell fate after transplantation.
Currently, there are three primary labeling methods for
stem cells, including reporter genes, fluorescent dyes and
nanoparticles, which require optical imaging, MRI and
radionuclide imaging to trace the transplanted stem cells,
respectively or in combination, with each technique having
its advantages and disadvantages (74, 184). Thus, there
is an urgent need to develop a nontoxic and noninvasive
tracer technology that exhibits long term stability and that
can also be used to dynamically monitor the survival status of
transplanted cells with respect to processes such as migration and
differentiation in vivo.
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