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Abstract
Purpose: Cardiovascular magnetic resonance (CMR) is a vital diagnostic tool
in the management of cardiovascular diseases. The advent of advanced CMR
technologies combined with artificial intelligence (AI) has the potential to sim-
plify imaging,reduce image acquisition time without compromising image quality
(IQ), and improve magnetic field uniformity. Here, we aim to implement two AI-
based deep learning techniques for automatic slice alignment and cardiac shim-
ming and evaluate their performance in clinical cardiac magnetic resonance
imaging (MRI).
Methods: Two deep neural networks were developed, trained, and validated
on pre-acquired cardiac MRI datasets (>500 subjects) to achieve automatic
slice planning and shimming (implemented in the scanner) for CMR. To exam-
ine the performance of our automated cardiac planning (EasyScan) and AI-
based shim (AI shim), two prospective studies were performed subsequently.
For the EasyScan validation, 10 healthy subjects underwent two identical CMR
protocols: with manual cardiac planning and with AI-based EasyScan to assess
protocol scan time difference and accuracy of cardiac plane prescriptions on a
1.5 T clinical MRI scanner.For the AI shim validation,a total of 20 subjects were
recruited: 10 healthy and 10 cardio-oncology patients with referrals for a CMR
examination. Cine images were obtained with standard cardiac volume shim
and with AI shim to assess signal-to-noise ratio (SNR), contrast-to-noise ratio
(CNR),overall IQ (sharpness and MR image degradation),ejection fraction (EF),
and absolute wall thickening. A hybrid statistical method using of nonparamet-
ric (Wilcoxon) and parametric (t-test) assessments was employed for statistical
analyses.
Results: CMR protocol with AI-based plane prescriptions,EasyScan,minimized
operator dependence and reduced overall scanning time by over 2 min (∼13 %
faster, p < 0.001) compared to the protocol with manual cardiac planning.
EasyScan plane prescriptions also demonstrated more accurate (less plane
angulation errors from planes manually prescribed by a certified cardiac MRI
technologist) cardiac planes than previously reported strategies. Additionally,
AI shim resulted in improved B0 field homogeneity. Cine images obtained with
AI shim revealed a significantly higher SNR (12.49%; p = 0.002) than those
obtained with volume shim (volume shim:32.90± 7.42 vs.AI shim:37.01± 8.87)
for the left ventricle (LV) myocardium. LV myocardium CNR was 12.48% higher
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for cine imaging with AI shim (149.02 ± 39.15) than volume shim (132.49 ±

33.94). Images obtained with AI shim resulted in sharper images than those
obtained with volume shim (p = 0.012). The LVEF and absolute wall thicken-
ing also showed that differences exist between the two shimming methods. The
LVEF by AI shim was shown to be slightly larger than LVEF by volume shim in
two groups: 2.87% higher with AI shim for the healthy group and 1.70% higher
with AI shim for the patient group. The LV absolute wall thickening (in mm) also
showed that differences exist between shimming methods for each group with
larger changes observed in the patient group (healthy: 3.31%, p = 0.234 and
patient group: 7.29%, p = 0.059).
Conclusions: CMR exams using EasyScan for cardiac planning demonstrated
accelerated cardiac exam compared to the CMR protocol with manual car-
diac planning. Improved and more uniform B0 magnetic field homogeneity also
achieved using AI shim technique compared to volume shimming.
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1 INTRODUCTION

Cardiovascular magnetic resonance (CMR) is a nonin-
vasive imaging technique that is considered the gold
standard for the assessment of cardiac structure and
function.1,2 CMR provides prognostic evidence,changes
patient management, reduces the need for other tests,
and is supported by European and US consensus panel
reports.1,3,4 While the power of CMR is unquestioned,
implementation of the complex technique requires spe-
cialized technologist training, skills, and experience.
Moreover, patient throughput for fully implemented data
acquisitions with extensive myocardial characterization
are slow,challenging patient tolerance and requirements
to limit physical motion, comply with repeated breath
hold requests, and to lie flat in situations that may be
claustrophobic or uncomfortable. Reaching the ambi-
tious goals of this program requires integrating a series
of improvements that shorten and simplify workflow,pre-
serve image quality (IQ), enhance study-to-study unifor-
mity, and greater patient compliance ease.

A successful CMR scan depends on accurate slice
geometry prescription, which conventionally requires
several scout scans with breath-holding and man-
ual adjustment of the scan planes by a technologist,
adding additional scan time, patient discomfort, and
workflow complexity. Avoidable delays due to increased
image acquisition times, such as prolonged image plan-
ning or repeat breath-holds decrease patient proce-
dural tolerance and lower case throughput. Previous
CMR studies have reported geometry prescription pro-
cesses using automatic or semi-automatic slice align-
ment methods.5–12 Lelieveldt et al.5,6 matched the scout
images to thoracic anatomy models and estimated the
left ventricle (LV) orientation for automatic view plan-
ning; however, it could be used only for short-axis slice
alignment, and the computational time took 3–5 min.

Jackson et al.7 segmented blood pool using expecta-
tion maximization algorithm, which is a semi-automatic
approach where only the LV long axis can be deter-
mined. Dwivedi et al.8 and Darrow et al.9,10 presented
an anatomy-guided methods that require extra imaging
to determine the orientation of the LV. Both Lu et al. and
Nitta et al.11,12 employed machine learning techniques
to detect a few predefined cardiac landmarks that each
reference plane has to pass through so these planes
can be positioned. However, these methods are sensi-
tive to the errors of the detected landmarks and subject
to absence of landmarks in the volume.Most importantly,
the optimal position of the reference planes differs from
person to person and is found not necessarily passing
through those predefined landmarks.We propose a new
automatic slice alignment method (EasyScan) based on
deep learning regression network. Instead of relying on
a few anatomical points, the plane is determined using
all voxels in the neighborhood, which are more robust
against inevitable landmark detection errors and clear
the ambiguity of landmark annotation.

In CMR imaging, subject-induced magnetic field inho-
mogeneities can be pronounced due to susceptibility
changes within the field of view (FOV).13 Tissue-air
boundaries compromise the B0 field, and careful shim-
ming is required to establish a homogeneous and on-
resonance B0 field around the heart. This is particu-
larly true when a balanced steady state free precession
(bSSFP) sequence is used for acquisition, which is sen-
sitive to off -resonance effect.14 In general,a “frequency-
scout” is involved in the workflow, which collects a series
of images with different off -resonance frequencies to
help the operator find the best scanner frequency.Unfor-
tunately, this process is both time-consuming and oper-
ator dependent. To address these issues, a generalized
shimming tool using a mask-based artificial intelligence
(AI) segmentation technique (AI shim) was developed
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F IGURE 1 An overview of EasyScan workflow for cardiac planes prescription (a). The regression network consists of a chain of
convolutional layers: convolutional layer with kernel size of 3 × 3 × 3 voxels (light blue arrow), convolutional layer with kernel size of 5 × 5 × 5
voxels combined with sum (orange arrow), the dark blue arrow forward the features extracted from early stage to the right part of the
convolutional neural network (CNN). The output of the EasyScan obtained from a volunteer (a single breath-hold duration) is also illustrated. An
example of cardiac planes (short-axis (SAX), two, three, and four-chambers) manually obtained (immediately after EasyScan) with four
breath-holds (of the same volunteer) is shown (b)

for CMR scans. Briefly, a stack of transverse slices is
acquired at the beginning of the study to establish the
shimming currents, which automatically adjust the field
for subsequent cardiac scans.

In this study, implementation of in-line AI-based car-
diac planning and shimming are evaluated as initial tools
to reduce technical complexity and time for execution as
a means to achieve improved patient exam compliance.

2 MATERIALS AND METHODS

2.1 Implementation of AI-based cardiac
planning

The AI-based cardiac planning (EasyScan) algorithm
(Figure 1a) consists of three steps: (1) segment heart
regions using the Otsu method, (2) calculate distance
map using trained regression network, and (3) fit the
plane using least square method. To reduce the com-
putational time and improve method efficiency, the heart
regions were segmented using the Otsu method, and a
binary mask was generated.Around the gravity centroid
of the binary segmentation mask, the cardiac region
of interest (ROI) was cropped to the size of 120 ×

120 × 120 mm3, which can cover great majority of vol-
unteers, and resampled to an isotropic voxel spacing of
3.9 mm3, which balances the computation speed and
accuracy. To determine the spatial position of a cardiac
plane, a distance map to the plane was calculated (see
Supplementary Material for EasyScan) using a regres-

sion network, which contained a chain of approximate
symmetrical convolutional layers. In Figure 1a, the light
blue arrow shows the combination of convolution layer
that uses a volumetric kernel size of 3 × 3 × 3 vox-
els and a rectification layer (except for the last one),
which has a convolution layer with a volumetric ker-
nel of 5 × 5 × 5 voxels and no rectification layer. The
orange arrow indicates a convolution layer with a vol-
umetric kernel of 5 × 5 × 5 voxels (combined with
sum). The layers within the red box consist of a resid-
ual function similar to the approach presented in Mil-
letari et al.15 The dark blue arrow forwards the features
extracted from early stages of the left part of the convo-
lutional neural network to the right part.16 Each convolu-
tion layer is followed by a batch norm layer applied with
appropriate padding. The batch norm layer, the resid-
ual blocks, and the connection layers improved the con-
vergence time and accuracy of the model. No down- or
up-sampling was used. The loss function applied in the
training procedure was the L1 norm between the out-
put of the network and the ground truth distance map
(using multiplanar reconstruction images; see Supple-
mentary Material for EasyScan). Finally, the plane of
interest was calculated by a least square fitting method
with a distance threshold (0.05). Coordinates with pixel
values higher than the threshold were excluded to avoid
excessive influence on the distance estimate by pix-
els far from the desired plane. To train the EasyScan
network, 2D multi-slice images were pre-acquired with
electrocardiography (ECG)-gated bSSFP during a sin-
gle BH. EasyScan acquisition parameters were as
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F IGURE 2 Schematic representation of automated artificial intelligence (AI) shim procedure using image segmentation neural network
with V-net structure. Single-slice three-chamber cine images and B0 field maps of a volunteer acquired with each of two shimming procedures
(manual volume shim and AI shim) show a more uniform field distributions resulted from AI shimming. Off -resonance frequency (Hz)
histograms of heart regions (red circle) obtained from volume shim and AI shim are also illustrated

follows:TR/TE= 3.0/1.5 ms,matrix= 192 × 164 ∼ 384 ×
328, spatial solution = 1.1–2.5 × 1.1–2.5 mm2, number
of slices = 20, slice thickness = 7 mm (no gap), flip
angle = 85, and one slice per R-R interval. The scan-
ning time was set to <20 s. Images from 255 healthy
volunteers (men and women, 22–60 years) were used
for network training in addition to images collected with
manual slice positioning for comparisons. The network
was deployed in-line and on an NVIDIA GeForce GTX
1080 GPU with 12 GB memory generating slice pre-
scriptions in real time (0.2 s). The network was tested
on 57 subjects, and less than 2% of the output slices
required further adjustment by radiologists.17

2.2 Implementation of AI-based cardiac
shimming

AI-based cardiac shim (AI shim) uses a dual echo 3D
gradient echo sequence with breath-hold to collect the
3D anatomical structure and B0 field map of cardiac
regions (Figure 2). The heart and non-heart regions
were separated using an image segmentation neural
network with a V-net structure.15 Inputs of the network
were transverse images covering the whole heart; out-
puts were masks of the heart. The network was trained
on data from 400 volunteers with 3D scans with isotropic

6.7 mm3 resolution and 48 × 48 × 32 image volume
patch. The heart volumes of interests were manually
delineated as the output for training. Focal loss and dice
factor were used for network training and evaluation.For
the V-net loss function, the focal loss was applied as a
modulating term to the cross entropy loss to resolve the
class imbalance and classification problems. The net-
work was deployed on an NVIDIA GeForce GTX 1080
GPU with 12 GB memory and allowed real-time mask
extraction (<1 s). The segmentation accuracy was val-
idated on 98 testing subjects with a dice factor > 0.92.
With the AI-segmented cardiac mask and B0 field map,
the shimming currents were determined separately for
each application with different weights for the in-mask
and out-of -mask FOV via standard spherical harmon-
ics analysis (see Supplementary Material for AI shim).
The shimming currents were solely calculated to opti-
mize the field of the heart for cardiac cine, while the
out-of -mask FOV was employed for dark-blood imaging,
allowing better subcutaneous fat saturation.

2.3 Study population for clinical
validation

This pilot study was approved by the institution’s human
subjects review committee. For EasyScan validation,
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F IGURE 3 Illustration of the study protocols: Cardiovascular magnetic resonance (CMR) protocol using manual cardiac planning (duration:
four breath-holds (BHs)) and the same CMR protocol but with automated EasyScan planning (duration: 1 BH)

10 healthy volunteers were enrolled and scanned twice
on the same day using two identical standard CMR
protocols18: (1) with manual cardiac planning and (2)
with automated EasyScan (Figure 3). To minimize MRI
scan bias, half of the subjects were initially scanned
with the protocol using EasyScan followed by protocol
using manual cardiac planning, and half were scanned
in the reversed order. Subsequently, to compare the
performance of AI shim with cardiac volume shim, 20
subjects: 10 healthy volunteers (five females and five
males, ages 23–80 years) and 10 cancer patients (five
females and five males, ages 24–71 years) referred
for CMR were studied under informed consents. All
subjects recruited for study participation met the study
enrollment inclusion/exclusion criteria prior to enroll-
ment.Their demographic characteristics including mean
(± standard deviation [SD]) age, height, weight, body
mass index, heart rate, cancer type, and their oncology
history duration are presented in Table 1.

2.4 MRI acquisition for clinical
validation

CMR scans were performed on a wide bore 1.5 T clin-
ical MRI scanner (uMR570; United Imaging Healthcare,
Shanghai, China) with maximum gradient strength of
45 mT/m (maximum slew rate of 200T/m/s).All subjects
were scanned in the supine position (head-first) using
a 12-channel body array coil. The MRI sliding table and
subjects were maintained (head-first and supine posi-
tion) at the magnet isocenter with no positional offset
between two CMR imaging protocols.For EasyScan, the
two protocols shared identical scans with the excep-
tion that the standard scout scans (four breath-holds)
were replaced with a single EasyScan (one breath-
hold) as shown in Figure 3. For cine images (two-,
three-, four-chambers and short-axis stack views) using
the protocol with manual cardiac planning, a multi-plane
scout was acquired in transverse, coronal, and sagit-
tal views followed by single slice scout images for all

TABLE 1 Population characteristics

Healthy
(n = 10)

Patients
(n = 10) p value

Age (years) 52.60 ± 21.20 47.60 ± 13.65 0.559

Height (m) 1.73 ± 0.09 1.70 ± 0.09 0.533

Weight (Kg) 78.20 ± 14.44 80.29 ± 13.46 0.755

BMI (Kg/m2) 25.95 ± 3.72 27.83 ± 5.53 0.408

Heart rate (bpm) 65.10 ± 8.55 74.00 ± 11.88 0.018

Gender

Female 5 5 NA

Male 5 5 NA

Cancer types

Breast cancer NA 4 NA

Sarcoma cancer NA 3 NA

Lymphoma
cancer

NA 1 NA

Leukemia cancer NA 1 NA

Myeloma cancer NA 1 NA

Oncology history
duration (years)

NA 11.00 ± 8.53 NA

Note:Age,height,weight,body mass index (BMI),heart rate,and patient’s oncol-
ogy history are represented as mean ± standard deviation. Statistical signifi-
cance level was set at p < 0.05.

four views (requiring four breath-holds).Short-axis stack
cine slices were planned parallel to the mitral valve at
the LV base with additional slices covering the entire
heart to the apex (∼10–12 slices with no interslice gap).
In contradistinction to manual planning, the automated
EasyScan planning acquired all views needed to plan
for cine images in one breath-hold, obviating the need
for manual cardiac planes adjustments. Single slice
(two-, three-, four-chambers) and multi slice SAX cines
were acquired using a segmented bSSFP sequence
with retrospective ECG gating in a breath-hold fash-
ion (1 slice, ∼7–10 s) with at least 15–20 s rest period
between breath-holds for SAX cine imaging. The follow-
ing acquisition parameters were used for cine imaging:
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TR/TE= 2.98/1.4 ms,slice thickness of 8 mm,rectangu-
lar FOV 360 × 320 mm2,pixel size 1.9 × 1.6 mm2,accel-
eration factor 2, flip angle 80◦, bandwidth 1000 Hz, and
25 reconstructed phases. Cardiac cine of 2, 3, 4 cham-
bers and short axis views were used for the compari-
son between manual volume shim and AI shim. When
manually placing the volume shim box for CMR,multiple
planes were utilized. In the transverse plane, the shim
was placed over the heart to include descending aorta
with sagittal and coronal planes to verify placement.

2.5 Image analysis for clinical
validation

The stack of cine SAX images was processed in-
line with an automated cardiac post-processing tool
available on the scanner to derive ejection fraction (EF)
and absolute LV wall thickening (defined as end-systolic
[ES] minus end-diastolic [ED] wall thickness). Prior to
any calculation, all SAX cine images were automati-
cally segmented and registered followed by motion cor-
rection. The remaining cine images were exported for
offline post-processing to calculate signal-to-noise ratio
(SNR), contrast-to-noise ratio (CNR), and image sharp-
ness for four different views: two-, three-, four-chambers,
and SAX. SNR was computed with a previously
described method under the assumption that noise has
a Rayleigh distribution.19 The LV and right ventricle (RV)
SNRs were measured using ROI within LV and RV at
ED phase for all slices.However,RV SNR and CNR were
only measured using the four-chamber and SAX views.
ROIs were drawn manually for myocardium and blood
pool cavity, excluding boundaries to minimize partial
volume effects. CNR was calculated as the difference
between LV/RV and blood pool SNRs. Image sharpness
(inverse of the blur quality index) was estimated using a
no-reference perceptual blur metric ranging from 0 to 1,
that is, worst to the best quality, respectively, in terms of
image sharpness.20,21 Image sharpness was then mea-
sured for each cine image averaged over all phases for
each cardiac view.The subjective assessment of bSSFP
cine images for LV and RV was based on the SAX
images acquired with volume shim and AI shim. A five-
point rank score was applied by two blinded, indepen-
dent MRI experts (with more than 10 years’ experience
each in CMR imaging) who evaluated MR image degra-
dation, including wrap-around, respiration bulk motion,
cardiac ghosts, flow artifact, shim artifact, noisy images,
and image blurring for SAX stack.The IQ was scored as:
5 = excellent IQ without noticeable artifact; 4 = above
average IQ with mild artifact/mildly impacting analy-
sis; 3 = adequate IQ with moderate artifact/moderately
impacting analysis, but trustable; 2 = suboptimal IQ with
marked artifact, but not all structures; 1 = poor IQ with
severe artifact, non-diagnostic.

2.6 Statistical analysis for clinical
validation

The measured parameters consisted of (1) total scan
time and cardiac plane angulation accuracy for auto-
mated EasyScan, (2) SNR, CNR, image sharpness, EF,
and LV absolute wall thickening from images obtained
with volume shim and AI shim. To assess statistical
differences, a hybrid method using nonparametric and
parametric statistical assessments was applied.The sta-
tistical significance level was set at p < 0.05 for all
analyses. Data distributions were tested for normality
with the Shapiro Wilk W test. To assess AI shim perfor-
mance, the difference between two levels, the volume
shim and AI shim, was determined for the LV and RV
two-, three-, four-chambers, and SAX views. If the dif-
ferences were normally distributed, the paired t-test was
used to assess statistical significance. For non-normally
distributed data, the Wilcoxon signed rank test was used.
Means, SD, and 95 % confidence intervals were used
for descriptive statistics. Statistical analyses were per-
formed with R statistical software (version 4.0.2; R Core
Team 2020).

3 RESULTS

3.1 Subject characteristics

CMR scans were successfully performed on all recruited
subjects with sufficient IQ as visually inspected and
reviewed by a certified MRI technologist. The subjects’
characteristics are summarized in Table 1 with the mean
age (year) of 52.60 ± 21.20 and 47.60 ± 13.65 for
the healthy and cardio-oncology patients, respectively.
In addition, the mean heart rate (bpm) of the cardio-
oncology patients was higher than that of the healthy
subjects (74.00 ± 11.88 for patients vs. 65.10 ± 8.55 for
healthy, p < 0.05).

3.2 Manual cardiac planning versus
AI-based EasyScan planning

3.2.1 CMR protocol scan time with
EasyScan

The scan time for single slice retrospective cine imag-
ing (1 BH for each of two-, three-, and four-chamber
views) was approximately 7–10 s, while the scan time
of the SAX stack cine was ∼205–235 s for 10 slices
with a rest period of 15–20 s after each breath-hold.
EasyScan mean cardiac protocol scan times (extracted
from Dicom header timestamp) for 10 subjects were
19.26 ± 0.77 min versus 16.70 ± 0.86 min for the
standard CMR protocol with manual cardiac planning



PROSPECTIVE CLINICAL VALIDATION OF AI-BASED PLANNING AND SHIMMING TECHNIQUES 135

F IGURE 4 MRI protocol acquisition time differences (for 10 healthy subjects) between the two cardiovascular magnetic resonance (CMR)
protocols: with manual cardiac planning and with EasyScan planning

(including tissue characterization imaging for single-
slice T1 and T2 mapping at the mid-ventricular level).
This equated to 13% faster CMR imaging (i.e., 2.57 min,
p < 0.001, 95% CI [2.31, 2.83]) using the protocol with
EasyScan (Figure 4).

3.2.2 Angular error in cardiac planes

To evaluate the performance of automated cardiac plan-
ning using EasyScan, cardiac plane angulations were
compared with those manually selected by a highly
experienced MR technologist at the time of acquisition
(Table 2). Angulations were computed for four cardiac
planes obtained from 10 volunteers. For SAX plane, the
mean angular error was 6.2 ± 3.3◦. For long-axis planes
the mean angular error for the four-chamber plane was
4.4 ± 1.4◦; for the two-chamber plane was 5.8 ± 2.5◦;
and for the three-chamber plane was 5.5 ± 3.5◦. The
EasyScan results, including the processing time (0.2 s),
are referenced to published strategies.6,8,11,12,22

3.3 Volume shim versus AI-based
cardiac shim

3.3.1 SNR

The output of the AI shim algorithm compared with the
standard manual volume shim for two, thrree, four cham-
bers and a mid-ventricular short-axis slice is shown as a
distribution representing off -resonance frequency vari-
ation (Figure 5). Field map uniformity and frequency

profile (in Hz) of an ROI drawn on the septal wall of
an example four-chamber view showed that AI shim
improved field homogeneity compared with the manual
volume shimming (Figure 6). Comparing the SNR of all
datasets consisting of healthy and cardio-oncology sub-
jects (Table 3), cine images acquired with AI shim had
higher SNR (12.49 %; p = 0.002) of the LV myocardium
than those obtained with volume shim for all four cardiac
orientations: 32.90 ± 7.42 for volume shim and 37.01 ±

8.87 for AI shim. A similar SNR trend was observed
between volume and AI shims (13.35% higher SNR
with AI shim; p = 0.019) for the RV myocardium in the
four-chamber and SAX cine views: 29.84 ± 6.73 and
33.82 ± 8.16 for volume and AI shims, respectively. Fig-
ure 7 (top row) shows SNR changes within each group
(box plots), reflecting higher SNR measurements using
AI shim compared to the manual volume shim for cine
images at two-, three-, four-chambers, and SAX views.
Bland–Altman comparisons of LV/RV measurements for
the two shim modes are provided in Figure 8 (left col-
umn).SNR changes between volume and AI shims were
different (p < 0.05) for all cine views except for SNR for
RV with SAX view in the patient group (p = 0.083).

3.3.2 CNR

The results of the quantitative CNR analysis of LV and
RV myocardium in the healthy and cardio-oncology
patient groups are shown in Table 3. LV myocardium
CNR was 12.48% higher for cine imaging with AI
shim (149.02 ± 39.15) than volume shim (132.49 ±

33.94) across all subjects and for all cardiac planes
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TABLE 2 Accuracy of imaging planes (by angular error in degrees) prescribed by EasyScan compared with planes prescribed by the MRI
technologist (manual planning) and also compared with previously reported methods

Angular error (◦)

SAX 4CH 2CH 3CH
Process
time (s)

Volunteer 1 2.8 3.8 4.2 2.4

Volunteer 2 3.2 3.2 4.5 13.1

Volunteer 3 11.4 7.2 6.3 5.6

Volunteer 4 3.8 5.6 6.0 6.7

Volunteer 5 10.8 5.11 3.2 3.8

Volunteer 6 2.0 2.9 8.0 2.7

Volunteer 7 3.4 3.1 3.4 11.0

Volunteer 8 7.8 2.6 7.2 2.6

Volunteer 9 9.0 6.2 3.9 3.2

Volunteer 10 7.3 4.9 11.4 4.1

Lelieveldt et al.6 12.2 ± 6.8 – – – 7

Dwivedi et al.8 5.6 ± 3.5 – – – 240

Lu et al.11 8.6 ± 9.7 17.6 ± 19.2 18.9 ± 21.0 12.3 ± 11.0 11

Nitta et al.12 3.1 ± 1.7 4.5 ± 3.8 7.3 ± 4.8 5.8 ± 3.8 1.8

Frick et al.22 6.7 ± 3.6 7.7 ± 6.1 7.1 ± 3.6 9.1 ± 6.3 –

Our method, EasyScan 6.2 ± 3.3 4.4 ± 1.4 5.8 ± 2.5 5.5 ± 3.5 0.2

Abbreviations: 2CH, two-chamber view; 3CH, three-chamber view; 4CH, four-chamber view; SAX, short axis view.

F IGURE 5 The off -resonance distribution of the whole heart mask in the B0 field map obtained from the two shimming methods: manual
volume shim versus artificial intelligence (AI) shim. The field map histograms were derived from an identical cardiac mask for both volume shim
and AI shim. Histograms were separately generated for each cardiac plane with the standard deviation within the mask region, representing an
improved field homogeneity with automated AI shim
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F IGURE 6 An example 4-Chamber cine view of a volunteer at
the end-diastolic (ED) phase obtained with manual volume shim and
artificial intelligence (AI) shim (a). B0 field map (Hz) distributions
limited to heart region showed improved and more uniform field as a
result of AI shim application (b). Field profile (in Hz) approximately
along the septal wall of myocardium, which is highlighted by a
two-way arrow line, where relatively strong field nonuniformity above
the septal wall was reduced by AI shimming (c)

(p = 0.004). The LV CNR analysis of the different car-
diac shim methods indicated significant relative CNR
increases (p < 0.05) with AI shim within each of the
two groups (Figure 7, bottom row). Similarly, a 15%
CNR increase in the RV myocardium was obtained with
AI shim compared to volume shim (AI shim: 168.83 ±

37.58, volume shim: 146.80 ± 30.91; p = 0.005).
Bland–Altman comparisons between different shims for
determining LV and RV CNRs, with associated bias and
upper/lower limits of agreements, are presented in the
Figure 8 (middle column).

3.3.3 IQ evaluation

Figure 9 presents four-chamber and SAX cine (mid-
ventricular level) image examples from a healthy and
cancer patient at the ES phase scanned identically with
different cardiac shim methods.Visually,AI shim images
were slightly sharper (most notably for the RV free
wall) with fewer observed artifacts.The mean sharpness
of cine images was 0.64 ± 0.03 for images acquired
with volume shim and 0.65 ± 0.03 for those with AI
shim, representing 2% sharper images using AI shim
(p= 0.012). In an analysis of sharpness index measured
from cine images acquired with different shims (vol-

ume vs.AI),statistical differences were found for healthy
subjects (except for three-chamber view; p = 0.185)
and cardio-oncology patients (except for three-chamber
and SAX views). For the IQ assessment, the overall
quadratic weighted κ statistics for inter-observer vari-
ability showed strong agreement for both SAX cine
images with volume shim (κ = 0.74, p < 0.001) and with
AI shim (κ = 0.78, p < 0.001), where a higher median
reviewer score was obtained with AI shim (AI shim: 5
and volume shim: 4, p = 0.028) using the five-point rank
score method. In correlation analyses, positive correla-
tions were found between observers’ scores for IQ for
volume shim (ρ = 0.77,p < 0.001) and AI shim (ρ = 0.78,
p < 0.001).

3.3.4 EF

In the healthy group, using the AI shim, the calculated
mean LVEF (%) was 64.85± 7.04, while that calculated
LVEF by the volume shim was 63.04±6.79, with a
significant difference (p = 0.005, 95% CI = [−2.90,
−0.72]). The mean LVEF in the patient group resulted
in lower values compared to the healthy group for both
shimming methods: LVEF (AI shim) = 50.43±8.42,
LVEF (volume shim) = 49.59± 8.06, p = 0.064, and
95% CI = [−1.75, 0.06]. The mean RVEF of each
group of subjects calculated from images obtained with
different shim methods are presented in Table 3. RVEF
in the healthy group showed no changes between
shim methods (p = 0.053), while in the patient group,
calculated RVEF was different between volume and AI
shim (p = 0.009). To evaluate the mean and differences
of the measured EF from LV and RV myocardium with
volume and AI shims, the bland-Altman plots were
developed (Figure 8, right column).

3.3.5 LV absolute wall thickening

The absolute wall thickening of LV myocardium mea-
surement was significantly larger in the healthy group
(volume shim:5.71± 1.41 and AI shim:5.52± 1.30) than
that in the patient group (volume shim: 3.77 ± 0.86 and
AI shim: 4.04 ± 0.92): p = 0.028, 95% CI = (0.05, 0.87).
Correlations and linear regression analysis between
LVEF and absolute LV wall thickening (as determined
by volume and AI shims) for the healthy and the patient
groups are displayed in Figure 10.

4 DISCUSSION

Collectively, these results provide evidence that the pro-
posed AI-based techniques (EasyScan and AI shim)
benefit CMR imaging with a faster MRI scan protocol
and more robust cardiac shimming, while preserving
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F IGURE 7 Boxplot comparisons of left ventricle (LV) signal-to-noise ratio (SNR) (top row), and contrast-to-noise ratio (CNR) (bottom row)
variations for two-, three-, four-chamber and SAX cine views obtained with manual volume shim and artificial intelligence (AI) shim: healthy
(n = 10) and patient (n = 10). The images collected with AI shim showed relatively higher SNR and CNR compared to those obtained with
volume shim for all cardiac planes

F IGURE 8 Bland-Altman comparisons (with marginal histogram for agreements between volume shim and artificial intelligence [AI] shim)
of left ventricle (LV) (top row) and right ventricle (RV) (bottom row) measurements for signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR),
and ejection fraction (EF). LV SNR, and CNR measurements derived from four cardiac planes, while RV derived from two planes of
four-chamber and SAX cines. The mean of differences is represented by the solid line (bias) with their upper and lower limits of agreement
(upper limit of agreement (ULOA) = mean of differences + 1.96 standard deviation and lower limit of agreement (LLOA) = mean of differences
− 1.96 standard deviation). Histogram plot of differences between measurement by volume shim and AI shim is also illustrated
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F IGURE 9 Examples of four-chamber and SAX cine images obtained from a healthy and a patient with volume shim and artificial
intelligence (AI) shim that shows slightly sharper (less blurry) images with AI shim, especially at the right ventricle (RV) (red arrows) free wall (b)

F IGURE 10 Linear regression analysis of correlation between left ventricle ejection fraction (LVEF) and absolute LV wall thickening derived
from volume shim and artificial intelligence (AI) shim for healthy subjects and patients. LVEF and absolute LV wall thickening obtained from cine
images using AI shim method showed significantly higher Pearson correlation in comparison with volume shim method, where stronger
correlation coefficient was found in patients

IQ in routine clinical practice. Compared with man-
ual cardiac planning (requiring four BHs for plane pre-
scriptions, (Figure 1b), EasyScan (single scan with 1
BH, (Figure 1a) minimized operator dependence and
reduced overall scanning time by over 2 min (∼13%
faster, p < 0.001). EasyScan simplified cardiac image
planning with clinically acceptable planes in all sub-
jects comparable to an expert MRI technologist. More-
over, EasyScan planning had better accuracy, that is,
less plane angulation error, than previously reported
values11,22 for all four cardiac views. While, the angular
error of Nitta et al.12 for the long-axis views was sim-
ilar, EasyScan processing time was nine times faster.
Reducing technical demands on MR technologists and
shortening total scan time for cardiac patients are impor-

tant work-flow achievements that will expand and help
democratize the use of CMR in both high and low vol-
ume institutional settings.

The major limitation of cine bSSFP is the pres-
ence of banding artifacts that can be reduced by
proper shimming techniques. Lee et al.23 demonstrated
a shim method based on minimization of the maxi-
mum off -resonance frequency that improves banding
artifact reduction for brain imaging at 3 T. They showed
that their shimming method reduced the spatial field
inhomogeneity and increased the SNR in bSSFP imag-
ing as well as functional contrast in bSSFP fMRI. In
the present study, SNR of cine images was significantly
higher in images obtained with AI shim compared with
volume shim. Increased SNR with AI shim was evident
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across all cine planes for both RV and LV myocardium.
For instance, the mean SNR of LV myocardium for the
SAX cine with AI shim improved 17.75% (p < 0.001) in
the healthy and 10.40% (p= 0.006) in the patient groups
(vs. volume shim). Analogous findings were revealed
for CNR measurements between shim methods. Oth-
ers have reported that increased SNR and contrast
between blood and myocardium improve endocardial
border definition.24 Similarly, the elevated SNR and CNR
achieved with AI shim facilitated a better delineation
of epi- and endocardial borders and consequently,
increased the efficiency and accuracy of automated
contour detection algorithms utilized by the advanced
CMR analysis software available on the scanner.

Image sharpness over all four cardiac planes was
slightly increased (2%) by the AI shim. This improve-
ment was most notable at the RV free wall (less blurred)
for the four-chamber and short-axis views as illustrated
in Figure 9. The subjective IQ assessments also sup-
ported the benefit of AI shim versus volume shim. Col-
lectively, the IQ assessments (subjective and objective)
suggested that cine images using AI shim were slightly
sharper with higher IQ score than those obtained with
volume shimming.

CMR imaging with stack short-axis cine acquisition is
the gold standard for LVEF measurements because of
its volumetric approach for nonsymmetric ventricles with
wall motion abnormalities.25 In the functional CMR anal-
yses, the mean LVEF by AI shim was shown to differ
from volume shim in the healthy group (p = 0.005) with
a relatively small LVEF change between the two meth-
ods (2.87% higher with AI shim). As expected, mean
LVEF from the patient group was lower than the healthy
group with a slight nonsignificant change noted between
volume and AI shim methods (1.70% higher with AI
shim, p = 0.064). Similarly, slightly higher RVEFs were
derived from CMR cine images with AI shimming in all
subjects (healthy: 2.25%, p = 0.053 and patient: 1.71%,
p = 0.009), which may reflect improved endocardium
delineation.

As stated earlier, the LV absolute wall thickening (in
mm) showed that differences exist between shim meth-
ods for each group with larger changes observed in the
patient group (healthy: 3.31%, p = 0.234 and patient
group: 7.29%, p = 0.059). The impact of the abso-
lute LV wall thickening has been previously demon-
strated as a sensitive determinant to LVEF in CMR26

and echocardiography.27,28 In Rodrigues et al,26 CMR
absolute LV wall thickening showed significantly higher
correlation with LVEF in patients with hypertensive heart
disease (r = 0.70, p < 0.001). This finding was observed
in the current study, which showed stronger correla-
tion between absolute LV wall thickening and LVEF in
patients than in healthy subjects.Linear regression anal-
ysis further demonstrated a stronger correlation coeffi-
cient between absolute LV wall thickening and LVEF with
AI shim than volume shim (p < 0.05).

Although feasibility of the proposed method was
demonstrated, this study has limitations. Besides the
relatively small sample size, slight shifts occasionally
occurred in SAX oriented slices between volume and
AI shims image acquisition due to patient movement
between scans. This negative effect is likely minimized
because covering the entire heart from basal to apical
slices (∼10 slices) rather than as a single slice reduced
the variability of slice locations. Although manual ROI
tracing was required, care was taken for consistency
across all subjects for SNR and CNR estimations, but
the overarching intent is for an operator-independent
method to minimize this variability. All scans assessed
the complete palette of standard CMR measurements,
including myocardial mass and chamber volumes. How-
ever, this proof-of -concept study focused on LV wall
thickness and EF, which are used extensively by cardi-
ologists adopting societal medical management guide-
lines. Although the trends of improved IQ likely apply to
all myocardial assessments, specific studies addressing
the myriad measurements over larger patient cohorts
will offer broader technical validation. The indepen-
dent benefit of AI shim on field inhomogeneities was
not considered, but its application showed merit in
volunteers and patients with cancer based on quan-
titative image sharpness and subjective scoring by
expert MRI readers. The proof-of -concept benefit of
AI shim was appreciated in the small cohort of vol-
unteers and patients in the present study, but assess-
ments with diverse demographic and disease stratifi-
cation are warranted. Finally, consistent breath-holding
position is also important for both EasyScan and AI
shim, since both assume that subject position during
pre-scan is the same as during later imaging sequences.
Although the conventional volume shim workflow also
suffers from this problem, AI shim workflow is more
sensitive since it aims to optimize the B0 field within
the predetermined mask of the heart for cardiac
cine.

5 CONCLUSIONS

Performing CMR exam using AI-based EasyScan for
cardiac planning and AI-based shim demonstrated
notable improvements compared to a CMR exam
with manual cardiac planning and volume shimming.
Foremost among these changes was the consider-
able reduction in scanning time by EasyScan and
improved field homogeneity using AI shim. Additionally,
the benefits of AI shim to manual volume shim were
demonstrated in our studied cohorts. Collectively, the
use of AI to achieve a simpler and faster workflow chain
will increase institutional availability and quality control
by minimizing technical complexity, by shortening scan
times, and by improving patient tolerance of CMR
studies.
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