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The Au(IlI)-catalyzed cyclization of 2-alkynylanilines was combined in a one-pot procedure with the Au(I)-catalyzed C3-selective

direct alkynylation of indoles using the benziodoxolone reagent TIPS-EBX to give a mild, easy and straightforward entry to

2-substituted-3-alkynylindoles. The reaction can be applied to unprotected anilines, was tolerant to functional groups and easy to

carry out (RT, and requires neither an inert atmosphere nor special solvents).

Introduction

Indoles are widespread in both natural products and synthetic
drugs [1,2] and as a result, their synthesis and functionalization
have been extensively studied [3,4]. Among the numerous
syntheses of indoles, the cyclization of 2-alkynylanilines has the
advantage that the resulting products, 2-substituted indoles, are
easily functionalized by electrophilic aromatic substitution at
position 3. Traditionally, this transformation has been achieved
in two separate steps, with isolation and purification of the
3-unsubstituted indole intermediate. Domino or one-pot
processes constitute a more efficient access to organic mole-
cules, as they avoid the use of time and resource consuming

work-up, and purification procedures [5-7]. When considering

the importance of multi-functionalized indoles, it is therefore
not surprising that the aniline cyclization—electrophilic substitu-
tion sequence has been achieved by means of several metal-
catalyzed domino processes (Scheme 1) [8-10].
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Scheme 1: Domino cyclization—substitution reactions of 2-alkynyl-
anilines.
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Among the different n-activating metals capable of promoting
nucleophilic attack on acetylenes, gold has recently attracted
interest from the synthetic chemistry community [11-14]. Gold
catalysts have also been used in domino sequences starting from
o-alkynylanilines. Arcadi and Marinelli reported that gold-
catalyzed cyclization of 2-alkynylanilines can be followed by
1,4-addition to enones [15,16], iodination [17] or reaction with
1,3-dicarbonyl compounds [18]. Perumal recently demon-
strated that aldehydes and nitroalkenes can be used as electro-
philic partners [19,20]. Triple bonds can also serve as a second
electrophile for the construction of tetrahydrofurans [21] and
aryl-annulated[a]carbazoles [22]. Nakamura examined the
cyclization of N-tosyl-o-alkynylanilines and observed an
internal transfer of the sulfonyl group to the 3-position of the
formed indoles [23,24]. Similar transformations were also
achieved for the transfer of carbonyl groups, but using platinum
catalysts [25-28].

To date, there are no gold- or platinum-catalyzed methods for
the introduction of acetylenes as electrophiles. However, Cacchi
developed a palladium-catalyzed domino sequence including
cyclization of o-alkynyltrifluoroacetanilides and alkynylation
with bromoacetylenes [29]. New methods are needed to expand
the scope of this transformation and Au catalysis appears espe-
cially promising, due to its broad functional groups tolerance,

which could allow the direct use of unprotected anilines.
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Scheme 2: Gold-catalyzed direct alkynylation of indoles with TIPS-
EBX (1).
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Scheme 3: One-pot alkynylaniline cyclization/direct alkynylation.
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Recently, the direct alkynylation of preformed heterocycles has
been intensively investigated [30-34]. Most of the developed
methods involve the use of haloacetylenes. In contrast, our
group has focused on the use of more reactive alkynyl hyperva-
lent iodine reagents in order to expand the scope of direct
alkynylation methods under milder conditions. We recently
reported a mild procedure for the C3-selective alkynylation of
indoles using AuCl and the commercially available benziodox-
olone TIPS-EBX (1-[(triisopropylsilyl)ethynyl]-1,2-benzio-
doxol-3(1H)-one (1)) (Scheme 2) [35-40]. This methodology
allowed the ethynylation of a wide range of indoles, including
2-substituted indoles.

In this letter we would like to report the one-pot combination of
the cyclization of 2-alkynylanilines using NaAuCly as catalyst
[15] followed by C3-alkynylation with AuCl and TIPS-EBX (1)
(Scheme 3). This method offers an operationally simple access
to 3-silylalkynyl indoles. To the best of our knowledge, this is
the first example of a one-pot process combining a Au(Ill) and
a Au(I) catalyst.

Findings

2-Alkynylanilines 2 can be efficiently prepared from 2-iodoani-
lines 4 and terminal alkynes via Sonogashira reaction with Et;N
as solvent (Scheme 4) [41,42]. The reaction was complete in
less than 2 h and did not require aniline protection, solvent

degassing or drying.
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Scheme 4: Synthesis of 2-alkynylanilines 2.

Our first investigations were focused on the cyclization of
2-(phenylethynyl)aniline (2a) into 2-phenylindole (5) with
AuCl as the catalyst at room temperature (Scheme 5, step 1).
Since AuCl has been shown to be the best catalyst for the
alkynylation reaction [35], its use would allow a domino
process with a single catalyst.

Despite the fact that the use of AuCl has been reported for step
1 [19,20], in our hands the reaction was not reproducible at
room temperature in a variety of solvents (EtOH, CH3CN,
Et,0). A black precipitate was observed after catalyst addition,
which we postulate was due to the stochastically degradation of
AuCl under these conditions. NaAuCly has also been reported
to be successful for the cyclization of 2-(phenylethynyl)aniline
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Scheme 5: Domino cyclization—alkynylation of aniline 2a.

(2a) [15]. This catalyst was next examined in different solvents
in order to maximize the chance of finding conditions suitable
for both steps of the process. Aniline 2a was fully converted
into 2-phenylindole (5) in EtOH, iPrOH and Et,0O after 3 h at
room temperature using 2 mol % of NaAuCly and there was no
problem of reproducibility. Unfortunately, NaAuCly was not an
efficient catalyst for the direct alkynylation of indole, as no
reaction was observed when TIPS-EBX (1) was added to the

reaction mixture.

We then investigated the successive addition of NaAuCly and
AuCl in the same pot. Interestingly, one-pot sequential
processes using both Au(I) and Au(IIl) have not yet been
reported. AuCl and TIPS-EBX (1) were added when full
conversion of the NaAuCly-catalyzed cyclization was observed.
When 2 mol % of NaAuCly and 2 mol % AuCl were added, the
second step was unsuccessful. However, with 2 mol % of
NaAuCly and 4 mol % of AuCl, full conversion was observed
after 30 h at room temperature in iPrOH (compared with 60% in
EtOH and 40% in Et,0). A basic work-up allowed the removal
of the 2-iodobenzoic acid and column chromatography afforded
the product in 96% yield (average of two reactions). Unfortu-
nately, no reaction was observed when AuCl and TIPS-EBX (1)
were added at the beginning of the reaction.

The scope of the reaction was then investigated (Scheme 6).
Methyl- and fluoro groups were tolerated on the 2-aryl
substituent to give products 3b and 3¢ in good yields. The low
solubility of the indole intermediate in the synthesis of 3d led to
a low yield for the direct alkynylation step. The addition of
CH,Cl, overcame this problem. Chloro substitution in para-
position of the aniline was also tolerated (3e, 3f). Nevertheless,
when the strongly electron-withdrawing cyano group was
present, the cyclization step was too slow at room temperature.
However, the use of 4 mol % of NaAuCly and a reaction
temperature of 80 °C led to the formation of the desired indole,
which could then be alkynylated at room temperature to give
3g. o-Hexynyl aniline (2h) was efficiently transformed into 3h
in 85% yield. In order to access 2-silyl indoles, the synthesis of

the 2-trimethylsilylacetylene substituted compound 3i was
attempted. Unfortunately, only traces of the indole intermediate
were observed in this case. The reaction with 2-ethynylaniline
to give (3j) was also unsuccessful as previously reported [16].

These first results on the direct alkynylation reaction combined
in a one-pot procedure with gold-catalyzed indole ring forma-
tion are promising, and analogous strategies combining palla-
dium-catalyzed synthesis of indoles [3] and gold-catalyzed
alkynylation could also be envisaged. The next step will be to
attempt a one-pot 3-steps synthesis of alkynyl indoles starting
directly from iodoaniline.

In conclusion, an efficient access to 2-substituted 3-silylalkynyl
indoles is reported. 2-Alkynylanilines underwent a sequential
one-pot Au(lll)-catalyzed annulation and Au(I)-mediated direct
alkynylation. Importantly, this transformation did not require
prior aniline protection and proceeded under mild conditions.
This methodology represents the first example of the sequential
addition of Au(Ill) and Au(I) catalysts for a one-pot process.

Experimental

General procedure for the synthesis of
2-alkynylanilines 2

A solution of 2-iodoaniline (4) (1 equiv), terminal alkyne
(1.2-1.3 equiv), PdCl,(PPh3), (10 mol %) and Cul (10 mol %)
was heated under reflux in Et3N (15 mL) for 1.5-2 h under a
nitrogen atmosphere. The resulting mixture was filtered through
Celite®, washed with DCM and concentrated under vacuum.
The resulting solid was purified by column chromatography.

General procedure for the synthesis of
2-substituted 3-alkynyl indoles 3

NaAuCly (2-4 mol %) was added to a stirred solution of
2-alkynylaniline 2 (0.40 mmol, 1 equiv) in iPrOH (3 mL) under
an ambient atmosphere. The reaction was stirred at RT (80 °C
for 3g) until full conversion (3 h). TIPS-EBX (1) (1.2-2.4
equiv) and then AuCl (4-8 mol %) were added. The reaction
was stirred until full conversion (4-30 h) and then concentrated

567



Si(iPr)3

3a, 96%

Si(iPr)s

/I

N

H
3d, 79%

Si(iPr)s

)l

1) 2 mol %
é NaAuCI4-2H20
iPrOH
NH, 2) 4 mol % AuCl

TIPS-EBX (1), RT

Si(iPr)

3b, 74%

Si(iPr)s

)l

Cl
0O
N
H
3e, 73%

Si(iPr)

)l

Beilstein J. Org. Chem. 2011, 7, 565-569.

3¢, 79%

Si(iPr)s

)l

3f, 56%, 90% pure

Si(iPr)s

/l

NC
LS )-om - $ o snzse
N N N 3jR=H
H H H
39, 79% 3h, 85% 3ij, no reaction
Scheme 6: Scope of the reaction.
under vacuum. Et,O (20 mL) was added and the organic layer References

was washed twice with 0.1 M NaOH (20 mL). The aqueous
layers were combined and extracted with Et,O (20 mL). The
organic layers were combined, washed successively with satu-
rated NaHCOj3 (20 mL) and brine (20 mL), dried with MgSOy4
and concentrated under reduced pressure. The crude product

was purified by flash chromatography.
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