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Simple Summary: This work aims to validate a citizen science protocol for monitoring the flight
activity of stingless bees. The count of flight activity (entrance, exit, and entrance carrying pollen)
filmed in 30 s videos was compared among three different groups: “original” citizen scientists (group
that filmed and performed the count in their own videos), “replicator” citizen scientists (group of
citizen scientists who performed flight activity counts on videos shot by other citizen scientists), and
experts (researchers who work with bees and who performed the counts on videos shot by citizen
scientists). The analysis was divided into two levels: perception (detection of activity in videos)
and counting. The results of this analysis revealed that citizen scientists and experts have similar
perception and count of bee entrance and exit activity, as no statistical differences were found in these
two items. However, replicator citizen scientists noticed more bees carrying pollen than original
citizen scientists and experts. Despite this, considering only the videos in which the groups agreed
on the presence of pollen, the count was similar for both. These results enabled the validation of the
protocol and indicated high quality of data produced by individuals who participate in scientific
practices following a citizen science approach.

Abstract: Although the quality of citizen science (CS) data is often a concern, evidence for high-
quality CS data increases in the scientific literature. This study aimed to assess the data reliability of
a structured CS protocol for monitoring stingless bees’ flight activity. We tested (1) data accuracy
for replication among volunteers and for expert validation and (2) precision, comparing disper-
sion between citizen scientists and expert data. Two distinct activity dimensions were considered:
(a) perception of flight activity and (b) flight activity counts (entrances, exits, and pollen load). No
significant differences were found among groups regarding entrances and exits. However, replicator
citizen scientists presented a higher chance of perceiving pollen than original data collectors and
experts, likely a false positive. For those videos in which there was an agreement about pollen pres-
ence, the effective pollen counts were similar (with higher dispersion for citizen scientists), indicating
the reliability of CS-collected data. The quality of the videos, a potential source of variance, did not
influence the results. Increasing practical training could be an alternative to improve pollen data
quality. Our study shows that CS provides reliable data for monitoring bee activity and highlights
the relevance of a multi-dimensional approach for assessing CS data quality.
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1. Introduction

Citizen science (CS) is a scientific approach that allows members of the general public
to contribute to the scientific process, usually as data collectors but desirably in other
scientific inquiry steps [1,2]. As data contributors, the participants can provide large
amounts of data that, otherwise, would require great time availability, as well as substantial
financial resources [3,4]. This scattered and diverse information can reduce data scarcity
problems, which are common in some study fields (e.g., species populations distribution,
water quality monitoring). Albeit still underutilized, CS can be a valuable resource for
global change research and UN Sustainable Development Goals achievement [3,5].

Data quality (DQ), which can be considered a multi-dimensional issue [6], is a con-
cern for several researchers involved with CS activities [7,8]). Studies report on different
dimensions of data quality, such as standardized sampling (e.g., [9]), spatial and temporal
representativeness and bias (e.g., [10]), data accuracy and precision [8,11,12], sample size
(e.g., [13–16]), volunteers’ proper training (e.g., [17–19]), and the experience and ability
levels of participants [20,21].

In this sense, the work developed by Wiggins and Crowston [2] analyzed the mech-
anisms for data quality assurance in 128 CS projects and concluded that the topic is a
concern in most of them. The most common procedures to ensure data quality observed
were: expert review, photo submissions, paper data sheets submitted along with online
entry, replication or rating by multiple participants, quality assurance/quality control
(QA/QC), training programs, and automatic filtering of unusual reports. Pilot-testing of
citizen science protocols is also a strategy commonly used to improve data quality and
reliability. The feedback from testing participants is essential to redesign the protocols and
build appropriate materials for the project [22].

Strategies for DQ control may be applied during data collection, data classification,
or data analyses through statistical and modeling tools [8]. Data quality control during
classification, for instance, may include replication among volunteers (distinct volunteers
performing the same task and reaching some consensus—cross-comparisons) and expert
validation (comparing citizen scientists’ data with professional scientists’ data) [23]. How-
ever, few studies have systematically tested these control mechanisms (e.g., [16,24–26].
Aceves-Bueno et al. [27], for instance, analyzed 63 citizen science papers that reported
1363 observations of expert validation and found that 73% of the abstracts described the
contributions of citizen science as positive (accurate, reliable, comparable, statistically
similar, or valuable) and only 13% assessed citizen scientists’ (cs) performance negatively
(no significant correlations, overestimated, or contradictions). In addition, validated CS
data was reported to be more cost-effective than traditional methods [15].

In a review of citizen science initiatives with bees, Koffler et al. [28] reported the use of
various strategies related to data quality assessment and control, mainly digital vouchers
(photographs submitted by citizen scientists) (43.2%), expert review of data (40.9%), use
of structured protocols (40.9%), and training of participants (29.6%). The same initiative
used up to five different strategies, indicating that data reliability was a major concern
for the projects’ teams. For instance, data quality was stated as the primary objective
by 13.6% of the 88 studies analyzed, with protocols mainly related to sampling effort
and species identification. While bumblebees and honey bees were the most investigated
groups, only three works studied stingless bees, despite the increasing interest in this group
due to their importance as pollinators [29] and the global expansion of meliponiculture
activities [30,31]. Stingless bees comprise a diverse group with more than 500 recognized
species in tropical and subtropical regions [32] and stingless beekeeping may be an important
tool for sustainable rural development and conservation [33]. However, the lack of basic
knowledge of stingless bee ecology and management still hampers the practice [31,34].
In this context, beekeepers may act as important partners in CS projects with stingless
bees, following successful ongoing initiatives with honey bees [35]. Monitoring stingless
bees’ flight activity, for instance, can help us understand several factors that affect colony
performance, such as responses of foraging bees to intra-colony stimuli and meteorological
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conditions. Flight activity data also serve as an economic evaluation of the colony since the
number of foraging trips is directly linked to colony production and pollination services [36].
Therefore, good quality data production is essential to subsidize management strategies.

The present study aimed to assess the data reliability of a structured citizen science
protocol for monitoring stingless bee flight activity. Our initial hypothesis is that there are
no statistical differences between the data produced by citizen scientists in comparison
to data produced by experts, although the dispersion of the data produced by citizen
scientists may be greater. Participants of an outreach course related to citizen science
and meliponiculture produced the data. Original data gathered by citizen scientists was
first replicated by a group of citizen scientists, who also participated in the project, and
then validated by a group of experts. We tested data accuracy for replication (comparing
original and replicated data) and for expert validation (comparing citizen scientists and
expert data). Moreover, precision was analyzed for data validation, comparing dispersion
between replicator citizen scientists and expert data. Since flight monitoring is a task
with considerable difficulties for untrained personnel, two distinct activity levels were
considered: (a) perception of flight activity (whether the activity was detected or not) and
(b) flight activity (bee counts when activity was detected). Our approach provides a multi-
dimensional assessment (accuracy and precision in perception and counts) of reliability in
citizen science data for a non-model insect organism.

2. Material and Methods

During an outreach course on meliponiculture and citizen science held in July 2020,
participants were invited and trained to perform and pilot-test a structured protocol
aimed at the monitoring of flight activity for Tetragonisca angustula (Latreille, 1811), a
stingless bee widely distributed in Brazil and commonly reared by beekeepers across the
country. The protocol stated that citizen scientists had to film the nest’s entrance for 30 s
within different time intervals (between 7:00 a.m. and 9:00 a.m.; 11:00 a.m. and 1:00 p.m.;
3:00 p.m. and 5:00 p.m.). Data collection consisted of watching the videos and counting
how many bees entered (entrance), how many left the nest (exit), and how many came in
carrying pollen (pollen) in that period (Figure 1A). As stingless bees carry pollen attached
to the pollen baskets in the hind legs (Figure 1B), pollen loads were visible and could be
identified in video recordings. Data submission was carried on a web system developed
exclusively for this purpose (https://beekeep.pcs.usp.br, in Portuguese, University of São
Paulo, São Paulo, Brazil—access date: 23 August 2021), also collecting other relevant
variables for further studies.

Figure 1. (A) A frame of one of the received videos showing a bee approaching the nest entrance tube and some guard bees.
(B) An image of a bee carrying pollen attached to its hind legs. Photo by André Matos.

Of more than 400 submitted videos, 42 were randomly selected for this study purposes,
along with the counts (Supplementary Material 1) provided by citizen scientists at the time
of video submission (these participants are hereafter called “cs original”). The videos were
divided into seven groups of six videos each. For the replication analyses among citizen

https://beekeep.pcs.usp.br
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scientists, each group of videos was assessed by at least 11 participants from a total set of
101 citizen scientists (from now on called “cs replicators”), none of them included in the cs
original group. Group size varied from 11 to 19, none of them analyzed videos of more
than one group. For the validation process, a set of five experts in stingless bee behavior
analyzed all videos, including three authors of this study. Thus, at the end of the quality
control process, there were 2574 countings (considering 858 countings both on entrances,
exits, and pollen), 126 of which were from the cs original (42 individuals × 1 video per
individual × 3 countings per video), 1818 from the cs replicators (101 individuals × 6 videos
per individual × 3 countings per video), and 630 from experts (5 individuals × 42 videos
per individual × 3 countings per video) (Figure 2).

Figure 2. Distribution of the 42 videos for each group: cs original (n = 42 individuals—1:1 video), cs
replicator (n = 101 individuals—1:6 videos) and experts (n = 5 individuals—1:42 videos).

Data Analysis

The groups (cs original, cs replicators, and experts) and video quality were considered
potential sources of observed differences. In order to assess video quality, four variables
were assembled through a Principal Component Analysis (PCA): Mean Structural SIMilar-
ity (MSSIM), Focus, Contrast, and Frames per Second (FPS). MSSIM was obtained using
a custom script that relies on OpenCV 4.5.1 implementation of MSSIM as described by
Wang et al. [37]. We also considered other traditional metrics such as MSE (Mean Square
Error) and the correlated PSNR (Peak Signal-to-Noise Ratio), but MSSIM is a better metric
when considering the human perception of the video quality [38]. Focus and contrast
indicate qualitatively if the nest was in the foreground and if it was possible to differentiate
the bees from the background, respectively. These two metrics were determined by a
designer specialist, who watched the videos and checked both attributes in each. FPS
indicated the number of frames per second and was extracted from video metadata or
inferred using the file size and the video bitrate (uncompressed) when the metadata was
missing or wrong (e.g., recorder used variable bitrate). Before performing the PCA, FPS
data were scaled by subtracting each value from the mean and dividing it by the standard
deviation. PCA Axis 1 explained 68% of the data variability and was used as a proxy for
video quality in our analyses.

Generalized Linear Mixed-Effects Models (GLMER) were adjusted to analyze accuracy
for replication and validation processes. A Boolean variable was created to indicate the
presence (when greater than zero) or absence of activity and to assess the probability
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of flight activity perception. The perception of flight activity was modeled as a binary
response (presence—when the participant responded with a value greater than zero for the
specific activity—or absence of activity), following a Bernoulli distribution. At the same
time, the effective counts of activity were modeled using a Poisson distribution (using only
data for which counts were greater than zero). The group was included in the model as a
fixed effect (cs original compared to cs replicators for replication analyses; cs replicators
compared to experts for validation analyses). The video quality was included in the models
as a covariate. A random effect was set for the videos to account for dependencies in
the data, with participant identity nested within each video. Initially, complete models
with response variables for each bee activity were set (entrances, exits, and pollen). Then,
reduced models were adjusted by removing the fixed effects, one by one, until the null
model. Likelihood-ratio tests were employed to compare models and to select the best
model in each analysis. Overdispersion was assessed by verifying the data’s standard
deviation (sd) against the sd of simulated data. The estimated coefficients were back-log-
transformed using the exponential function to obtain the values of odds or odds ratio from
the models.

The Median Absolute Deviation (MAD) was used as an indicator of counting disper-
sion for both the group of cs replicators and the group of experts. All the counts were
considered in this analysis, even when no activity was found (zero values). Data from cs
original could not be included in this analysis, as no replicates were performed, and hence
no variation could be measured. Like other studies that analyzed count-based protocols,
we chose the median-based metric because data were non-parametric, and the median
minimizes the influence of some extreme countings [16,39]. The mean of the MAD of each
video was calculated for each group and compared through a paired Wilcoxon signed-rank
test to verify possible statistically significant differences between the groups. This non-
parametric test was used because the paired differences in MAD values between groups
were not approximately normally distributed. We also analyzed the correlation between
the mean of MAD and the median of the activities counts to assess whether there was a
relationship between bee activity rates and variation in counts in our protocol, using the
Pearson correlation coefficient.

All analyses were performed in R (version 4.0.4) [40], employing the functions and
respective packages: scale (base), prcomp (stats), GLMER (lme4), anova (stats), mad (stats),
wilcox.test (stats), cor.test (stats) and testDispersion (DHARMa).

3. Results
3.1. Perception and Effective Countings

The perception of entrance activity from the videos ranged from 69% (cs original
and experts) to 70% (cs replicators), while the perception of exit activity ranged from 76%
(experts) to 79% (cs replicators). Perception of pollen was much lower than the previous
activities and varied from 14% (cs original) to 34% (cs replicators) (Figure 3). For those
videos with perceived activity, the median for entrance counts was 5 for all the groups;
medians for exit counts were 6, 5, and 6, while medians for pollen counts were 1, 2, and 1
(for cs original, cs replicators, and experts, respectively) (Figure 4).
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Figure 3. Absolute frequency of perception of activity (entrance, exit, pollen) by the groups (cs original—in blue —, cs
replicator—in red—, expert—in yellow) (see also Figure 2).

Figure 4. Medians and dispersion of effective countings for: (A) entrances; (B) exits; (C) pollen, performed by cs original
(in blue), cs replicators (in red), and experts (in yellow). The dots are outliers, countings over or under 1.5 times the
interquartile range.

3.2. Accuracy

Regarding replication analyses (comparison between cs original and cs replicator), the
likelihood-ratio tests indicated the null models as the best ones for the perception of bees
entering and leaving the nest (Table 1). However, for pollen perception, group effect was
found. In this case, cs replicators presented odds increased by a factor of 4.63 compared
to cs original (Table 2). The null models were the best also for the counts of entrance, exit,
and pollen (Table 1). These results indicate that both groups performed countings quite
similarly. Video quality did not present any effect in these analyses.

In the validation analyses (comparison between cs replicators and experts), null
models were the best ones for the perception of entrance and exit and for the counts of
entrance, exit, and pollen (Table 1). However, for pollen perception, the best model included
the group variable, where the cs replicators had odds of perceiving pollen increased by a
factor of 2.87 when compared to experts (Table 2). Here, the video quality index also did
not add relevant information to explain the participants’ data. Even though the model for
pollen counts presented significant overdispersion despite adjustments (Supplementary
Material Table S1), i.e., the residual variance was larger than expected under the fitted
model, no effect of the tested variables was found.
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Table 1. Likelihood-ratio tests for model selection in the replication (comparison between cs original and cs replicator) and
validation (comparison between cs replicators and experts) analyses. χ2 statistic, with the respective degrees of freedom
(Df), and p-value for each test, are presented. Significant differences between models are followed by an asterisk.

Response Starting Model Fixed Effect Removed χ2 Df p-Value

Replication

Perception

entrance group + video quality group 0.156 1 0.693
video quality video quality 0.045 1 0.832

exit group + video quality group 0.356 1 0.551
video quality video quality 0.065 1 0.799

pollen
group + video quality group 10.852 1 0.001 *
group + video quality video quality 0.064 1 0.801

group group 10.857 1 0.001 *

Count

entrance group + video quality group 1.674 1 0.196
video quality video quality 0.003 1 0.957

exit group + video quality group 0.658 1 0.417
video quality video quality 0.001 1 0.981

pollen group + video quality group 1.367 1 0.242
video quality video quality 0.063 1 0.802

Validation

Perception

entrance group + video quality group 0.516 1 0.472
video quality video quality 0.056 1 0.812

exit group + video quality group 0.592 1 0.442
video quality video quality 0.003 1 0.958

pollen
group + video quality group 22.325 1 0.001 *
group + video quality video quality 0.077 1 0.781

group group 22.330 1 0.001 *

Count

entrance group + video quality group 0.039 1 0.843
video quality video quality 0.038 1 0.845

exit group + video quality group 0.035 1 0.851
video quality video quality 0.001 1 0.981

pollen group + video quality group 0.315 1 0.575
video quality video quality 0.219 1 0.640

Table 2. Parameter estimates of the final models for pollen perception in replication and validation analyses.

Model Comparison Predictor Estimate SE Pr(>|z|) Odds/Odds
Ratio

Pollen
perception

Replication
cs original
(intercept) −2.7561 0.333 <0.001 0.06

cs replicators 1.5332 0.508 0.003 4.63

Validation
experts

(intercept) −2.3004 0.344 <0.001 0.1

cs replicators 1.0529 0.229 <0.001 2.87

3.3. Precision

The MAD means were statistically equal between cs replicators and experts for en-
trance (V = 24.5, p-value 0.071) and exit (V = 54, p-value 0.052) counts. However, the
MAD mean was higher for pollen counts for cs replicators in relation to experts (V = 85,
p-value 0.005), who exhibited low dispersion for this task (Figure 5 and Supplementary
Material Figure S1). These results are in accordance with the accuracy analyses, which
presented significant differences for pollen perception between groups.

Data dispersion for the countings was positively correlated with the amount of bees
in activity in the videos: entrance, cs replicators (r = 0.8, p-value < 0.001) and experts
(r = 0.78, p-value < 0.001); exit, cs replicators (r = 0.57, p-value < 0.001) and experts (r = 0.46,
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p-value 0.002). For entrance and exit, the pattern of increasing dispersion is similar for both
groups, however, for pollen, the correlation is stronger for citizen scientists: cs replicators
(r = 0.94, p-value < 0.001) and experts (r = 0.43, p-value 0.004) (Figure 6).

Figure 5. Mean of Median Absolute Deviation (MAD) of all videos for entrance, exit, and pollen counts, for cs replicators
(in red) and experts (in yellow). Vertical bars indicate the Confidence Intervals (95%).

Figure 6. Correlation between the median of counts and dispersion (MAD) values of each video by group (cs replicator in
red and experts in yellow), with tendency line (linear model line). (A) entrances; (B) exits; (C) pollen.

4. Discussion

Count-based activities are tasks with low to medium skill or training requirements [8].
In the present study, our results evidenced that, depending on the task, the accuracy of
different groups can be affected. This was especially true when the perception of bees
carrying pollen was considered. Thus, specific ability levels may be necessary to guarantee
reliability in distinct contexts. For instance, perceiving a moving bee is significantly
different from perceiving pollen present at a bee corbicula, which is a much smaller target
and may require more volunteer training to reach the same level of quality of the experts.
In the work of Bieluch et al. [41], CS program coordinators were interviewed about the
contribution of volunteers in fish count-based protocols. They highlighted some aspects
that can influence the counting accuracy, like the poor weather, high numbers of individuals
passing at once, and the physical attributes of the counting site. Here, attributes of the
video, which could be a proxy for context variation, did not affect countings. Target size
may also influence perception, and large individuals and distinctive shapes can help to
produce more accurate data [39]. It could pose as a barrier for data quality in our study
since the size of the studied bees is small, varying between 4 mm and 5 mm, imposing
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some difficulty for those who are analyzing the videos [42]. Finally, stingless bees normally
speed up when near the nest entrance, which could also hinder the perception of bees
carrying pollen by citizen scientists [43].

The observed divergence in pollen perception by cs replicators compared to the other
groups cannot be fully explained in this study, where experts presented conservative
counts, while cs replicators exhibited a permissive performance. We hypothesized that due
to citizen scientists’ eagerness to find some pollen and their lack of experience, they could
overestimate the perception of this activity. If this is true, with more practical training effort
in this protocol, we expect that cs replicators would present lower and less variation in the
perception of pollen loads [44]. Some questionable research practices, such as falsification
(wilful or unintended distortion of data or results), can negatively impact research [45], so
they must be seriously considered when resulting from citizen science practices.

Generally, false negatives are a concern for researchers that deal with biodiversity
occurrence data from citizen science (e.g., [46,47], but false positives are generally consid-
ered unimportant, although they can lead to severe biases in conclusions about ecological
systems [48]. Overestimation and underestimation of counts in citizen science protocols are
reported in the literature. For instance, citizen scientists underestimated experts’ countings
of seals and sea lions in static images [39], countings of stomata and epidermal cells in
static images [49], and the estimation of caterpillar density [50]. On the other hand, they
overestimated fly and beetle density when applying a visual survey protocol in natural
habitats [50]. These results varied according to the protocol and factors related to the
individuals, such as experience and training [51]. However, empirical evidence suggests
that citizen science data quality has often been sufficient for the projects’ aims, and dif-
ferences between citizen scientists’ and professionals’ data were not significant in most
cases, e.g., 61.6% of studies showing no significant differences between citizen scientists
and professionals in Aceves-Bueno et al. [27].

Considering the count precision in our study, intra-group dispersion was found in both
groups, which is naturally expected in science, regardless of the individuals’ expertise. For
instance, in Swanson et al. [16], during an expert verification, precise counts of specimens
were unresolvable in many of the images they were analyzing, and the specialists agreed
on the number of individuals only 74% of the time. The authors concluded that multiple
citizen scientists classifying an image could be more reliable if compared to a single person,
even if this person is an expert. In our study, when more bees were in flight activity, more
dispersion was found in all groups, which can reveal a greater difficulty for counting
many bees at the same time. Other confounding factors could inflate countings, such as the
presence of guards at the nest entrance. These guards are larger and heavier than the regular
workers, hovering or standing next to the nest entrance tube (Figure 1A) [52], possibly being
confused with bees in foraging activity when activity is high. We also found that CS data,
specifically for pollen counts, showed higher dispersion than expert data. Likewise, data
variability among citizen scientists was tested in Fehri et al. [53], in which the volunteers
were engaged and trained on using rain gauge tools. Data dispersion was slightly higher
in specific situations (high rainfall events), but in contrast, other events measurements
(lower precipitation) showed more consistency for the group composed of citizen scientists.
More straightforward tasks performed by volunteers tend to present less data dispersion
when compared to more complex ones [53,54]. Additionally, volunteers generally improve
their accuracy as they gain experience within a project [8]. The continuous execution of
a task can promote personal learning and progress of the required skill [44] and improve
data quality [27]. In our citizen science initiative, the participants of the outreach course
learned to perform the protocol based on three video lessons and online guidance since
any practical activity was not possible due to the restrictions imposed by the COVID-19
pandemic. Therefore, it is possible that an increased effort in the training of volunteers
could lead to higher quality data in the present study, as has already been reported for
other citizen science studies (e.g., [19,55,56]). Clear and objective protocols can also help in
the rigorous collection of data [23,57].
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Here, replication was used as a way to test for data quality, which is a practice
reported to produce high rates of accuracy [16,39,58], since the combination of different
and independent contributions decreases the errors observed individually in each one,
according to the “Wisdom of Crowds” principle [59]. This quality assurance procedure can
be used by default in the protocol design by proposing that all the collected data should
be confirmed by a set of volunteers, or only in cases of unusual records, for example. A
challenge with this approach is to define the value of agreement between individuals [39],
sometimes with the support of expert checks. The level of accuracy needed will likely
depend on the research question and the ability to perform post hoc statistical manipulation
on these data [54]. In our case, replication provided reliable CS data for the counts of bees
entering or leaving the nest. However, the perception of pollen was consistently different
between groups (Figure 3, Tables 1 and 2) and countings were also highly variable for citizen
scientists (Figures 5 and 6). Thus, although effective counts of pollen were reliable, both in
replication and validation analyses (Figure 4), the observed variance in the replicators’ data
can impose some data quality issues and compromise the application of these specific data.

As a consequence of these results obtained for pollen in the present pilot test of the
protocol, a checkbox option labeled “pollen count was performed” was included in the
platform, making it possible for citizen scientists to report an actual absence of pollen
activity (“real” zeros) differently from the zeros that represent that they were unable to
perform the task. Indeed, including an “I don’t know” option was shown to enhance
data quality and contribute to the agreement among participants in a citizen science
initiative [60]. In addition, we realized the importance of slowing down the video speed
to make pollen loads easier to see. Thus we have also included this functionality in
our platform as well. Future works may include developing an agreement algorithm to
determine the consensual entrance, exit, and pollen activity in each video and the use of
artificial intelligence to perform automatic counts.

5. Conclusions

Our results indicate that the flight activity protocol for stingless bees provides reliable
data for bees entering and leaving the nest since original, replicated, and expert data were
similar. These results are in accordance with our initial hypotheses that CS data do not
differ statistically from those provided by specialists. However, a significant difference was
found for the perception of pollen loads, with the cs replicator diverging from the experts
and the cs original. Despite that, for those videos in which there was an agreement about
pollen presence, i.e., in which both groups identified bees carrying pollen, the effective
counts were very similar and confirmed the reliability of CS-collected data.

Data quality is a common concern in the era of data, and mechanisms to evaluate and
improve quality are essential to ensure data applicability in its intended purpose. In CS, the
problems are, in fact, comparable to those found in the traditional scientific exercise [3,8]
and both models need to implement specific measures to guarantee the data quality and
the other obtained products [54,61]. In CS, these quality requirements can be research
questions of interest to participants, viable protocols, consistent training, evidence of
observations, replication, expert review, among others. Several studies in different fields of
knowledge, including the present one, report positive results and highlight characteristics
that justify the investment in volunteers to act as scientists [12,27,62,63]. Depending on
the particularities of the required task, adequate training and specific skill levels may be
necessary, as in any other scientific approach. Our study highlights the importance of a
multi-dimensional approach in CS data quality assessments to identify potential pitfalls
and adequate protocols to improve data collection and use of CS data in research.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/insects12090766/s1, Supplementary Material 1: Excel file with complete data-set, containing
citizen scientists original (cs-original tab), replicated (cs-rep tab), and expert (exp tab) counts, along
with video quality metric; (vq tab); Supplementary Material 2: Table S1: Dispersion of residual
variance for each model. Significant dispersion models are highlighted in bold, Figure S1: Median
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Absolute Deviation (MAD) value of each video for replicator citizen scientists and experts in different
bee activities.
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