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Background: Alcohol causes fetal alcohol spectrum disorders in part by disrupting the function of
the neural cell adhesion molecule L1. Alcohol inhibits L1-mediated cell–cell adhesion in diverse cell
types and inhibits L1-mediated neurite outgrowth in cerebellar granule neurons (CGNs). A recent
report indicates that ethanol (EtOH) induces the translocation of L1 into CGN lipid rafts and that dis-
ruption of lipid rafts prevents EtOH inhibition of L1-mediated neurite outgrowth. The same butanol–
pentanol cutoff was noted for alcohol-induced translocation of L1 into lipid rafts that was reported pre-
viously for alcohol inhibition of L1 adhesion, suggesting that EtOH might inhibit L1 adhesion by shift-
ing L1 into lipid rafts.

Methods: The NIH/3T3 cell line, 2A2-L1s, is a well-characterized EtOH-sensitive clonal cell line
that stably expresses human L1. Cells were treated with 25 mM EtOH, 5 lM filipin, or both. Lipid
rafts were enriched in membrane fractions by preparation of detergent-resistant membrane (DRMs)
fractions. Caveolin-1 was used as a marker of lipid rafts, and L1 and Src were quantified by Western
blotting in lipid-raft-enriched membrane fractions and by immunohistochemistry.

Results: EtOH (25 mM) increased the percentage of L1, but not Src, in 2A2-L1s membrane frac-
tions enriched in lipid rafts. Filipin, an agent known to disrupt lipid rafts, decreased the percentage of
caveolin and L1 in DRMs from 2A2-L1s cells. Filipin also blocked EtOH-induced translocation of L1
into lipid rafts from 2A2-L1s cells but did not significantly affect L1 adhesion or EtOH inhibition of L1
adhesion.

Conclusions: These findings indicate that EtOH does not inhibit L1 adhesion in NIH/3T3 cells by
inducing the translocation of L1 into lipid rafts.

Key Words: Fetal Alcohol Spectrum Disorders, L1 Neural Cell Adhesion Molecule, Lipid Raft,
Ethanol.

ALCOHOL EXPOSURE DURING pregnancy may
cause fetal alcohol spectrum disorders, in part, by dis-

rupting the function of the neural cell adhesion molecule L1.
L1 mutations and prenatal alcohol exposure cause similar
brain dysmorphology in children (Ramanathan et al., 1996;
Wilkemeyer et al., 2003), and some of these L1 mutations
disrupt L1-mediated cell–cell adhesion (L1 adhesion) or L1-
mediated neurite outgrowth (De Angelis et al., 2002; Schul-
theis et al., 2007). Concentrations of ethanol (EtOH)
attained after just 1 or 2 drinks—5 to 10 mM—inhibit L1
adhesion in cerebellar granule neurons (CGNs), neural cell
lines, and fibroblasts and decrease L1-mediated neurite out-
growth in CGNs (Bearer et al., 1999; Charness et al., 1994;

Ramanathan et al., 1996). Drugs that block EtOH inhibition
of L1 adhesion also prevent EtOH teratogenesis in mice
(Chen et al., 2001, 2005; Wilkemeyer et al., 2003, 2004).
Finally, differential activity of kinases that regulate L1 sensi-
tivity to EtOHmay account for genetically determined differ-
ences in susceptibility to EtOH teratogenesis in clonal cell
lines and in mice (Dou et al., 2013).
L1 is a transmembrane protein comprising 6 Ig-like

domains, 5 fibronectin type III repeats, a transmembrane
region, and a highly conserved cytoplasmic domain (Maness
and Schachner, 2007). The Ig domains fold into a horseshoe
configuration that favors L1 adhesion (Haspel and Grumet,
2003), and an alcohol binding pocket has been identified at
the domain interface between Ig1 and Ig4 (Arevalo et al.,
2008). Small amino acid substitutions within this alcohol
binding pocket markedly alter the pharmacology of alcohol
inhibition of L1 adhesion (Dou et al., 2011). These findings
support the hypothesis that EtOH disrupts L1 adhesion by
interacting with a locus on the L1 extracellular domain
(L1-ECD).
Recent data suggest that EtOH might also disrupt L1

function by altering protein trafficking. EtOH treatment of
CGNs induced the translocation of L1 into lipid rafts and
the translocation of Src out of lipid rafts (Tang et al., 2011).
L1-mediated neurite outgrowth in CGNs requires L1 activa-
tion of Src signaling (Ignelzi et al., 1994); therefore, EtOH
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might inhibit L1-mediated neurite outgrowth by translocat-
ing L1 and Src to separate membrane microdomains, thereby
reducing their normal interactions. Consistent with this
hypothesis, disruption of CGN lipid rafts with methyl-
beta-cyclodextrin prevented EtOH inhibition of L1-mediated
neurite outgrowth (Tang et al., 2011). Translocation of L1
into lipid rafts also occurred after treatment of CGNs with
methanol, 1-propanol and 1-butanol—alcohols of 1 to 4 car-
bons—but not with 1-pentanol, a 5-carbon 1-alcohol. This
same butanol–pentanol cutoff was also observed for EtOH
inhibition of L1 adhesion in transfected fibroblasts and
neural cell lines (Charness et al., 1994; Dou et al., 2011;
Wilkemeyer et al., 2002). These observations suggest that
translocation of L1 into lipid rafts is necessary for EtOH
inhibition of L1-mediated neurite outgrowth and might also
account for EtOH inhibition of L1 adhesion.

Lipid rafts are major components of plasma membranes
(Edidin, 2003). Many protein ligands, including L1, reversibly
associate with lipid rafts to regulate intracellular physiological
processes and extracellular interactions (Kamiguchi, 2006).
EtOH-induced translocation of L1 into lipid rafts might alter
the conformation of the L1-ECD in ways that reduce L1 adhe-
sion. Here, we use a well-characterized NIH/3T3 cell line stably
transfected with human L1, 2A2-L1s, to test the hypothesis
that EtOH inhibits L1 adhesion by inducing the translocation
of L1 into lipid rafts. We confirm that EtOH induces the trans-
location of L1 into lipid rafts in NIH/3T3 cells; however, fili-
pin, a drug that disrupts lipid rafts (Schnitzer et al., 1994),
prevents EtOH-induced translocation of L1 into lipid rafts,
but does not alter L1 adhesion or its inhibition by EtOH.

MATERIALS ANDMETHODS

Cell Culture, Adhesion Assay

NIH/3T3 cells expressing human L1 (2A2-L1s) were cultured as
described (Dou et al., 2011). L1-mediated cell–cell adhesion (L1
adhesion) was assayed by separating cells into single-cell suspen-
sions, agitating, and measuring the percentage of adherent cells
using phase contrast microscopy, as described (Dou et al., 2011).

Immunohistochemistry

2A2-L1s cells were plated in T75 flasks in DMEM supple-
mented with 10% bovine serum (BS) and grown to 75 to 85%
confluence (Dou et al., 2011). Cells were treated with 25 mM
EtOH, 5 lM filipin, or both for 1 hour. Cells were harvested in
phosphate buffered saline (PBS) plus 2 mM EDTA, fixed in 4%
paraformaldehyde for 30 minutes, blocked with PBS supple-
mented with 5% BS, and incubated with L1 mAb 5G3 (Dou
et al., 2011), caveolin-1 polyclonal antibody (AB18199; Abcam),
or Src polyclonal antibody (Ab47405; Abcam, Cambridge, MA)
in PBS/BS at room temperature for 2 hours. Cells were washed 3
times with PBS and incubated with goat anti-mouse IgG conju-
gated with Alexa Fluor-488 and goat anti-rabbit IgG conjugated
with Alexa Fluor 546 (Invitrogen, Grand Island, NY) in PBS/BS.
Cells were washed again with PBS and fixed in paraformalde-
hyde. Images were captured using a Zeiss Multiphoton micro-
scope LSM T-PMT system and Zen 2009 software from Carl
Zeiss (Carl Zeiss International, Jena, Germany).

Detergent-Resistant Membrane Preparation

Lipid rafts are normally detergent resistant and therefore localize
predominantly to detergent-insoluble fractions during separation at
low temperature (Magee and Parmryd, 2003). These are referred to
as detergent-resistant membrane (DRM) fractions. 2A2-L1s cells
were cultured in DMEM supplemented with 10% BS. At 70 to 80%
confluence, cells were treated for 1 hour in DMEM with drugs and
collected with PBS plus 2 mM EDTA. Whole cell lysates were pre-
pared with NP-40 cell lysis buffer plus 1% Triton X-100 and Halt
protease/phosphatase inhibitors on ice for 5 minutes and then cen-
trifuged at 10,0009g for 5 minutes to remove cell debris. The super-
natant was then centrifuged at 34,8009g at 4°C for 2 hours in a
TLA120.2 rotor (Beckman, Indianapolis, IN). The resulting pellet
and supernatant were dissolved in equal volume of 19 SDS sample
buffer (Boston Bioproduct, Ashland, MA). L1, Src, and caveolin in
DRM fractions were analyzed with Western blot and densitometric
analysis of protein bands from scanned images of PVDF
membranes using NIH Image J software (Abramoff et al., 2004).

Statistical Analysis

Data are expressed as mean � SEM. Statistical differences in
means were compared using the t-test (Prism 5; GraphPad Software,
La Jolla, CA.). Statistical significance was defined as p < 0.05.

RESULTS

Filipin Disrupts Lipid Rafts in 2A2-L1s Cells

Caveolin is a major component of lipid rafts that localizes
to DRMs and is commonly used as a lipid raft marker
(Parton and Simons, 2007; Pike, 2009). We refer to deter-
gent-resistant, caveolin-enriched fractions as DRMs or lipid
rafts. Filipin disrupts lipid rafts by depleting membrane cho-
lesterol, leading to the redistribution of caveolin out of lipid
rafts (Kim et al., 2004; Marwali et al., 2003; Schnitzer et al.,
1994). 2A2-L1s cells were incubated for 1 hour at 37°C in the
absence and presence of 5 lM filipin and 25 mM EtOH, and
cell lysates were separated into detergent-soluble (superna-
tant) and DRM fractions (pellet) using ultracentrifugation.
Western blot analysis showed that in control cells,
82.4 � 4.4% of caveolin was distributed in the DRM frac-
tion; EtOH treatment did not alter this distribution (Fig. 1)
(n = 9, p = 0.175). Filipin significantly decreased the percent-
age of caveolin in the DRM fraction (49.3 � 1.3%; n = 9,
p < 0.001) (Fig. 1C), and EtOH did not modify this effect of
filipin (n = 9, p = 0.591). These results indicate that under
our experimental conditions, filipin, but not EtOH, disrupts
lipid rafts in NIH/3T3 fibroblasts.

Ethanol Induces the Translocation of L1 into Lipid Rafts

The effects of EtOH and filipin on L1 lipid raft localization
were evaluated using immunohistochemistry and confocal
microscopy. Immunolabeling with antibodies against L1 and
caveolin showed a homogeneous pattern in the plasma mem-
brane of control and EtOH-treated 2A2-L1s cells. EtOH
treatment increased the co-localization of L1 and caveolin
(Fig. 1A). Western blot analysis showed that treatment of
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2A2-L1s cells with 25 mM EtOH significantly increased the
association of L1 with DRMs from 56.5 � 6.4% to
71.2 � 4.7% (n = 9, p = 0.002). In contrast, EtOH did not
alter the co-localization of Src and caveolin (Fig. 2). Impor-
tantly, filipin treatment significantly reduced the proportion
of L1 associated with DRMs (35.6 � 4.5%; n = 9,
p = 0.046), and EtOH did not significantly increase this pro-
portion (Fig. 1D). These findings indicate that EtOH induces
the translocation of L1 into lipid rafts in NIH/3T3 cells, and
filipin prevents this action by disrupting lipid rafts.

Filipin Disruption of Lipid Rafts Does Not Affect L1 Adhesion
or Ethanol Inhibition of L1 Adhesion

Filipin disrupted lipid rafts and blocked EtOH-induced
translocation of L1 into lipid rafts. If EtOH inhibits L1
adhesion by inducing its movement into lipid rafts, then
EtOH should not inhibit L1 adhesion in filipin-treated cells.
2A2-L1s cells were treated with 5 lM filipin for 1 hour and
harvested for cell adhesion assays. As reported previously
(Dou et al., 2013; Wilkemeyer and Charness, 1998), 25 mM
EtOH significantly reduced L1 adhesion in 2A2-L1s cells
(Fig. 3) (control 26.6 � 3.1%; EtOH 14.0 � 2.7%; n = 8,
p < 0.001). Filipin treatment had no significant effect on L1
adhesion (n = 8, p = 0.232) or EtOH inhibition of L1 adhe-
sion (n = 8, p = 0.814).

DISCUSSION

We conducted these studies to test the hypothesis that
EtOH inhibits L1 adhesion by shifting L1 into lipid rafts,
thereby reducing its adhesivity. Our work confirms the recent
report of Tang and colleagues (2011) that EtOH induces the
translocation of L1 into lipid rafts. The fact that EtOH alters
L1 trafficking in both neuronal and mesenchymal cells sug-
gests that EtOH is modulating molecular processes that are
common to both cellular lineages. Targeting of L1 to lipid
rafts is believed to occur through palmitoylation of the L1
membrane spanning region (Ren and Bennett, 1998); hence,
it is possible that EtOH alters palmitoylation of both the
neuronal isoform of L1 expressed in CGNs and the non-neu-
ronal isoform stably expressed in our 2A2-L1s NIH/3T3 clo-
nal cell line (Wilkemeyer and Charness, 1998).
The magnitude of L1 translocation was lower in NIH/3T3

cells than in CGNs, perhaps because under differing experi-
mental conditions, L1 was more highly localized to lipid rafts
in untreated NIH/3T3 cells than in untreated CGNs, provid-
ing less opportunity for EtOH to translocate L1. The

Fig. 1. Disruption by filipin of ethanol (EtOH)-induced translocation of
L1 into lipid rafts. NIH/3T3 cells transfected stably with human L1 (2A2-
L1s) were incubated for 1 hour in the absence and presence of 25 mM
EtOH and 5 lM filipin. (A) Immunofluorescence labeling of L1 (green) and
caveolin (Cav) (red) under the indicated conditions; bar = 10 lm. Yellow
color in merged panels indicates co-localization of L1 and caveolin, a mar-
ker of lipid rafts. (B) Representative Western blot shows caveolin distribu-
tion in detergent-soluble (S) and detergent-resistant membrane fractions
(D or DRM) of total cell lysates. Densitometric analysis of percentage of
caveolin (C) and L1 (D) in DRM from experiments shown in (B). Data
shown are mean � SEM % from 9 independent experiments; *p < 0.05,
**p < 0.01, ***p < 0.001.

Fig. 2. Effect of ethanol (EtOH) on the co-localization of Src and caveo-
lin. (A) Immunofluorescence labeling of Cav (green) and Src (red) under
the indicated conditions, as described in Fig. 1; bar = 10 lM. Yellow color
in merged panels indicates co-localization of Src and caveolin. (B) Repre-
sentative Western blot shows Src distribution in detergent-soluble (S) and
DRM fractions (D) of total cell lysates. (C) Densitometric analysis of per-
centage of Src in DRM fractions from experiments shown in (B). Data
shown are mean � SEM % from 5 independent experiments; n = 5;
p = 0.10. DRM, detergent-resistant membrane.

Fig. 3. Effect of filipin on L1 adhesion and ethanol (EtOH) inhibition of
L1 adhesion. 2A2-L1s cells were incubated for 1 hour in the absence and
presence of 25 mM EtOH and 5 lM filipin. Cells were harvested for cell
adhesion assays. (A) L1 adhesion in the absence and presence of 25 mM
EtOH and 5 lM filipin. Shown are the mean � SEM levels of L1 adhesion
for control and filipin-treated cells in the absence and presence of EtOH.
(B) Inhibition of L1 adhesion by EtOH, filipin, and EtOH plus filipin. Data
were derived from experiments shown in (A) in which the percent inhibition
of control adhesion by EtOH, filipin, or filipin plus EtOH was calculated for
paired experiments. Shown are the mean � SEM % inhibition for each of
the 3 conditions; n = 8; **p < 0.01, ***p < 0.001, indicating significant
inhibition.
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reported localization of L1 within CGN lipid rafts ranges
from 10% to nearly 70% (Nakai and Kamiguchi, 2002; Tang
et al., 2011), suggesting that results can be influenced by
experimental conditions and methods for isolating lipid rafts.
Furthermore, translocation of L1 to lipid rafts in CGNs is
developmentally regulated, peaking between postnatal days
3 and 8 (Nakai and Kamiguchi, 2002).

EtOH did not alter the distribution of Src in lipid rafts in
2A2-L1s cells, in contrast to findings in CGNs (Tang et al.,
2011). The absence of an EtOH effect on Src trafficking in
NIH/3T3 cells might reflect intrinsic differences in the molec-
ular apparatus that regulates the movement of Src in lipid
rafts of mesenchymal and neuronal cells. Growth cone
motility in CGNs results from dynamic remodeling of the
growth cone in response to axon guidance molecules
(Schmid and Maness, 2008; Vitriol and Zheng, 2012). Inter-
actions of L1 and Src within lipid rafts are developmentally
regulated and mediate the rapid dynamic remodeling of
membrane and cytoskeletal elements that are integral to
axon pathfinding in CGNs (Nakai and Kamiguchi, 2002). In
contrast, fibroblasts lack growth cones and might also lack
some of the regulatory elements that EtOH targets to alter
Src trafficking in CGNs.

Disruption of lipid rafts in CGNs by methyl-beta4-
dextran, a cholesterol-depleting agent, blocked EtOH-
induced translocation of L1 into lipid rafts (Tang et al.,
2011). Similarly, treatment of 2A2-L1s cells with filipin
caused a significant shift in caveolin, a lipid raft marker,
from the DRM fraction into the non-DRM fraction (deter-
gent-soluble fractions) of 2A2-L1s cellular extracts. Our
findings indicate that filipin was effective in disrupting lipid
rafts in our NIH3/T3 cells. Although filipin did not com-
pletely shift caveolin from the DRM to the non-DRM
fractions, the overall effect was sufficient to completely
block EtOH-induced translocation of L1 into lipid rafts.
Hence, we were able to test the hypothesis that EtOH
inhibits L1 adhesion by promoting L1 translocation into
lipid rafts. Filipin did not significantly modulate L1 adhe-
sion or its inhibition by EtOH. These findings suggest that
L1 adhesion is not reduced when L1 is localized to lipid
rafts and that EtOH-induced translocation of L1 into lipid
rafts does not underlie EtOH inhibition of L1 adhesion in
NIH/3T3 cells. These observations are consistent with the
hypothesis that EtOH inhibits L1 adhesion by interacting
with an alcohol binding pocket at the Ig1–Ig4 interface of
the L1-ECD (Arevalo et al., 2008; Dou et al., 2011).

It remains unclear why disruption of lipid rafts blocked
EtOH inhibition of L1-mediated neurite outgrowth in
CGNs, but had no effect on EtOH inhibition of L1 adhesion.
In both model systems, EtOH induced a translocation of L1
into lipid rafts. One notable difference between our experi-
ments and those of Tang and colleagues (2011) was that
EtOH induced a redistribution of Src out of lipid rafts in
CGNs, but did not do so in NIH/3T3 cells. Tang and
colleagues (2011). speculated that EtOH disruption of CGN
neurite outgrowth results from the physical separation of L1

and Src. Our results indicate that EtOH inhibition of L1
adhesion does not require this physical dissociation of L1
and Src, at least in NIH/3T3 cells, and previous experiments
supported an extracellular site for EtOH’s actions on L1
adhesion. Parallel experiments on EtOH inhibition of L1
adhesion and L1-mediated neurite outgrowth in CGNs
would be required to definitively determine whether common
or distinct mechanisms underlie the effects of EtOH on these
2 functions of L1.
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